Products and specifications discussed herein are subject to change by Aptina without notice.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Features
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev.B 9/10 EN 1©2008 Aptina Imaging Corporation All rights reserved.
1.3Mp CMOS Digital Image Sensor
MT9M413
For the latest data sheet, refer to Aptina’s Web site: www.aptina.com
Features
Output data rate: 660 Mb/s (master clock
66 MHz, ~500 fps)
Output: 10-bit digital through 10 parallel ports
Conversion gain: 13 µV/e-
Shutter efficiency: >99.9%
Shutter exposure time: 2µs to >33msec
Programmable controls: open architecture,
On-chip: ADC controls, output multiplexing,
and ADC calibration
Off-chip: window size and location, frame rate and
data rate, shutter exposure time (integration time),
and ADC reference
Applications
•Machine vision
Automotive testing
Motion analysis
Film special effects
•Animation
3D imaging
Ordering Information
Table 1: Available Part Numbers
Part Number Description
MT9M413C36STC 280-pin ceramic PGA (color)
MT9M413C36STM 280-pin ceramic PGA (monochrome)
Table 2: Key Performance Parameters
Parameter Value
Optical format 1-inch
Active imager size 15.36mm(H) x 12.29mm(V)
19.67mm diagonal
Active pixels 1280H x 1024V
Pixel size 12.00 x 12.00μm
Color filter array Color RGB Bayer pattern, or
monochrome
Shutter type TrueSNAP freeze-frame electronic
shutter
Maximum data rate 660 Mb/s
Frame rate
0–500+ fps at 1280 x 1024, >10,000
fps with partial scan
ADC resolution On-chip, 10-bit column-parallel
Responsivity Mono: 1600 LSB per lux-sec
at 550nm
Dynamic range 59dB
Supply voltage +3.3V
Power consumption <500mW at 500 fps
<150mW at 60 fps
Operating temperature –5°C to +60°C
Package 280-pin ceramic PGA
9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 2©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Table of Contents
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
External Control Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
PG_N and TX_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
ROW_ADDR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
ROW_STRT_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
ROW_DONE_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
LD_SHFT_N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
DATA_READ_EN_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Output Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
CAL_STRT_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
CAL_DONE_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
LRST_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Electronic Shutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
TrueSNAP Simultaneous Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
TrueSNAP Sequential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
TrueSNAP Single Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
ERS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Partial Scan Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Analog Voltage Setting Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Lens Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Field of View and Focal Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
F-Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
MTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Infrared Cut-Off Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Optical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 3©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
List of Figures
List of Figures
Figure 1: A Camera System Using the MT9M413 CMOS Image Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 2: Sensor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 3: Signal Path Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 4: Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 5: Example 1—Row 4 of the MT9M413 Being Digitized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 6: Frame Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Figure 7: Timing Diagram for One Row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 8: Typical I/O Signal Timing (Initialization Sequence). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 9: Typical Example of TrueSNAP Simultaneous Mode—Exposure During Readout . . . . . . . . . . . . . . . .14
Figure 10: Typical Example of TrueSNAP Sequential Mode—Exposure Following Readout . . . . . . . . . . . . . . . .15
Figure 11: Typical Example of TrueSNAP Single Frame Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 12: Board Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 13: C-Mount Lens Shroud for MT9M413 and Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 14: 280-Pin Ceramic PGA Package Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 15: 280-Pin Ceramic PGA Package Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 16: 280-Pin Ceramic PGA Package Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 17: Pixel Array Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 18: Bayer Pattern (Pixel Color Pattern Detail). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 19: Quantum Efficiency (color) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 20: Quantum Efficiency (monochrome) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 21: Set Up and Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 22: Clock to Data Propagation Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 4©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
List of Tables
List of Tables
Table 1: Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 2: Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 3: Conversion and Readout Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 4: Pixel Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 5: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 6: Lens Mounting Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 7: Typical F-Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 8: Image Sensor Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 9: AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 10: DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 11: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 12: Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 13: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 5©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
General Description
General Description
The MT9M413 is a 1280H x 1024V (1.3 megapixel) CMOS digital image sensor capable of
500 frames-per-second (fps) operation. Its TrueSNAP™ electronic shutter allows simul-
taneous exposure of the entire pixel array. Available in color or monochrome, the sensor
has on-chip 10-bit analog-to-digital converters (ADCs), which are self-calibrating, and a
fully digital interface. The input clock rate of the chip is 66 MHz at approximately
500 fps, providing compatibility with many off-the-shelf interface components, as
shown in Figure 1.
The sensor has ten (10) 10-bit-wide digital output ports. The open architecture design
provides access to internal operations and the ADC timing and pixel read control are
integrated on-chip. At 60 fps, the sensor dissipates less than 150mW, and at 500 fps less
than 500mW, operating on a 3.3V supply. The pixel size is 12 microns square and the
digital responsivity is 1600 LSB per lux-second.
A complete camera system can be built by using the chip in conjunction with the
following external devices:
An FPGA/CPLD/ASIC controller, to manage the timing signals needed for sensor
operation.
A 20mm diagonal lens.
Biasing circuits and bypass capacitors.
Figure 1: A Camera System Using the MT9M413 CMOS Image Sensor
Controller
(FPGA, CPLD, ASIC, etc.)
System
Clock
System
Interface
Off-Chip
ADC
Pixel Array
(1280H x 1024V)
ADC Bias+3.3V
System
Clock
Control
Timing
Port 1 D0~D9
Port 2 D10~D19
Port 3 D20~D29
Port 4 D30~D39
Port 5 D40~D49
Port 6 D50~D59
Port 7 D60~D69
Port 8 D70~D79
Port 9 D80~D89
Port 10 D90~D99
Memory
On-Chip Control
On-Chip
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 6©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
General Description
Figure 2: Sensor Architecture
Notes: 1. Not to scale.
Figure 3: Signal Path Diagram
BOTTOM ADCs
TOP ADCs
PIXEL ARRAY
MEMORY
SENSE AMPS
DIGITAL
CONTROL
Photo
Detector
Pixel
Memory
Sample
& Hold ADC
Per Column Processing
Pixel
DAC
ADC
Calibration
Offset
(VREF3-VCLAMP3)/20
BIAS
VLN2
To
ADC
registers
Bias
VLN1 Bias
VLP
VREF1 VREF4
VREF2
7
10
∑∑
Buffer
VRST_PIX
PG_N
TX_N
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 7©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
General Description
Figure 4: Functional Block Diagram
PIXEL ARRAY
Row Driver
Row Decoder
ROW
Row
Timing
Block
LogicRST
RowST
RT
RowDone
1280 x 10 SRAM
ADC Register
Sample
Data Shift /
Read 1280 x 10 SRAM
Output Register
Column Decoder
S/H
ADC
#1
ADC
#2
10
ADC
#1280
...
SRAM
Read
Control
10 x 10
Shift
Sense Amps
TX_N
PG_N
Output Ports
Pads
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 8©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
External Control Sequence
External Control Sequence
The MT9M413 includes on-chip timing and control circuitry to control most of the pixel,
ADC, and output multiplexing operations. However, the sensor still requires a controller
(FPGA, CPLD, ASIC) to guide it through the full sequence of its operation.
With the TrueSNAP freeze-frame electronic shutter, signal charges are integrated in all
pixels in parallel. The charges are then sampled into pixel analog memories (one
memory per pixel) and subsequently, row by row, are digitized and read out of the
sensor.
The integration of the photosignal is controlled by two control signals:
•PG_N
•TX_N
To clear pixels and start new integration, PG_N is LOW. To transfer the data into pixel
memory, TX_N is LOW. The time difference between the two procedures is the exposure
time. It should be noted that neither the PG_N or TX_N pulses clear the pixel analog
memory. Pixel memory can be cleared during the previous readout (that is, the readout
process resets the pixel analog memory), or by applying PG_N and TX_N together
(clearing both pixel and pixel memory at the same time).
With the TrueSNAP freeze-frame electronic shutter, the sensor can operate in either
simultaneous or sequential mode, generating continuous video output. In simultaneous
mode, as a series of frames is being captured, the PG_N and TX_N signals are exercised
while the previous frame is being read out of the sensor. In simultaneous mode, the end
of integration occurs in the last row of the frame (row #1023) or in the last row of the
window of interest. The position of the start integration is then calculated from the
desired integration time. In sequential mode, the PG_N and TX_N signals are exercised
to control the integration time, and then digitization and readout of the frame take
place. Alternatively, the sensor can run in single frame or snapshot mode in which one
image is captured.
The sensor has a column-parallel ADC architecture that allows the array of 1,280 ADCs
on the chip to digitize the analog data from an entire pixel row simultaneously. Table 3
shows the input signals utilized to control the conversion and readout process.
The 10-bit ROW_ADDR (row address) input bus selects the pixel row to be read for each
readout cycle. The ROW_STRT_N signal starts the process of reading the analog data
from the pixel row, the ADC, and the storage of the digital values in the ADC registers.
When these actions are completed, the sensor sends a response back to the system
controller using the ROW_DONE_N. Row address must be valid for the first half of the
row processing time (the period between ROW_START_N and ROW_DONE_N).
The MT9M413 contains a pipeline style memory array, which is used to store the data
after digitization. This memory also allows the data from the previous row conversion
cycle to be read while a new conversion is taking place.
Table 3: Conversion and Readout Process
Signal Name Description Input Bus Width
ROW_ADDR Row address 10-bit
ROW_STRT_N Row start 1-bit
LD_SHFT_N Load shift register 1-bit
DATA_READ_EN_N Data read enable 1-bit
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 9©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
External Control Sequence
The digital readout is controlled by lowering the LD_SHFT_N signal, followed by the
DATA_READ_EN_N signal. LD_SHFT_N transfers the digitized data from the ADC
register to the output register. DATA_READ_EN_N is used to enable the data output from
the output register. A new pixel row readout and conversion cycle can be started two
clock cycles after DATA_READ_EN_N is pulled LOW. The output register allows the
reading of the digital data from the previous row to be performed at the same time as a
new conversion (pipeline mode).
The total row time will be only that between when:
1. The ROW_STRT_N signal is applied and ROW_DONE_N is returned.
and
2. LD_SHFT_N and DATA_READ_EN_N are applied plus two clock cycles.
In the pipelined operation, there will always be one row of latency at the start of sensor
operation. The alternative to pipelined operation is burst data operation in which a new
pixel row conversion is not initiated until after the output register is emptied (and
LD_SHFT_N has been taken HIGH). The ratio of line active and blanking times can be
adjusted to easily match a variety of display and collection formats. See Figure 7 on
page 12.
Figure 5: Example 1—Row 4 of the MT9M413 Being Digitized
Notes: 1. Reads the contents of pixel row specified by ROW_ADDR.
2. Converts pixel row signals to digital values.
3. Stores digital values in ADC register (1280 x 10-bit).
PIXEL ARRAY
Even
Columns
Odd
Columns
SYSCLK
Column Parallel 10 -bit
ADC 640 x 1
Column Parallel 10 -bit
ADC 640 x 1
Control
Logic/
Decoders
ADC
Controls
ADC
Controls
ROW_STRT_N
ROW_ADDR
0
0
0
0
0
0
0
1
0
0
Controller
ROW 4
PIXEL ARRAY
Even
Columns
Odd
Columns
SYSCLK
Column Parallel 10 -bit
ADC 640 x 1
Column Parallel 10 -bit
ADC 640 x 1
Control
Logic/
Decoders
ADC
Controls
ADC
Controls
ROW_STRT_N
ROW_ADDR
LD_SHFT_N
0
0
0
0
0
0
0
1
0
0
Controller
ROW 4
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 10 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
External Control Sequence
PG_N and TX_N
To start integration, the PG_N signal simultaneously resets the photodetectors for the
entire pixel array. To end integration, the TX_N signal simultaneously transfers a charge
from the photodetector to memory inside each pixel for the entire pixel array. In sequen-
tial mode, the PG_N and the TX_N pulses must have a minimum duration of 64 SYSCLK
cycles. In simultaneous mode, the PG_N and TX_N pulses must have a duration of
64 SYSCLK cycles and be applied in the window between the 66th and 129th SYSCLK
cycles. Additionally, in simultaneous mode between exposures, a single SYSCLK dura-
tion pulse must be applied each row during the 130th clock cycle.
ROW_ADDR
The address for the pixel row to be read is input externally through the 10-bit
ROW_ADDR input bus. This address must be valid for at least 66 SYSCLK cycles, and
must be valid when ROW_STRT_N is pulled LOW.
ROW_STRT_N
ROW_STRT_N reads the contents of the pixel row specified by ROW_ADDR, converts the
pixel row signal to digital value, and stores the digital value in ADC register
(1280 x 10-bit).
This process is completed in 128–129 SYSCLK cycles; it must be valid for a minimum of
2 clock cycles and a maximum of 100 clock cycles.
Note: To minimize the sensor power consumption, the row processing circuitry operates at
SYSCLK/2. Therefore, depending on the users implementation, there will be either
128 or 129 SYSCLK cycles between the start of ROW_STRT_N and ROW_DONE_N.
ROW_DONE_N
For 128–129 SYSCLK cycles after ROW_STRT_N has been pulled LOW, the sensor
acknowledges the completion of a row read operation/digitization by pulling the
ROW_DONE_N pin LOW for two clock cycles.
LD_SHFT_N
LD_SHFT_N transfers the digitized data from the ADC register to the output register
(1280 x 10-bit) and gates the power to the sense amplifiers. The first data (columns 1–10)
are available for output at the third rising edge of SYSCLK after LD_SHFT_N is pulled
LOW. This may be enabled simultaneously with or after the falling edge of
ROW_DONE_N, but must remain LOW the entire time the data is being read out.
DATA_READ_EN_N
DATA_READ_EN_N is used to enable the data output from the output register
(1280 x 10-bit) to the ten 10-bit output ports. It may be initiated simultaneously with or
after LD_SHFT_N is selected and has a minimum width of one clock cycle.
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 11 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
External Control Sequence
Output Register
The use of an output register allows the processing of a row to be performed while the
digital data from the previous operation is being read out of the sensor. A new pixel
readout and conversion cycle can be started two clock cycles after DATA_READ_EN_N is
pulled LOW.
Figure 6: Frame Timing
Table 4: Pixel Array
CLK 1 CLK 2 CLK128
Port 1 Col. 1 Col. 11 Col. 1271
Port 2 Col. 2 Col. 12 Col. 1272
Port 3 Col. 3 Col. 13 Col. 1273
Port 4 Col. 4 Col. 14 Col. 1274
Port 5 Col. 5 Col. 15 Col. 1275
Port 6 Col. 6 Col. 16 Col. 1276
Port 7 Col. 7 Col. 17 Col. 1277
Port 8 Col. 8 Col. 18 Col. 1278
Port 9 Col. 9 Col. 19 Col. 1279
Port 10 Col. 10 Col. 20 Col. 1280
ROW_ST RT_N
ROW_DONE_N
LD_SHFT_N
DATA_READ_EN_N
1023
ROW_ADDR [0:9]
DATA [0:99]
1022
0
1
2
0
ROW1023
ROW1022
ROW1021
ROW0
ROW1
ROW1023
1023
N
N+1
ROW N-1
ROW N
PG_N=PG1+PG2
PG2
PG1
EXPOSURE TIM E (= 1023 –N rows)
TX_ N
READOUT (one full frame)
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 12 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
External Control Sequence
Figure 7: Timing Diagram for One Row
Calibration
The MT9M413 contains special self-calibrating circuitry that enables it to reduce its own
column-wise fixed pattern noise (FPN). This calibration process consists of connecting a
calibration signal (VREF2) to each of the ADC inputs, and estimating and storing these
offsets (7 bits) to subtract from subsequent samples. Figure 8 on page 12 shows the
timing sequence to calibrate the sensor. Calibration occurs automatically after logic
reset (LRST_N) but it can also be started by the user by pulling CAL_STRT_N LOW. When
calibration is finished, the sensor generates the active LOW CAL_DONE_N. Significant
ambient temperature drift may justify recalibration (see Figure 6 on page 11 and Figure 8
on page 12).
Figure 8: Typical I/O Signal Timing (Initialization Sequence)
ROW_ADDR [0:9]
0 1 129 13167
ROW VALID
XXXXXX
ROW_STRT_N
SYSCLK
ROW_DONE_N
LD_SHFT_N
DATA_READ_EN_N
DATA [0:99]
012345 127
PG2
PG1
TX_N
1
-3 nsec SKEW
66 130
20
PG_N
ROW_ADDR [0:9]
0 1 129 13167
ROW VALID
XXXXXX
ROW_STRT_N
SYSCLK
ROW_DONE_N
LD_SHFT_N
DATA_READ_EN_N
DATA [0:99]
012345 127
PG2
PG1
TX_N
1
-3 nsec
66 130
20
PG_N
CAL_DONE_N
CAL_STRT_N
SYSCLK
CAL_DONE_N
LRST_N
SYSCLK
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 13 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
External Control Sequence
CAL_STRT_N
CAL_STRT_N is a two-clock cycle-wide active-low pulse that initiates the ADC calibra-
tion sequence. The pulse must not be actuated for 1 microsecond after either power-up
or removal of the sensor from a power-down state. Aptina recommends calibrating using
the logic reset.
CAL_DONE_N
CAL_DONE_N is a two-clock cycle-wide active-low output pulse that is asserted when
the ADC calibration is complete. The device will automatically initiate a calibration
sequence upon a logic reset. Completion of this sequence, in cases where it is initiated
by a reset, is still with the CAL_DONE_N signal. This process is complete within
112 SYSCLK cycles of CAL_STRT_N. This process is complete within 112 SYSCLK cycles
of LRST_N.
LRST_N
LRST_N is a two-clock cycle-wide active-low pulse that resets the digital logic. It puts all
logic into a known state (all flip-flops are reset). This signal also initiates an ADC calibra-
tion sequence.
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 14 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
Electronic Shutter
The MT9M413 is intended to be operated primarily with the TrueSNAP freeze-frame
electronic shutter, but is also capable of operating in electronic rolling shutter (ERS)
mode. With TrueSNAP the shutter can be operated to generate continuous video output
(simultaneous mode or sequential mode) or capture single images (single-frame mode).
When considering timing for the various shutter modes, keep in mind the functionality
of PG_N and TX_N. When PG_N is LOW, the photodetector is shorted to a reset voltage
source. When PG_N is HIGH, the switch is open. When TX_N is LOW, the photodetector
is shorted to pixel memory; when TN_N is HIGH, the photodetector is disconnected
from pixel memory (refer to the switches shown in Figure 3: “Signal Path Diagram,” on
page 6). The memory is also reset during readout, occurring for the selected row in the
middle of the 0–66 clock interval after application of ROW_STRT_N (approximately
clocks 20 through 40).
TrueSNAP Simultaneous Mode
In simultaneous mode, as a series of frames are being captured, the PG_N and TX_N
signals are exercised while the previous frame is being read out of the sensor. Typically in
simultaneous mode, the “end of integration” occurs in the last row of the frame (row
#1023) or in the last row of the window of interest. The position of the “start integration
is then calculated from the desired integration time.
Note: The pixel memory is cleared during the readout process, as shown in Figure 9.
Figure 9: Typical Example of TrueSNAP Simultaneous Mode—Exposure During Readout
Read row#0
R
ead row#1023
Exposure
time
Read row# 0
R
ead row#1023
Readout Time
R
OW_ADDR
1023
n
PG_N
TX_N
0
Readout
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 15 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
TrueSNAP Sequential Mode
In sequential mode the, PG_N and TX_N signals are exercised to control the integration
time, and then digitization and readout of the frame takes place. The photodetector is
reset when PG_N is LOW. Raising PG_N starts integration, and lowering TX_N while
PG_N is still HIGH ends integration by sampling the signal into memory. There must be
at least 1 SYSCLK cycle after returning TX_N to the high state until PG_N is lowered
(Figure 10 on page 15).
Note: Pixel memory is cleared during readout process.
Figure 10: Typical Example of TrueSNAP Sequential Mode—Exposure Following Readout
Read row#0
R
ead row#1023
Readout Tim
e
R
OW_ADDR
1023
0
PG_N
TX_N
Read row#0
R
ead row#1023
Readout
Exposure
time Exposure
time
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 16 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
TrueSNAP Single Frame
The MT9M413 can run in single-frame or snapshot mode in which one image is
captured. In single frame mode, integration must be preceded by a void frame read
(selecting all addresses and applying ROW_STRT_N) or PG_N and TX_N must be applied
together (for a minimum of 10 SYSCLK cycles) to clear pixel and pixel memory. Holding
PG_N and TX_N LOW resets the photodioide (PG_N) and the analog memory which is
shorted to the photodiode by the TX_N switch. To start integration, both TX_N and
PG_N are released; to end integration and sample the signal into memory, TX_N is made
LOW again for 10 clocks minimum, up to 64 clocks (see Figure 7 on page 12). After TX_N
is returned to the HIGH state there must be a delay of >1 SYSCLK prior to lowering PG_N
again to erase charge in the photodetector.
Figure 11: Typical Example of TrueSNAP Single Frame Mode
TIM
E
R
OW_ADDR
1023
0
PG_N
TX_N
READ ROW #0
R
EAD ROW #1023
EXPOSURE TIME
READOUT
“SLEEP” STATE “SLEEP” STATE
TIM
E
R
OW_ADDR
1023
0
PG_N
TX_N
READ ROW #0
R
EAD ROW #1023
EXPOSURE TIME
READOUT
“SLEEP” STATE “SLEEP” STATE
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 17 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
ERS Mode
ERS mode is enabled by pulling PG_N HIGH and TX_N LOW.
Partial Scan Examples
The MT9M413 can be partially scanned by subsampling rows. The user may select which
rows and how many rows to include in a partial scan. For example, with a 66 MHz clock,
a row time is approximately 2 microseconds (µs), resulting in the following possibilities:
1 row in frame: 500,000 frames per second
2 rows in frame: 250,000 frames per second
10 rows in frame: 50,000 frames per second
100 rows in frame: 5,000 frames per second
256 rows in frame: 2,000 frames per second
512 rows in frame: 1,000 frames per second
1,024 rows in frame: 500 frames per second ... and so on
Table 5: Pin Descriptions
Pin Number(s) Signal Name Function
DATA [99:0] Pixel data output bus that is 10 pixels (100 bits) wide.
Bit 0 is the LSB (least significant bit) of the lowest order
pixel (see Table 4, “Pixel Array,” on page 11). In the group of 10 pixels being output, bit 9 is
the MSB (most significant bit).
T13 DATA0
U14 DATA1
V15 DATA2
T14 DATA3
V16 DATA4
T15 DATA5
U16 DATA6
R14 DATA7
V18 DATA8
P15 DATA9
D14 DATA10
A16 DATA11
C16 DATA12
E13 DATA13
D15 DATA14
A18 DATA15
E14 DATA16
B18 DATA17
D17 DATA18
E16 DATA19
W11 DATA20
U10 DATA21
V11 DATA22
R11 DATA23
V12 DATA24
W13 DATA25
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 18 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
U12 DATA26
V13 DATA27
R12 DATA28
V14 DATA29
B11 DATA30
C12 DATA31
A12 DATA32
B12 DATA33
E11 DATA34
B13 DATA35
C14 DATA36
D13 DATA37
E12 DATA38
C15 DATA39
U6 DATA40
V7 DATA41
T8 DATA42
R9 DATA43
V8 DATA44
U8 DATA45
V9 DATA46
T9 DATA47
V10 DATA48
R10 DATA49
C8 DATA50
A7 DATA51
D9 DATA52
E9 DATA53
A8 DATA54
C10 DATA55
A9 DATA56
D10 DATA57
B10 DATA58
C11 DATA59
T4 DATA60
R6 DATA61
V3 DATA62
W3 DATA63
R7 DATA64
W4 DATA65
T6 DATA66
V5 DATA67
R8 DATA68
V6 DATA69
E6 DATA70
D5 DATA71
Table 5: Pin Descriptions (continued)
Pin Number(s) Signal Name Function
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 19 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
C5 DATA72
D6 DATA73
A3 DATA74
C6 DATA75
D7 DATA76
A5 DATA77
E8 DATA78
A6 DATA79
M5 DATA80
P2 DATA81
N3 DATA82
T1 DATA83
P3 DATA84
U1 DATA85
P4 DATA86
T2 DATA87
V1 DATA88
R4 DATA89
H5 DATA90
E3 DATA91
E2 DATA92
D1 DATA93
D3 DATA94
E4 DATA95
C2 DATA96
A1 DATA97
F5 DATA98
B2 DATA99
L3 CAL_DONE_N A two-clock cycle-wide active-low pulse that indicates the ADC has completed its
calibration operation.
L2 CAL_STRT_N Starts the calibration process for the ADC. This is a two-clock cycle-wide active-low pulse.
F1 DARK_OFF_EN_N A low input enables common mode dark offset to all pixels. The value of the offset is
defined by VREF3 and VCLAMP3. Subtracts a fixed offset pre-ADC. Signal is pulled-up on-
chip.
J4, N15, J16 VDD Power supply for core digital circuitry.
H3, H18, T18 DGND Ground for core digital circuitry.
K2 LD_SHFT_N An active-low envelope signal that places the recently converted row of data into output
register for output, enables the sense amps and resets the column counter.
J3 DATA_READ_EN_N An active-low envelope signal that enables the column counter and causes the 10 10-bit
output ports to be updated with data on the rising edge of the system clock. Column
counter skips data when this input is HIGH.
L1 LRST_N Global logic reset function (asynchronous). Active-low pulse.
ROW_ADDR [9:0] A 10-bit bus (0 to 1023, bottom to top) that controls which pixel row is being processed or
read out. An asychronous (unclocked) digital input. Bit 9 is the MSB.
G18 ROW_ADDR0
H16 ROW_ADDR1
H15 ROW_ADDR2
Table 5: Pin Descriptions (continued)
Pin Number(s) Signal Name Function
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 20 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
F18 ROW_ADDR3
G17 ROW_ADDR4
F17 ROW_ADDR5
E18 ROW_ADDR6
G15 ROW_ADDR7
F16 ROW_ADDR8
D18 ROW_ADDR9
L5 ROW_DONE_N A two-cycle-wide pulse that indicates that processing of the currently addressed row has
been completed.
K4 ROW_STRT_N Starts ADC conversion of the pixel row (defined by the row address) content. A two-clock
cycle-wide active-low pulse.
H2 STANDBY_N A low input sets the sensor in a low power mode (allow 1 microsecond before calibrating,
after coming out of this mode). Signal is pulled-up on-chip.
J5 PIXEL_CLK_OUT Data synchronous output. User may prefer to use this pin as data clock instead of SYSCLK.
G3 SYSCLK Clock input for entire chip. Maximum design frequency is 66 MHz (50%, ±5%, duty cycle).
G16, E10, C13, B4,
B8, C7, F4, M2,
B14,
F15, R13, T12, B1,
H4, N4, R3, T5,
U5, W7, U9, U11,
T16, B16
VDD_IO Power supply for digital pad ring.
G5, D4, G4, K3,
N5, P5, U4, T7,
T10, U7, U13 K5,
B15, B17, H17,
D12, D11, E17, C9,
D8 M4, T11,U18,
B5,U15
DGND_IO Digital ground for pad ring.
R18, P18, K18,J18 VAA Power supply for analog processing circuitry (column buffers, ADC, and support).
T17, N16, L17,
K17, J15, R17
AGND Ground for analog signal processing circuitry.
L15 VLN1 Bias setting for pixel source follower operating current. Impedance: 3kΩ, 10pF. Aptina
recommends decoupling capacitors.
M18 VLN2 The bias setting for the ADC is generated on-chip. Aptina recommends a decoupling
capacitor to ground. External biasing may be preferable to optimize performance.
Impedance: 3kΩ, 10pF.
N17 VLP Bias setting voltage for the column source follower operating current. Impedance: 3kΩ,
10pF. Aptina recommends a decoupling capacitor.
K16, M15 VREF1 ADC reference input voltage that sets the maximum input signal level (defines the level
where the FF code occurs) and thus sets the size of the least significant bit (LSB) in the
analog to digital conversion process. A smaller VREF1 produces a smaller LSB, which means
a smaller analog signal level input is required to produce the same digital code out.
Likewise, a larger VREF1 produces a larger LSB, which means a larger analog signal level
input is required to produce the same digital code out. Thus the reference value can be
used like a global gain adjustment (halving this voltage doubles the gain). This signal has
two pin connections to minimize internal losses during high speed operation. User voltage
source must supply a transient current of 100mA at a frequency of 500 kHz with a 2% duty
cycle. Decoupling capacitors to AGND of ~1?F (ceramic) and 100?F (electrolytic) placed as
close to the package pins as possible are usually sufficient to filter out this required current
transient.
Table 5: Pin Descriptions (continued)
Pin Number(s) Signal Name Function
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 21 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
P17 VREF2 ADC reference used for the calibration operation. User voltage source must supply a
transient current of 20mA at a frequency of 500 kHz with a 2% duty cycle. A ceramic
decoupling capacitor to AGND of ~0.1μF is usually sufficient to filter out this required
current transient.
M16 VREF3 Dark offset cancellation positive input reference, tied to the pedestal voltage to be added
to the signal.
K15 VCLAMP3 Dark offset cancellation negative input reference. User voltage source must supply a
transient current of 40mA at a frequency of 500 kHz with a 2% duty cycle. A ceramic
decoupling capacitor to AGND of ~0.1μF to 1μF is usually sufficient to filter out this required
current transient.
R16 VLP_DRV Should be connected to AGND.
L4 TX_N This is an active low pulse that controls transfer of charge from photodetector to memory
inside each pixel for entire pixel array.
M3 PG_N This is an active low pulse that resets the photodetectors and thereby starts new
integration cycle.
L18, P16, J17 VRST_PIX Power supply for pixel array. There is no noticeable DC power consumption by this pin
(<100?A). User voltage source must supply a transient current of 10mA at a frequency of
500 kHz, once a frame. Decoupling capacitors to AGND ~1μF (ceramic) and 100?F
(electrolytic) are usually sufficient to filter out this required current transient.
L16 VREF4 ADC reference input value should be 1/4 VREF1. User voltage source must supply a
transient current of 100mA at a frequency of 500 kHz with a 2% duty cycle. A ceramic
decoupling capacitor to AGND of ~0.1μF is usually sufficient to filter out this required
current transient.
E5,C3,C1, D2,
E1,F2, F3, G1, H1,
J2, J1, K1, M1, N1,
N2, P1,R1, R2, T3,
U2, R5, U3, V2,
W2, W1, V4, W5,
W6, W8, W9,
W10,W12, W14,
W15, W17, W18,
V17, R15, U17,
V19, W19, U19,
T19, R19, P19,
N18, N19, M19,
M17, L19, K19,
J19, H19, G19,
F19, E19, D19,
C19, B19, C18,
E15, C17, D16,
A19, A17, A15,
A14, A13, A11,
A10, B9, B7, B6,
A4, E7, A2, C4, B3,
W16, G2
No connect.
Table 5: Pin Descriptions (continued)
Pin Number(s) Signal Name Function
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 22 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electronic Shutter
Figure 12: Board Connections
Notes: 1. Aptina recommends that 0.01µF and 0.1µF capacitors be placed as physically close as possible to the
MT9M413's package.
2. Alternatively, the analog voltages depicted as being generated from potentiometers could be supplied
from DACs.
3. The analog voltages VLN1, VLN2, VLP, and VREF4 are generated on-chip, but user may supply voltages to
override the internal biases.
Analog ground
Digital Ground
DATA0 T13
DATA1 U14
DATA2 V15
DATA3 T14
DATA4 V16
DATA5 T15
DATA6 U16
DATA7 R14
DATA8 V18
DATA9 P15
DATA10 D14
DATA11 A16
DATA12 C16
DATA13 E13
DATA14 D15
DATA15 A18
DATA16 E14
DATA17 B18
DATA18 D17
DATA19 E16
DATA20 W11
DATA21 U10
DATA22 V11
DATA23 R11
DATA24 V12
DATA25 W13
DATA26 U12
DATA27 V13
DATA28 R12
DATA29 V14
DATA30 B11
DATA31 C12
DATA32 A12
DATA33 B12
DATA34 E11
DATA35 B13
DATA36 C14
DATA37 D13
DATA38 E12
DATA39 C15
DATA40 U6
DATA41 V7
DATA42 T8
DATA43 R9
DATA44 V8
DATA45 U8
DATA46 V9
DATA47 T9
DATA48 V10
DATA49 R10
DATA50 C8
DATA51 A7
DATA52 D9
DATA53 E9
DATA54 A8
DATA55 C10
DATA56 A9
DATA57 D10
DATA58 B10
DATA59 C11
DATA60 T4
DATA61 R6
DATA62 V3
DATA63 W3
DATA64 R7
DATA65 W4
DATA66 T6
DATA67 V5
DATA68 R8
DATA69 V6
DATA70 E6
DATA71 D5
DATA72 C5
DATA73 D6
DATA74 A3
DATA75 C6
DATA76 D7
DATA77 A5
DATA78 E8
DATA79 A6
DATA80 M5
DATA81 P2
DATA82 N3
DATA83 T1
DATA84 P3
DATA85 U1
DATA86 P4
DATA87 T2
DATA88 V1
DATA89 R4
DATA90 H5
DATA91 E3
DATA92 E2
DATA93 D1
DATA94 D3
DATA95 E4
DATA96 C2
DATA97 A1
DATA98 F5
DATA99 B2
Pixel
Data
Output
G18 ROWADDR0
H16 ROWADDR1
H15 ROWADDR2
F18 ROWADDR3
G17 ROWADDR4
F17 ROWADDR5
E18 ROWADDR6
G15 ROWADDR7
F16 ROWADDR8
D18 ROWADDR9
G3 SYSCLK
J3 DATA_READ_EN_N
K2 LD_SHFT_N
L3 CAL_DONE_N
L5 ROW_DONE_N
L2 CAL_STRT_N
K4 ROW_STRT_N
F1 DARK_OFF_EN_N
H2 STANDBY_N
L1 LRST_N
M3 PG_N
L4 TX
J5 PIXEL_CLK_OUT
1kΩ
Analog +3.3V
0.1μF
10μF
1kΩ
Analog +3.3V
0.1μF
10μF
1kΩ
Analog +3.3V
1μF
0.01μF
1kΩ
Analog +3.3V
0.1μF
10μF
1kΩ
Analog +3.3V
0.1μF
10μF
0.1μF
10μF
Analog +3.3V
Digital 3.3V
G5
DGND_IO
D4
DGND_IO
G4
DGND_IO
K3
DGND_IO
N5
DGND_IO
P5
DGND_IO
U4
DGND_IO
T7
DGND_IO
T10
DGND_IO
U7
DGND_IO
U13
DGND_IO
U15
DGND_IO
K5
DGND_IO
B15
DGND_IO
B17
DGND_IO
H17
DGNC_IO
D12
DGND_IO
D11
DGND_IO
C9
DGND_IO
D8
DGND_IO
M4
DGND_IO
T11
DGND_IO
U18
DGND_IO
E17
DGND_IO
B5
DGND_IO
H3
DGND
H18
DGND
T18
DGND
T17
AGND
N16
AGND
K17
AGND
R17
AGND
L17
AGND
J15
AGND
Analog Ground
Digital Ground
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
________
_____
________
_____
________
_____
________
_____
________
________
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
______
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
_____
R18
P18
K18
J18
J4
N15
J16
M2
B14
F15
R13
T12
B1
H4
N4
R3
T5
U5
W7
U9
U11
T16
G16
B16
E10
C13
B4
B8
C7
F4
VAA
VAA
VAA
VAA
VDD
VDD
VDD
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
Controller
Interface
Analog +3.3V
1μF
100μF
Analog +3.3V
0.1μF
10μF
1kΩ
1kΩ
0,01μF
0.01μF
100μF
0.01μF
10μF
0.1μF
0.01μF
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 23 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Analog Voltage Setting Considerations
Analog Voltage Setting Considerations
The values suggested in the Typical Values column in the “AC Electrical Characteristics
on page 34 should be the starting point for setting the analog voltages. Additionally, it is
useful to refer to the “Signal Path Diagram” on page 6, which indicates how the analog
voltages affect the image. Other considerations are as follows:
•V
REF1:
This ADC reference voltage can also be utilized as a gain. A lower value will increase
gain, but also results in amplification of nonuniformities.
•V
REF4:
Should always be set to ¼ of VREF1.
•V
REF2:
Reference used for the ADC calibration to remove column-wise FPN. If set much
lower than the typical value there is a possibility that some column nonuniformities
will not be corrected. Setting higher than typical will result in more column-wise FPN.
When debugging analog voltage settings it may be useful to temporarily set VREF2 to
zero, effectively stopping the ADC calibration process and adjusting the VLN/VLP
settings.
•VLN1:
The on-chip generated voltage should be used as the starting point; increasing above
typical will result in an increase in current, speed, and FPN in the first buffer.
•VLN2:
The on-chip generated voltage should be used as the starting point. Controls the
current in the ADC comparators (there is a safe range where this voltage has no
effect); above or below this range will cause the comparators to fail. If vertical white
stripes appear in the center of the imaging area or random white spots appear in
contour areas, it is an indication that VLN2 needs to be adjusted.
•VLP
The on-chip generated voltage should be used as the starting point.
•VRST_PIX
Voltage for pixel reset. If this is too close to VAA the image will be degraded and is not
recommended to be above 2.9V, but if it is set too low the pixel dynamic range may
decrease.
•V
REF3 and VCLAMP3
These control the offset as shown in the “Signal Path Diagram” on page 6. This must
be enabled through DARK_OFF_EN_N; Offset is ~ (VREF3-VCLAMP3)/20.
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 24 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Lens Selection
Lens Selection
Much of the specific information in this section is explained in detail at http://
www.aptina.com/products/imaging/technology/index.html on our Web site. The
following information applies specifically to the MT9M413 megapixel image sensor.
Format
The diagonal of the image sensor array, 19.67mm, fits most closely, but not exactly,
within the optical format corresponding to the 1inch specification. Some 1-inch optical
format lenses have been shown to work well with this sensor. Typical 1-inch lens exam-
ples are Computer V2513, V5013, and V7514. Fmount lenses provide another possible
lens solution due to their large image circle.
Mounting
Several lens mounting standards exist that specify the threading of the lens' barrel as
well as the distance the back flange of the lens should be from the image sensor for the
lens to properly form an image. Typical lens mounting standards for the MT9M413 are
shown in Table 6.
Another option is to use a Cmount together with a C to Fmount adapter for greater
lens flexibility.
Field of View and Focal Length
The field of view of an imaging system will depend on both the focal length of the
imaging lens and the width of the image sensor. As most of the image information
humans pay attention to generally falls within a 45degree horizontal field of view, many
camera systems attempt to imitate this field of view. However, in some cases a telephoto
system (with a narrow field of view, say less than 20 degrees), or a wide angle system
(with a wide field of view, say more than 60 degrees) may be desired. The approximate
field of view that an imaging system can achieve is shown in Equation 1:
(EQ 1)
where θ is the field of view, tan-1 is the trigonometric function arc-tangent, w is the width
of the image sensor, and f is the focal length of the imaging lens. For example, the
imaging system's diagonal field of view can be determined by using the diagonal of the
image sensor (19.67 mm) for w and a particular lens' focal length for f. Alternatively, the
imaging system's horizontal field of view can be determined by using the horizontal of
Table 6: Lens Mounting Standards
Mount Mounting
Name Threads Back-Flange-to-Image Sensor
C 1–32 17.526mm
CS 1–32 12.5mm
θ
2-1 w
2f
-----
⎝⎠
⎛⎞
tan
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 25 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Lens Selection
the image sensor (15.36 mm) for w and a particular lens' focal length for f. A lens with an
approximately 50 mm focal length will provide an 18-degree horizontal field of view with
a MT9M413 (keep in mind that the above equation is a simplified approximation).
F-Number
The f-number, or f-stop, of an imaging lens is the ratio of the lens' focal length to its open
aperture diameter. Every doubling in f-number reduces the light to the sensor by a factor
of four. For example, a lens set at f/1.4 lets in four times more light than that same lens
when it is set at f/2.8. Low f-number lenses capture a lot of light for delivery to the image
sensor, but also require careful focus. Higher f-number lenses capture less light for
delivery to the image sensor, and do not require as much effort to bring the imaging
system to focus. Low f-number lenses generally cost more than high f-number lenses of
similar overall performance. Typical f-numbers for various imaging systems are:
MTF
Modulation Transfer Function (MTF) is a technical term that quantifies how well a
particular system propagates information. For cameras, the “system” is the lens and the
sensor, and the “information” is the picture they are capturing. MTF ranges from zero
(no information gets through) to 100 (all information gets through), and is always speci-
fied in terms of information density. In most imaging systems, the MTF is limited by the
performance of the imaging lens. A lens must be able to transfer enough information to
the image sensor to be able to resolve details in the image that are as small as the pixels
in the image sensor. The pixels are set on a 12-micron pitch (the center of one pixel is 12
microns from the center of its neighboring pixel). Thus, a lens used should be able to
resolve image features as small as 12 microns. Typically, a lens' MTF is plotted as a func-
tion of the number of line pairs per millimeter the lens is attempting to resolve (more
line pairs per millimeter mean higher information densities). For an electronic imaging
system, one line pair will correspond to two image sensor pixels (each pixel can resolve
one line). This is equated as shown in Equation 2:
(EQ 2)
where LP/mm means line pairs per millimeter and z is the image sensor's pixel pitch, in
millimeters. For the MT9M413, z = 0.012 mm, such that the MT9M413 has 42 LP/mm.
Thus, a lens should provide an acceptable level of MTF all the way out to 42 LP/mm. For
Table 7: Typical F-Numbers
F-Stop Imaging Application
1.4 Low-light level imaging, manual focus systems.
2.0 Typical for PC and other small form cameras.
2.8 Common in digital still cameras.
4.0+ Often used in machine vision applications.
LP
mm
---------1
2z
-----
=
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 26 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Lens Selection
most lenses, the MTF will be highest in the center of the images they form, and gradually
drop off toward the edges of the images they form. As well, MTFs at low values of LP/mm
will generally be larger than MTFs at high values of LP/mm. One of the many trade-offs
that must be decided by the end user is how high the MTF needs to be for a particular
imaging situation. Generally, near an image sensor's LP/mm good MTFs are higher than
40, moderate MTFs are from 20 to 40, and poor MTFs are less than 20.
Infrared Cut-Off Filters
In most visible imaging situations it is necessary to include a filter in the imaging path
that blocks infrared (IR) light from reaching the image sensor. This filter is called an IR
cut-off filter. Various forms of IR cut-off filters are available, some absorptive (like Hoya's
CM500 or Schott's BG18) and some reflective (for example, dielectric stacks). Infrared
light poses a problem to visible imaging because its presence blurs and decreases the
MTF in the images formed by a lens. Since human vision only extends across a narrow
range of the electromagnetic spectrum, camera systems hoping to capture images that
look like the images our eyes capture must not capture light outside of our vision range.
Silicon-based light detectors (like the ones in the MT9M413's pixels) detect light from
the very deep blue to the near infrared. Thus, a filter must exist in the light's path that
keeps the infrared from reaching the image sensor's pixels. In most cases, it is important
that such a filter begin blocking light around 650 nm (in the deep red) and continue
blocking it until at least 1100 nm (in the near IR). In most camera systems, the IR cut-off
filter is included in the imaging lens. However, this point must be verified by a lens
vendor when a particular lens is chosen for use with an image sensor.
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 27 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Lens Selection
Figure 13: C-Mount Lens Shroud for MT9M413 and Socket
Notes: 1. This shroud is designed to accommodate the MT9M413 when it is inserted into a PGA socket. These
dimensions are based on the MILL MAX #510-93-281-19-081003 socket (www.mill-max.com).
2
.5
0”
0.
2
5
1/8
1
/8”
0.25”
2.50”
1.25”
0.0
0.0
1/8
0
.25”
2
.50”
0
.75”
0
.015” Rece
ss
2.50”
1-32 Thread
2
.5
0”
1.25
Threaded holes for 4-40 screws (4 places)
B
ase
L
id
Holes Dia = 0.12" (for 4-40 screws), 4 places
No thread
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 28 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Lens Selection
Figure 14: 280-Pin Ceramic PGA Package Top View
Notes:
1. Sensor is centered on package, pixel array is off-center.
2. Die offset is
±
10 mils in both the X and Y directions.
3. Die rotation is
±
2 degrees.
(1023, 1279)
(0, 0) 19mils
1.067±0.012
0.840±0.009
0.840±0.008
INDEX
0.782
0.743
1.900±0.018
1.343±0.016
1.106±0.012
0.003
0.003
ROW
ROW
COLUMN
COLUMN
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 29 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Lens Selection
Figure 15: 280-Pin Ceramic PGA Package Side View
(0.0235 X 2)
0.047± 0.005
0.039±0.005
U
NITS: INCHES
N
otes:
1
. Die thickness 28.5 mils± 1 mil.
2
. Die epoxy thickness 1 mil.
3
. D-263 glass lid thickness 31± 2 mils.
4. Glass lid epoxy thickness 1 mil.
Glass Lid
0.118±0.012
0.012± 0.002
0.020± 0.002
0.047±0.005
(4X)
0.018±0.002
(281X)
R0.005
BRAZE
(0.008)
0.150±0.008
0.039± 0.004 0.007
(AT CERAMIC)
Die
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 30 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Lens Selection
Figure 16: 280-Pin Ceramic PGA Package Bottom View
1.800±0.012
(P = 0.100 X 18)
Alumina Coat
(281X)
0.067 TYP. DIA.
EXTRA
PIN
0.100 typ.
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 31 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Optical Specification
Optical Specification
Notes: 1. Calculation method for high frequency PRNU and DSNU:
For PRNU, uniformly adjust illumination so that the average voltage across a sensor
partition is Full Scale/2.
For DSNU, block illumination to sensor. Integration time = 2ms.
Calculate spatially-filtered average using 64 pixel square window.
Calculate r.m.s. difference between pixel values and corresponding filtered average values. Calculate
average r.m.s. between windows.
2. Calculation method for low frequency PRNU and DSNU:
For PRNU, uniformly adjust illumination so that the average voltage across a sensor
partition is Full Scale/2.
For DSNU, block illumination to sensor. Integration time = 2ms.
Calculate spatially-filtered average using 64 pixel square window
Calculate difference between the center pixel value and corresponding filtered average
values. Report peak-to-peak values between windows.
Table 8: Image Sensor Characteristics
TA = 25°C
Symbol Parameter Typ Unit Note
RI Responsivity (ADC VREF = 1V) 1600 LSB/lux-sec
Nsat Pixel saturation level 63,000 e-
NADC DC noise + DNL ±2 LSB p-p
DSNU, HF Dark signal non-uniformity, high spatial frequency <0.4 % rms 1
DSNU, LF Dark signal non-uniformity, low spatial frequency <1.5 % p-p 2
Vdrk Output referred dark signal 50 mV/sec
NE Input referred noise 70 e-
Dyn_I Internal dynamic range 59 dB
PRNU, HF Photo response non-uniformity, high spatial frequency <0.6 % rms 1
PRNU, LF Photo response non-uniformity, low spatial frequency <10 % p-p 2
Kdrk Dark current temperature coefficient 100 %/8°C
Cg Conversion gain 13 μV/e-
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 32 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Optical Specification
Figure 17: Pixel Array Layout
Figure 18: Bayer Pattern (Pixel Color Pattern Detail)
Megapixel
(1280H x 1024V)
1280 x 1024
active pixels
Area of
detail below
(0,0)
(1023, 1279)
No black rows
R
B
R
G
G
B
G
B
G
G
G
R
R
B
R
G
G
B
G
B
G
G
G
R
R
G
G
G
R
(0,0)
B
G
B
G
G
R
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 33 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Optical Specification
Figure 19: Quantum Efficiency (color)
Figure 20: Quantum Efficiency (monochrome)
Quantum Effficiency for Color
0
5
10
15
20
25
400 500 600 700 800 900 1000
Wavelength (nm)
Quantum Efficiency (%)
Green 1 pixels Green 2 pixels Blue pixels Red pixels
Quantum Effficiency for Monochrome
0
5
10
15
20
25
30
400 500 600 700 800 900 1000
Wavelength (nm)
Quantum Efficiency (%)
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 34 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electrical Specifications
Electrical Specifications
Figure 21: Set Up and Hold Time
Figure 22: Clock to Data Propagation Delay
Table 9: AC Electrical Characteristics
VSUPPLY = 3.3V ± 0.3V
Symbol Characteristic Condition Min Typ Max Unit
TPLH Data output propagation delay for LOW to HIGH trans. 1 2 3 ns
TPHL Data output propagation delay or HIGH to LOW trans. 1 2 3 ns
TSETUP Setup time for input to SYSCLK VIN = VPWR or VGND 34 ns
THOLD Hold time for input to SYSCLK VPWR = Min, VOH min 3 4 ns
T
setu
p
Thold
S
YSCLK
INPUT
T
plh, Tphl
S
YSCLK
D
OUT
(99:0
)
tr
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 35 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Electrical Specifications
Note: This device contains circuitry to protect the inputs against damage from high static voltages or electric
fields, but the user is advised to take precautions to avoid the application of any voltage higher than
the maximum rated.
Table 10: DC Electrical Characteristics
Vsupply = 3.3V ± 0.3V
Symbol Characteristic Condition Min Typ Max Unit Note
VLP Bias for column buffers 0.5 1.9 2.7 V
VREF1 Reference for ADC 0.2 1.0 1.5 V
VREF2 Reference for ADC calibration 0.3 0.8 1.5 V
VREF3 Dark offset 0 0.6 2.5 V
VLN1 Bias for pixel source follower 0.8 1.0 1.1 V
VLN2 Bias for ADC 0.8 1.0 1.1 V
VCLAMP3 Dark offset 0 0 3.0 V
VLP_DRV Row driver control Grounded 0 0 0 V
VRST_PIX Pixel array power 2.2 2.7 2.9 V
VREF4 Reference for ADC 0.25 V
VIH Input HIGH voltage 2.0 VPWR + 0.3 V
VIL Input LOW voltage –0.3 0.8 V
IIN Input leakage current,
no pull-up resistor
VIN = VPWR or VGND –5 5 ?A
VOH Output HIGH voltage VPWR = Min, IOH = 100?A VPWR – 0.2 V
VOL Output LOW voltage VPWR = Min, IOL = 100?A 0.2 V
IPWR Maximum supply current 66 MHz clock,
5pF load on outputs
165 mA 1
Notes: 1. IPWR = I (VDD_IO) + I (VDD) + I (VAA).
Table 11: Recommended Operating Conditions
Symbol Parameter Min Max Unit
VPWR DC supply voltage 3.00 3.6 V
TACommercial operating temperature –5 60 °C
Table 12: Power Dissipation
VPWR = 3.3V; TA = 25°C at 500 fps
Symbol Parameter Min Typ Max Unit
PAVG Average power 250 350 500 mW
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 36 ©2008 Aptina Imaging Corporation. All rights reserved.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Environmental
Environmental
Caution Stresses greater than those listed may cause permanent damage to the device. Exposure to
absolute maximum rating conditions for extended periods may affect reliability.
Notes: 1. VPWR = VDD = VAA = VDD_IO (VDD is supply to digital circuit, VAA to analog circuit).
VGND = DGND = AGND (DGND is the ground to the digital circuit, AGND to the analog circuit).
2. This is a stress rating only, and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied.
Table 13: Absolute Maximum Ratings
Symbol Parameter Value Unit
VPWR DC supply voltage –0.5 to 3.6 V
VIN DC input voltage –0.5 to VPWR + 0.5 V
VOUT DC output voltage –0.5 to VPWR + 0.5 V
I DC current drain per pin (any I/O) ±50 mA
I DC current drain, VPWR and VGND ±100 mA
TSTORAGE Storage temperature range –40 to 125 °C
TLEAD Lead temperature (10 second soldering) 235 max.imum °C
10 Eunos Road 8 13-40, Singapore Post Center, Singapore 408600 prodmktg@aptina.com www.aptina.com
Aptina, Aptina Imaging, DigitalClarity, and the Aptina logo are the property of Aptina Imaging Corporation
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final,
these specifications are subject to change, as further product development and data characterization sometimes occur.
MT9M413: 1.3Mp CMOS Digital Image Sensor
Revision History
PDF: 9709604409/Source: 2594706000 Aptina reserves the right to change products or specifications without notice.
MT9M413_DS - Rev. B 9/10 EN 37 ©2008 Aptina Imaging Corporation All rights reserved.
Revision History
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9/10
Updated to non-confidential
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/10
Updated to Aptina template
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1/8/2008
•Initial release.