Semiconductor Components Industries, LLC, 2000
December, 2000 – Rev. 1 1Publication Order Number:
MC74LCX14/D
MC74LCX14
Low Voltage CMOS
Hex Schmitt Inverter With 5
V-Tolerant Inputs
The MC74LCX14 is a high performance hex inverter with
Schmitt–Trigger inputs operating from a 2.3 to 3.6 V supply. High
impedance TTL compatible inputs significantly reduce current loading to
input drivers, while TTL compatible outputs offer improved switching
noise performance. A VI specification of 5.5 V allows MC74LCX14
inputs to be safely driven from 5 V devices.
Pin configuration and function are the same as the MC74LCX04, but
the inputs have hysteresis and, with its Schmitt trigger function, the
LCX14 can be used as a line receiver which will receive slow input
signals.
Designed for 2.3 V to 3.6 V VCC Operation
5 V Tolerant Inputs – Interface Capability With 5 V TTL Logic
LVTTL Compatible
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current (10 A) Substantially Reduces
System Power Requirements
Latchup Performance Exceeds 500 mA
Current Drive Capability is 24 mA at Source/Sink
Pin and Function Compatible with Other Standard Logic Families
ESD Performance: HBM > 2000 V; Machine Model > 100 V
Chip Complexity: 41 Equivalent Gates
http://onsemi.com
Device Package Shipping
ORDERING INFORMATION
MC74LCX14D SO–14 55 Units/Rail
MC74LCX14DR2 SO–14
MC74LCX14DT TSSOP–14
2500 Units/Reel
96 Untis/Rail
TSSOP–14
DT SUFFIX
CASE 948G
14
1
SOIC EIAJ–14
M SUFFIX
CASE 965
14
1
SO–14
D SUFFIX
CASE 751A
14
1
MARKING
DIAGRAMS
17
814
1
14 8
7
8
14
7
1
LCX
14
AWLYWW
LCX14
ALYW
LCX14
AWLYWW
A =Assembly Location
WL or L = Wafer Lot
Y = Year
WW or W = Work Week
MC74LCX14DTR2 TSSOP–14 2500 Units/Reel
MC74LCX14M SOIC
EIAJ–14 50 Units/Rail
MC74LCX14MEL SOIC
EIAJ–14 2000 Units/Reel
MC74LCX14
http://onsemi.com
2
Y1A1
A2
A3
A4
A5
A6
Y2
Y3
Y4
Y5
Y6
1
3
5
9
11
13
2
4
6
8
10
12
Y = A
1314 12 11 10 9 8
21 34567
VCC A6 Y6 A5 Y5 A4 Y4
A1 Y1 A2 Y2 A3 Y3 GND
PIN NAMES
Function
Data Inputs
Outputs
Pins
An
Yn
TRUTH TABLE
Inputs Outputs
L
HH
L
AY
Figure 1. Pinout: 14–Lead (Top View) Figure 2. Logic Diagram
ABSOLUTE MAXIMUM RATINGS*
Symbol Parameter Value Condition Unit
VCC DC Supply Voltage –0.5 to +7.0 V
VIDC Input Voltage –0.5 VI +7.0 V
VODC Output Voltage –0.5 VO VCC + 0.5 Output in HIGH or LOW State. (Note 1.) V
IIK DC Input Diode Current –50 VI < GND mA
IOK DC Output Diode Current –50 VO < GND mA
+50 VO > VCC mA
IODC Output Source/Sink Current ±50 mA
ICC DC Supply Current Per Supply Pin ±100 mA
IGND DC Ground Current Per Ground Pin ±100 mA
TSTG Storage Temperature Range –65 to +150 °C
* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or
conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions
is not implied.
1. IO absolute maximum rating must be observed.
MC74LCX14
http://onsemi.com
3
RECOMMENDED OPERATING CONDITIONS
Symbol Parameter Min Typ Max Unit
VCC Supply Voltage Operating
Data Retention Only 2.0
1.5 2.5 to 3.3 3.6
3.6 V
VIInput Voltage 0 5.5 V
VOOutput Voltage (HIGH or LOW State) 0 VCC V
IOH HIGH Level Output Current VCC= 3.0V–3.6V
VCC= 2.7V–3.0V
VCC= 2.3V–2.7V
–24
–12
–8
mA
IOL LOW Level Output Current VCC= 3.0V–3.6V
VCC= 2.7V–3.0V
VCC= 2.3V–2.7V
+24
+12
+8
mA
TAOperating Free–Air Temperature –40 +85 °C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
TA = – 40 to 85°C
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Condition
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
VT+
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Positive Input Threshold Voltage
(Figure 3)
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 2.5V
VCC= 3.0V
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.9
1.2
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.7
2.2
ÎÎÎ
Î
Î
Î
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
VT–
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Negative Input Threshold Voltage
(Figure 3)
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 2.5V
VCC= 3.0V
ÎÎÎÎ
ÎÎÎÎ
0.4
0.6
ÎÎÎÎ
ÎÎÎÎ
1.1
1.5
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
VH
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Input Hysteresis Voltage
(Figure 3)
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 2.5V
VCC= 3.0V
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.3
0.4
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.0
1.2
ÎÎÎ
Î
Î
Î
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
VOH
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
HIGH Level Output Voltage
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3 V VCC 3.6 V; IOL = 100 µA
ÎÎÎÎ
ÎÎÎÎ
VCC 0.2
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
OH
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 2.3 V; IOH = –8 mA
ÎÎÎÎ
ÎÎÎÎ
1.8
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 2.7 V; IOH = –12 mA
ÎÎÎÎ
ÎÎÎÎ
2.2
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 3.0 V; IOH = –18 mA
ÎÎÎÎ
ÎÎÎÎ
2.4
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 3.0 V; IOH = –24 mA
ÎÎÎÎ
ÎÎÎÎ
2.2
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VOL
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
LOW Level Output Voltage
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3 V VCC 3.6 V; IOL = 100 µ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.2
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
OL
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 2.3 V; IOL= 8 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.3
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 2.7 V; IOL= 12 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.4
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 3.0 V; IOL = 16 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.4
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VCC = 3.0 V; IOL = 24 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.55
ÎÎÎ
ÎÎÎ
IIInput Leakage Current 2.3 V VCC 3.6 V; 0 V VI 5.5 V ±5.0 µA
ÎÎÎÎ
ÎÎÎÎ
ICC
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Quiescent Supply Current
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3 VCC 3.6 V; VI = GND or VCC
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
ÎÎÎ
ÎÎÎ
µA
ÎÎÎÎ
ÎÎÎÎ
CC
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3 VCC 3.6 V; 3.6 VI or VO 5.5 V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
±10
ÎÎÎ
ÎÎÎ
µ
ICC Increase in ICC per Input 2.3 VCC 3.6 V; VIH = VCC – 0.6 V 500 µA
MC74LCX14
http://onsemi.com
4
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 2.5 ns)
Limits Unit
TA = –40°C to +85°C
VCC = 3.3 V ± 0.3 V VCC = 2.7 V VCC = 2.5 V ± 0.2 V
CL = 50 pF CL = 50 pF CL = 30 pF
Symbol Parameter Waveform Min Max Min Max Min Max
tPLH
tPHL Propagation Delay
Input to Output 1 1.5
1.5 6.5
6.5 1.5
1.5 7.5
7.5 1.5
1.5 7.8
7.8 ns
tOSHL
tOSLH Output–to–Output Skew
(Note 2.) 1.0
1.0 ns
2. Skew is defined as the absolute value of the dif ference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH–to–LOW (tOSHL) or LOW–to–HIGH (tOSLH); parameter
guaranteed by design.
DYNAMIC SWITCHING CHARACTERISTICS
TA = +25°C
Symbol Characteristic Condition Min Typ Max Unit
VOLP Dynamic LOW Peak Voltage
(Note 3.) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
VCC = 2.5 V, CL = 30 pF, VIH =2.5 V, VIL = 0 V 0.8
0.6 V
VOLV Dynamic LOW Valley Voltage
(Note 3.) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V –0.8
–0.6 V
3. Number of outputs defined as “n”. Measured with “n–1” outputs switching from HIGH–to–LOW or LOW–to–HIGH. The remaining output is
measured in the LOW state.
CAPACITIVE CHARACTERISTICS
Symbol Parameter Condition Typical Unit
CIN Input Capacitance VCC = 3.3 V, VI = 0 V or VCC 7 pF
COUT Output Capacitance VCC = 3.3 V, VI = 0 V or VCC 8 pF
CPD Power Dissipation Capacitance 10 MHz, VCC = 3.3 V, VI = 0 V or VCC 25 pF
Figure 3. Switching Waveforms
VCC
GND
50%
50% VCC
A
Y
tPHL
tPLH
Figure 4. Test Circuit
VOL
VOH
PULSE
GENERATOR
RT
DUT
VCC
RL
CL
CL=50 pF at VCC = 3.3 0.3 V or equivalent
(includes jig and probe capacitance)
RL= R1 = 500 or equivalent
RT= ZOUT of pulse generator (typically 50 )
MC74LCX14
http://onsemi.com
5
VH
Vin
Vout
VCC
VT+
VT–
GND
VOH
VOL
VH
Vin
Vout
VCC
VT+
VT–
GND
VOH
VOL
(a) A Schmitt–Trigger Squares Up Inputs With Slow Rise and Fall Times (b) A Schmitt–Trigger Offers Maximum Noise Immunity
Figure 5. Typical Input Threshold, VT+, VT– versus Power Supply Voltage
Figure 6. Typical Schmitt–Trigger Applications
Figure 7. Input Equivalent Circuit
INPUT
VHtyp
VCC, POWER SUPPLY VOLTAGE (VOLTS)
23
1
2
3
4
VT, TYPICAL INPUT THRESHOLD VOLTAGE (VOLTS)
VHtyp = (VT+ typ) – (VT– typ)
(VT+)
(VT–)
2.5 3.5 3.6
MC74LCX14
http://onsemi.com
6
PACKAGE DIMENSIONS
SO–14
D SUFFIX
CASE 751A–03
ISSUE F
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A
B
C
D
F
G
J
K
M
P
R
8.55
3.80
1.35
0.35
0.40
0.19
0.10
0°
5.80
0.25
8.75
4.00
1.75
0.49
1.25
0.25
0.25
7°
6.20
0.50
0.337
0.150
0.054
0.014
0.016
0.008
0.004
0°
0.228
0.010
0.344
0.157
0.068
0.019
0.049
0.009
0.009
7°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A
–B
P 7 PL
GC
K
SEATING
PLANE D 14 PL MJ
R X 45°
17
814
0.25 (0.010) T B A
MS S
B0.25 (0.010) M M
F
TSSOP–14
DT SUFFIX
CASE 948G–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A4.90 5.10 0.193 0.200
B4.30 4.50 0.169 0.177
C--- 1.20 --- 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.50 0.60 0.020 0.024
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.

S
U0.15 (0.006) T
2X L/2
S
U
M
0.10 (0.004) V S
T
L–U–
SEATING
PLANE
0.10 (0.004)
–T–
ÇÇÇ
ÇÇÇ
ÇÇÇ
SECTION N–N
DETAIL E
JJ1
K
K1
ÉÉ
ÉÉ
DETAIL E
F
M
–W–
0.25 (0.010)
8
14
7
1
PIN 1
IDENT.
H
G
A
D
C
B
S
U0.15 (0.006) T
–V–
14X REFK
N
N
MC74LCX14
http://onsemi.com
7
PACKAGE DIMENSIONS
SOIC EIAJ–14
M SUFFIX
CASE 965–01
ISSUE O
ZD
HE
E
1
14 8
7
bA1
A
e
L
DIM MIN MAX MIN MAX
INCHES
 2.05  0.081
MILLIMETERS
0.05 0.20 0.002 0.008
0.35 0.50 0.014 0.020
0.18 0.27 0.007 0.011
9.90 10.50 0.390 0.413
5.10 5.45 0.201 0.215
1.27 BSC 0.050 BSC
7.40 8.20 0.291 0.323
0.50 0.85 0.020 0.033
1.10 1.50 0.043 0.059
0
0.70 0.90 0.028 0.035
 1.42  0.056
A1
A
b
c
D
E
e
L
M
Z
HE
Q1
LE
10 0
10
LEQ1
c
M
VIEW P
DETAIL P
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH OR PROTRUSIONS AND ARE MEASURED
AT THE PARTING LINE. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
0.13 (0.005) M0.10 (0.004)
MC74LCX14
http://onsemi.com
8
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong T ime)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MC74LCX14/D
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland