August 1991 GG HARRIS 2N6798 N-Channel Enhancement-Mode Power MOS Field-Effect Transistor Features Package TO-20SAF 5.5A, 200V BOTTOM VIEW * DS(on) = 0.429, SOA is Power-Dissipation Limited fj SOURCE GATE Nanosecond Switching Speeds 0 Linear Transfer Characteristics QD) D High Input Impedance DRAIN anne P (CASE) Majority Carrier Device Description The 2N6798 is an n-channel enhancement-mode silicon-gate | Terminal Diagram power MOS field-effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay N-CHANNEL ENHANCEMENT MODE drivers, and drivers for high-power bipolar switching transistors B requiring high speed and flow gate~-drive power. This type can be D id kX operated directly from integrated circuits. z 8 The 2N6798 is supplied in the JEDEC TO-205AF (Low Profile = = TO-39) metal package. 9 ui G ze o a s Absolute Maximum Ratings (Tc = +25C) Unless Otherwise Specified 2N6798 UNITS Drain-Source Voltage ... 0... cece cere erent e tne ee Vos 200* Vv Drain-Gate Voltage (RGS = 20K)... eee eee cere tener nes VDGR 200* Vv Continuous Drain Current 5.5* A 3.5* A 22* A Gate-Source Voltage ............-..005 +20* v Continuous Source Current 0.0... 6. cee ete cee erent eee e eens 5.5* A Pulse Source Current 0.0... 00 cece cece ee ene nee e eet ene tee nee 22* A Maximum Power Dissipation To = +259C (See Figure 14) 0... cece ccc eee terete eee Pp 25* Ww Above Tc = +259C, Derate Linearly (See Figure 14) ......... cece eee ee 0.20* WG Inductive Current, Clamped 0.0.0... cece cence teeter eenae ILM 22 A (L = 100yH) Operating and Storage Junction Temperature Range............ Ty, TSTG -55 to +150* 9G Maximum Lead Temperature for Soldering ............-.0ce eee ee ee eee Th 300* oC (0.063 (1.6mm) from case for 10s) *JEDEC registered values CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed. File Number 1 903.1 Capyright Harris Corporation 1991 4-79 Specifications 2N6798 Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Vos = See Fig. 10 2 TN, Ip = See Fig. 15 (MOSFET switching times are essentially independent of operating temperature.) Thermal Resistance Rinyc _ Junction-to-Case [ - | [50 [ecw] 4 __ Junction-to-Ambient tL | | 178 [ecw | Free Air Operation Source-Drain Diode Switching Characteristics (Typical) tr Reverse Recovery Time 450 [ ns | Ty = 150C, Ip = 5.5A, dipidt = 100Aius QpR Reverse Recovered Charge 3.0 [ #C [Ty = 150C, Ip = 5.5A, dipidt = 100Aius L ton Forward Turron Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. *JEDEC registered value 4 Pulse Test: Pulse width < 300us, Duty Cycle < 2%. 20 80 us PU TEST Vos > lo (an) * wn Ty = -5C = Ty Ip, ORAIN CURRENT (AMPERES) n Ip. ORAIN CURRENT (AMPERES) 2 on Ty = 125C 02 0 20 40 60 30 100 a1 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Q 2 4 5 8 so Vas. GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics. 4-80 2N6798 OPERATION IN THIS AREA IS LIMITED BY Ros(on) Ip, QRAIN CURRENT (AMPERES) Ip, ORAIN CURRENT (AMPERES) Te = 25C Ty = 150C MAX. Rinse = 5.0 KW SING 0 1 2 3 4 5 a2 5 10 20 50 100 200 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. ny o N-CHANNEL POWER MOSFETs 2 na _..| 2 1, QUTY FACTOR, D= z . Ss a 2 oe S : 2 M SINGLE PULSE 2. PEA UNIT BASE = Arnyc 7 5.0 DEG. CW THERMAL IMPEQANCE) 3. Tym > Te = Pom 2tnaclt! Ztnacltl/Ryhyc. NORMALIZED EFFECTIVE TRANSIENT THERMAL |MPEDAACE (PEA UNIT) 001 52 5 2 5 3 2 5 gt 5 gt 2 19 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 - Maximum effective transient thermal impedance, junction-to-case versus pulse duration. 80 us PULSE Vos >!pion) * Fps(on) MAX. ; 10 Tye Ty = 25C Ty = 1500C Ty = 125C 10 5h Ty+ 1509C af, TRANSCONDUCTANCE (SIEMENS) Ipr. REVERSE ORAIN CURRENT (AMPERES) Ty = 25C 0 5 10 15 20 25 0 0 t 2 4 4 tp, ORAIN CURRENT (AMPERES} Vso. SOUACE-TO ORAIN VOLTAGE (VOLTS) Fig. 6 - Typical transconductance versus drain current. Fig. 7 - Typical source-drain diode forward voltage. 4-81 2N6798 22 2 5 2 $ 5 z 3 8 3 2 3 ae =n BN 1 3 a 33 Bs 26 es ant cz o =z 10 5 = z= a = = 5 2 B 06 & 02 40 0 40 60 120 160 -40 0 40 80 120 160 Ty JUNCTION TEMPERATURE 19C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 - Breakdown voltage versus temperature. Fig. 9 - Typical normalized on-resistance versus temperature. 2000 20 Vgs70 t 4 1 Mur a =4 600 Cigg = Cox + Cog, Cys SHORTED a Vos = 40V 218 Vps = 100V ws & 2 Ys 60V = 1200 5 os 3 = Cos * Cog > = 2 0 z 2 <= 800 8 ou a w Ss 400 2 0 10 20 30 40 50 0 8 18 mu 32 40 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Oy. TOTAL GATE CHARGE (nC) Fig. 10 - Typical capacitance versus drain-to-source Fig. 11 - Typical gate charge versus gate-to-source voltage. voltage. 08 | | Vgs = tov vs | 2 =z 3 3 z a 2 2 s 3 g z wt z 2 8 = = e = z fC 8 o 5 02 + 3 g = RoS(on) MEASURED WITH CURRENT PULSE OF ~ 20 us DURATION INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL) . 1 . i 1 6 9 0 20 30 40 ri) 50 8 100 125 150 (gp. ORAIN CURRENT (AMPERES) Te, CASE TEMPERATURE (C) Fig. 12 - Typical on-resistance versus drain current. Fig. 13 - Maximum drain current versus case temperature. 4-82 2N6798 Pp. POWER DISSIPATION (WATTS) 0 20 40 60 80 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 - Power versus temperature derating curve. a at wa zo zo <= x 23 a be- PULSE WIDTH YGS(on} +10V INPUT sox) 20% Vestatt) OV INPUT PULSE . tNPUT PULSE RISE TIME FALL TIME tg VpS(ott) fora TEKTRONIX QUTPUT PULSE ose. VpSton} GEN. NOTES WHEN MEASURING RISE TIME, Vgg/an) SHALL BE AS SPECIFIED ON THE INPUT WAVEFORM. WHEN MEASURING FALL TIME, Vgg(ofs) SHALL BE SPECIFIED ON THE INPUT WAVEFORM. THE INPUT TRANSITION ANO DRAIN VOLTAGE RE- SPONSE DETECTOR SHALL HAVE RISE ANO FALL RESPONSE TIMES SUCH THAT NOTES: DOUBLING THESE RESPONSES WILL NOT AFFECT THE RESULTS GREATER 1, LHO063 CASE GROUNDED. THAN THE PRECISION OF MEASUREMENT. THE CUARENT SHALL BE SUFFI. 2. GROUNDED CONNECTIONS COMMON TO GROUND PLANE ON BOARD. CIENTLY SMALL SO THAT DOUGLING IT DOES NOT AFFECT TESTS RESULTS 2. PULSE WIDTH =3 us, PERIOD #1 ms, AMPLITUDE=10V GREATER THAN THE PRECISION OF MEASUREMENT, Fig. 15 - Switching time test circuit. BLOCKING ODE aQ NOTES: 1. SET Vps TO THE VALUE SPECIFIED UNDER DETAILS USING A 0.1s PULSE WIDTH WITH A MINIMUM QF 1 MINUTE BETWEEN PULSES. INCREASE Vgg. UNTIL THE SPECIFIED VALUE OF Ip AND Vog ARE OBTAINED. CASE TEMPERATURE = 25C. 2. SELECT Rg SUCH THAT Ip eg = 2.5 # 1.0 Vde. Fig. 16 - Safe operating test circuit. 4-83