INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGP4063DPbF
PD - 97210A
1www.irf.com
04/01/11
E
G
n-channel
C
VCES = 600V
IC = 48A, TC = 100°C
tSC 5μs, TJ(max) = 175°C
VCE(on) typ. = 1.65V
Features
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
•5 μS short circuit SOA
Square RBSOA
100% of the parts tested for 4X rated current (ILM)
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
Benefits
High Efficiency in a wide range of applications
Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
Rugged transient Performance for increased reliability
Excellent Current sharing in parallel operation
Low EMI
G
C
E
Gate Collector Emitter
GCE
TO-247AC
C
Absolute Maximum Ratings
Parameter Max. Units
V
CES
Collector-to-Emitter Voltage 600 V
I
C
@ T
C
= 25°C Continuous Collector Current 96
I
C
@ T
C
= 100°C Continuous Collector Current 48
I
CM
Pulse Collector Current 144
I
LM
Clamped Inductive Load Current
c
192 A
I
F
@ T
C
= 25°C Diode Continous Forward Current 96
I
F
@ T
C
= 100°C Diode Continous Forward Current 48
I
Diode Maximum Forward Current
e
192
V
GE
Continuous Gate-to-Emitter Voltage ±20 V
Transient Gate-to-Emitter Voltage ±30
P
D
@ T
C
= 25°C Maximum Power Dissipation 330 W
P
D
@ T
C
= 100°C Maximum Power Dissipation 170
T
J
Operating Junction and -55 to +175
T
STG
Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
R
θJC
(IGBT) Thermal Resistance Junction-to-Case-(each IGBT) ––– –– 0.45 °C/W
R
θJC
(Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 0.92
R
θCS
Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 –––
R
θJA
Thermal Resistance, Junction-to-Ambient (typical socket mount) –– –– 40
IRGP4063DPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, L = 200μH, RG = 10Ω.
This is only applied to TO-247AC package.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V(BR)CES Collector-to-Emitter Breakdown Voltage 600——V
VGE = 0V, IC = 150μA
f
CT6
ΔV(BR)CES/ΔTJTemperature Coeff. of Breakdown Voltage —0.30—V/°C
VGE = 0V, IC = 1mA (2C-175°C) CT6
—1.652.14 IC = 48A, VGE = 15V, TJ = 25°C 5,6,7
VCE(on) Collector-to-Emitter Saturation Voltage 2.0 V IC = 48A, VGE = 15V, TJ = 150°C 9,10,11
—2.05— IC = 48A, VGE = 15V, TJ = 175°C
VGE(th) Gate Threshold Voltage 4.0 6.5 V VCE = VGE, IC = 1.4mA 9, 10,
ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient -21 mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) 11, 12
gfe Forward Transconductance 32 S VCE = 50V, IC = 48A, PW = 80μs
ICES Collector-to-Emitter Leakage Current 1.0 150 μAVGE = 0V, VCE = 600V
450 1000 VGE = 0V, VCE = 600V, TJ = 175°C
VFM Diode Forward Voltage Drop 1.95 2.91 V IF = 48A 8
—1.45— IF = 48A, TJ = 17C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Ref.Fig
QgTotal Gate Charge (turn-on) 95 140 IC = 48A 24
Qge Gate-to-Emitter Charge (turn-on) 28 42 nC VGE = 15V CT1
Qgc Gate-to-Collector Charge (turn-on) 35 53 VCC = 400V
Eon Turn-On Switching Loss 625 1141 IC = 48A, VCC = 400V, VGE = 15V CT4
Eoff Turn-Off Switching Loss 1275 1481 μJRG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C
Etotal Total Switching Loss 1900 2622 Energy losses include tail & diode reverse recovery
td(on) Turn-On delay time 60 78 IC = 48A, VCC = 400V, VGE = 15V CT4
trRise time 40 56 ns RG = 10
Ω
, L = 200μH, LS = 150nH, TJ = 25°C
td(off) Turn-Off delay time 145 176
tfFall time 35 46
Eon Turn-On Switching Loss 1625 IC = 48A, VCC = 400V, VGE=15V 13, 15
Eoff Turn-Off Switching Loss 1585 μJRG=10
Ω
, L=200μH, LS=150nH, TJ = 175°C
f
CT4
Etotal Total Switching Loss 3210 Energy losses include tail & diode reverse recovery WF1, WF2
td(on) Turn-On delay time 55 IC = 48A, VCC = 400V, VGE = 15V 14, 16
trRise time 45 ns RG = 10Ω, L = 200μH, LS = 150nH CT4
td(off) Turn-Off delay time 165 TJ = 175°C WF1
tfFall time 45 WF2
Cies Input Capacitance 3025 pF VGE = 0V 23
Coes Output Capacitance 245 VCC = 30V
Cres Reverse Transfer Capacitance 90 f = 1.0Mhz
TJ = 175°C, IC = 192A 4
RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2
Rg = 10Ω, VGE = +15V to 0V
SCSOA Short Circuit Safe Operating Area 5 μsVCC = 400V, Vp =600V 22, CT3
Rg = 10Ω, VGE = +15V to 0V WF4
Erec Reverse Recovery Energy of the Diode 845 μJTJ = 17C 17, 18, 19
trr Diode Reverse Recovery Time 115 ns VCC = 400V, IF = 48A 20, 21
Irr Peak Reverse Recovery Current 40 A VGE = 15V, Rg = 10
Ω
, L =200μH, Ls = 150nH WF3
Conditions
IRGP4063DPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
0246810
VCE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0246810
VCE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
025 50 75 100 125 150 175 200
TC (°C)
0
10
20
30
40
50
60
70
80
90
100
IC (A)
0 25 50 75 100 125 150 175 200
TC (°C)
0
50
100
150
200
250
300
350
Ptot (W)
10 100 1000
VCE (V)
1
10
100
1000
IC (A)
1 10 100 1000
VCE (V)
0.1
1
10
100
1000
IC (A)
1msec
10μsec
100μsec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
IRGP4063DPbF
4www.irf.com
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
0246810
VCE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0.0 1.0 2.0 3.0 4.0
VF (V)
0
20
40
60
80
100
120
140
160
180
200
IF (A)
-40°c
25°C
175°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 24A
ICE = 48A
ICE = 96A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 24A
ICE = 48A
ICE = 96A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 24A
ICE = 48A
ICE = 96A
0 5 10 15
VGE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
TJ = 25°C
TJ = 175°C
IRGP4063DPbF
www.irf.com 5
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
020 40 60 80 100
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0 25 50 75 100 125
Rg (Ω)
1000
1500
2000
2500
3000
3500
4000
4500
5000
Energy (μJ)
EOFF
EON
025 50 75 100 125
RG (Ω)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
020 40 60 80 100
IF (A)
0
5
10
15
20
25
30
35
40
45
IRR (A)
RG = 10Ω
RG = 22Ω
RG = 47Ω
RG = 100Ω
025 50 75 100 125
RG (Ω)
10
15
20
25
30
35
40
45
IRR (A)
0 50 100 150
IC (A)
0
1000
2000
3000
4000
5000
6000
Energy (μJ)
EOFF
E
ON
IRGP4063DPbF
6www.irf.com
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 48A; TJ = 175°C
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 48A; L = 600μH
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
0200 400 600 800 1000
diF /dt ( A/μs)
10
15
20
25
30
35
40
45
IRR (A)
020 40 60 80 100
IF (A)
0
100
200
300
400
500
600
700
800
900
Energy (μJ)
RG = 10Ω
RG = 22Ω
RG = 47Ω
RG = 100Ω
8 1012141618
VGE (V)
4
6
8
10
12
14
16
18
Time (μs)
50
100
150
200
250
300
350
400
Current (A)
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 255075100
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES
= 300V
VCES
= 400V
0 500 1000 1500
diF /dt (A/μs)
1000
1500
2000
2500
3000
3500
4000
QRR (nC)
10Ω
22Ω
100Ω
47Ω
48A
24A
96A
IRGP4063DPbF
www.irf.com 7
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.0872 0.000114
0.1599 0.001520
0.2020 0.020330
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.2774 0.000908
0.3896 0.003869
0.2540 0.030195
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRGP4063DPbF
8www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
0
1K
VCCDUT
L
L
Rg
80 V
DUT VCC
+
-
Fig.C.T.5 - Resistive Load Circuit
Rg
VCC
DUT
R =
VCC
ICM
G force
C sens
e
100K
DUT
0.0075μF
D1 22K
E force
C force
E sense
Fig.C.T.6 - BVCES Filter Circuit
Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit
L
Rg
VCC
DUT /
DRIVER
diode clamp /
DUT
-5V
DC
4X
DUT
VCC
RSH
IRGP4063DPbF
www.irf.com 9
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
-40
-30
-20
-10
0
10
20
30
40
50
60
-0.15 -0.05 0.05 0.15 0.25
time (µS)
I
RR
(A )
Peak
I
RR
Q
RR
t
RR
10%
Peak
I
RR
-100
0
100
200
300
400
500
600
-5.00 0.00 5.00 10.00
time (µS)
V
CE
(V )
-100
0
100
200
300
400
500
600
I
CE
(A )
V
CE
I
CE
-100
0
100
200
300
400
500
600
700
-0.40 0.10 0.60 1.10
Times)
V
CE
(V)
-20
0
20
40
60
80
100
120
140
I
CE
(A )
EOFF Loss
5% V
CE
5% I
CE
90% I
CE
tf
-100
0
100
200
300
400
500
600
700
6.20 6.40 6.60 6.80 7.00
Time (µs )
V
CE
(V)
-20
0
20
40
60
80
100
120
140
I
CE
(A)
E
ON
TEST
CURRENT
90% test
10% test
current
5% V
CE
tr
IRGP4063DPbF
10 www.irf.com
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd.., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/11
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-247AC package is not recommended for Surface Mount Application.
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((./27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/