Mimix Broadband’s 18.0-36.0 GHz GaAs MMIC transmitter has a +25.0
dBm output third order intercept across the band. This device is a
balanced resistive pHEMT mixer followed by a distributed amplifier
and includes an integrated LO doubler and LO buffer amplifier. The use
of integrated LO doubler and LO buffer amplifier makes the provision
of the LO easier than for fundamental mixers at these frequencies. IF
and IF mixer inputs are provided through an external 180 degree
hybrid. This MMIC uses Mimix Broadband’s GaAs PHEMT device model
technology, and is based upon electron beam lithography to ensure
high repeatability and uniformity. The chip has surface passivation to
protect and provide a rugged part with backside via holes and gold
metallization to allow either a conductive epoxy or eutectic solder die
attach process. This device is well suited for Millimeter-wave
Point-to-Point Radio, LMDS, SATCOM and VSAT applications.
18.0-36.0 GHz GaAs MMIC
Transmitter
Electrical Characteristics (Ambient Temperature T = 25o C)
Page 1 of 9
Sub-harmonic Transmitter
Integrated Mixer, LO Doubler/Buffer & Output Amplifier
+25.0 dBm Output Third Order Intercept (OIP3)
35.0 dB Gain Control
2.0 dBm LO Drive Level
9.0 dB Conversion Gain
100% On-Wafer RF and DC Testing
100% Visual Inspection to MIL-STD-883 Method 2010
Features
General Description
Absolute Maximum Ratings
Supply Voltage (Vd)
Supply Current (Id1,2,3)
Gate Bias Voltage (Vg)
Input Power (IF Pin)
Storage Temperature (Tstg)
Operating Temperature (Ta)
Channel Temperature (Tch)
+6.0 VDC
320,190,110 mA
+0.3 VDC
0.0 dBm
-65 to +165 OC
-55 to MTTF Table
MTTF Table
Chip Device Layout
Units
GHz
GHz
GHz
GHz
dB
dB
dBm
dB
dB
dBm
VDC
VDC
VDC
VDC
mA
mA
mA
mA
Min.
18.0
18.0
8.0
DC
-
-
-
-
-
-
-
-
-1.2
-1.2
-
-
-
-
Typ.
-
-
-
-
14.0
9.0
+2.0
15.0
5.0
+25.0
+5.0
-5.0
-0.2
-0.5
230
140
75
50
Max.
36.0
36.0
19.5
3.0
-
-
-
-
-
-
+5.5
-
+0.1
+0.1
280
170
90
60
Parameter
Frequency Range (RF) Upper Side Band
Frequency Range (RF) Lower Side Band
Frequency Range (LO)
Frequency Range (IF)
Output Return Loss RF (S22)
Small Signal Conversion Gain IF/RF (S21)
LO Input Drive (PLO)
Isolation LO/RF @ LOx1
Isolation LO/RF @ LOx2
Output Third Order Intercept (OIP3)
Drain Bias Voltage (Vd1,2,3)
Source Bias Voltage (Vss)
Gate Bias Voltage (Vg1,2)
Gate Bias Voltage (Vg3,4) Doubler, Mixer
Supply Current (Id1) (Vd1=5.0V, Vg=-0.2V Typical)
Supply Current (Id2) (Vd2=5.0V, Vg=-0.1V Typical)
Supply Current (Id3) (Vd3=5.0V, Vg=-0.5V Typical)
Supply Current (Iss) (Vss=-5.0V)
(1) Measured using constant current.
(2) Measured using LO Input drive level of +2.0 dBm.
(3) Channel temperature affects a device's MTTF. It is
recommended to keep channel temperature as low as
possible for maximum life.
3
1,2
3
2
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
July 2007 - Rev 27-Jul-07 U1009-BD
XU1009-BD
Page 2 of 8
Transmitter Measurements
18.0-36.0 GHz GaAs MMIC
Transmitter
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
July 2007 - Rev 27-Jul-07
XU1009-BD_5samples: USB Conversion gain (dB) vs. RF USB (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
0
2
4
6
8
10
12
14
16
18
20
19 20 21 22 23 24 25 26 27 28 29 30 31
RF USB (GHz)
USB Conversion gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-BD_samples: LSB Conversio n gain (dB) vs. RF LSB (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
0
2
4
6
8
10
12
14
16
18
20
19 20 21 22 23 24 25 26 27 28 29 30 31
RF LSB (GHz)
LSB Conversion gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-BD_5samples: LO to RF gain (dB) vs. LO freq (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
-40
-35
-30
-25
-20
-15
-10
-5
0
5
8 9 10 11 12 13 14 15 16 17
LO freq (GHz)
LO to RF gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-BD_5samples: LOx2 to RF gain (dB) vs. LO freq (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
-30
-25
-20
-15
-10
-5
0
5
10
15
20
8 9 10 11 12 13 14 15 16 17
LO freq (GHz)
LOx2 to RF gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-BD_4samples: OIP3 and IIP3 (dBm) vs. RF USB (GHz)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
19 20 21 22 23 24 25 26 27 28 29 30 31
RF USB (GHz)
OIP3 and IIP3 (dBm)
, LO Power (dBm)=0, RC=R5C10
, LO Power (dBm)=0, RC=R5C13
, LO Power (dBm)=0, RC=R7C11
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=2, RC=R5C10
, LO Power (dBm)=2, RC=R5C13
, LO Power (dBm)=2, RC=R7C11
, LO Power (dBm)=2, RC=R7C13
, LO Power (dBm)=4, RC=R5C10
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
, LO Power (dBm)=4, RC=R7C13
, LO Power (dBm)=0, RC=R5C10
, LO Power (dBm)=0, RC=R5C13
, LO Power (dBm)=0, RC=R7C11
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=2, RC=R5C10
, LO Power (dBm)=2, RC=R5C13
, LO Power (dBm)=2, RC=R7C11
, LO Power (dBm)=2, RC=R7C13
, LO Power (dBm)=4, RC=R5C10
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
, LO Power (dBm)=4, RC=R7C13
OIP3 (dBm)
IIP3 (dBm)
XU1009-BD_4samples: OIP3 and IIP3 (dBm) vs. RF LSB (GHz)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
19 20 21 22 23 24 25 26 27 28 29 30 31
RF LSB (GHz)
OIP3 and IIP3 (dBm)
, LO Power (dBm)=0, RC=R5C10
, LO Power (dBm)=0, RC=R5C13
, LO Power (dBm)=0, RC=R7C11
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=2, RC=R5C10
, LO Power (dBm)=2, RC=R5C13
, LO Power (dBm)=2, RC=R7C11
, LO Power (dBm)=2, RC=R7C13
, LO Power (dBm)=4, RC=R5C10
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
, LO Power (dBm)=4, RC=R7C13
, LO Power (dBm)=0, RC=R5C10
, LO Power (dBm)=0, RC=R5C13
, LO Power (dBm)=0, RC=R7C11
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=2, RC=R5C10
, LO Power (dBm)=2, RC=R5C13
, LO Power (dBm)=2, RC=R7C11
, LO Power (dBm)=2, RC=R7C13
, LO Power (dBm)=4, RC=R5C10
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
, LO Power (dBm)=4, RC=R7C13
OIP3 (dBm)
IIP3 (dBm)
Page 3 of 9
Transmitter Measurements (cont.)
18.0-36.0 GHz GaAs MMIC
Transmitter
XU1009-BD_5samples: USB Conversion gain (dB) vs. Vg1 (V)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
Vg1 (V)
USB Conversion gain (dB)
, LO Power (dBm)=2, RF freq (GHz)=20, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=20, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=20, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=20, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=20, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=21, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=21, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=21, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=21, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=21, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=22, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=22, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=22, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=22, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=22, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=23, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=23, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=23, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=23, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=23, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=24, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=24, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=24, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=24, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=24, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=25, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=25, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=25, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=25, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=25, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=26, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=26, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=26, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=26, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=26, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=27, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=27, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=27, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=27, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=27, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=28, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=28, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=28, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=28, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=28, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=29, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=29, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=29, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=29, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=29, RC=R7C13
, LO Power (dBm)=2, RF freq (GHz)=30, RC=R5C10
, LO Power (dBm)=2, RF freq (GHz)=30, RC=R5C13
, LO Power (dBm)=2, RF freq (GHz)=30, RC=R6C11
, LO Power (dBm)=2, RF freq (GHz)=30, RC=R7C11
, LO Power (dBm)=2, RF freq (GHz)=30, RC=R7C13
XU1009-BD_5samples: USB Conv Gain (dB), Id1 & IIP3 (dBm) vs. Vg1 (V)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm
-20
-15
-10
-5
0
5
10
15
20
25
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
Vg1 (V)
USB Conv Gain (dB) and IIP3 (dBm)
0
50
100
150
200
250
300
350
400
450
, RF USB (GHz)=21, RC=R5C10
, RF USB (GHz)=21, RC=R5C12
, RF USB (GHz)=21, RC=R6C11
, RF USB (GHz)=21, RC=R7C11
, RF USB (GHz)=21, RC=R7C13
, RF USB (GHz)=23, RC=R5C10
, RF USB (GHz)=23, RC=R5C12
, RF USB (GHz)=23, RC=R6C11
, RF USB (GHz)=23, RC=R7C11
, RF USB (GHz)=23, RC=R7C13
, RF USB (GHz)=25, RC=R5C10
, RF USB (GHz)=25, RC=R5C12
, RF USB (GHz)=25, RC=R6C11
, RF USB (GHz)=25, RC=R7C11
, RF USB (GHz)=25, RC=R7C13
, RF USB (GHz)=27, RC=R5C10
, RF USB (GHz)=27, RC=R5C12
, RF USB (GHz)=27, RC=R6C11
, RF USB (GHz)=27, RC=R7C11
, RF USB (GHz)=27, RC=R7C13
, RF USB (GHz)=29, RC=R5C10
, RF USB (GHz)=29, RC=R5C12
, RF USB (GHz)=29, RC=R6C11
, RF USB (GHz)=29, RC=R7C11
, RF USB (GHz)=29, RC=R7C13
, RF USB (GHz)=21, RC=R5C10
, RF USB (GHz)=21, RC=R5C12
, RF USB (GHz)=21, RC=R6C11
, RF USB (GHz)=21, RC=R7C11
, RF USB (GHz)=21, RC=R7C13
, RF USB (GHz)=23, RC=R5C10
, RF USB (GHz)=23, RC=R5C12
, RF USB (GHz)=23, RC=R6C11
, RF USB (GHz)=23, RC=R7C11
, RF USB (GHz)=23, RC=R7C13
, RF USB (GHz)=25, RC=R5C10
, RF USB (GHz)=25, RC=R6C11
, RF USB (GHz)=25, RC=R7C11
, RF USB (GHz)=25, RC=R7C13
, RF USB (GHz)=27, RC=R5C10
, RF USB (GHz)=27, RC=R5C12
, RF USB (GHz)=27, RC=R6C11
, RF USB (GHz)=27, RC=R7C11
, RF USB (GHz)=27, RC=R7C13
, RF USB (GHz)=29, RC=R5C10
, RF USB (GHz)=29, RC=R5C12
, RF USB (GHz)=29, RC=R6C11
, RF USB (GHz)=29, RC=R7C11
, RF USB (GHz)=29, RC=R7C13
, RF USB (GHz)=21, RC=R5C10
, RF USB (GHz)=21, RC=R5C12
, RF USB (GHz)=21, RC=R6C11
, RF USB (GHz)=21, RC=R7C11
, RF USB (GHz)=21, RC=R7C13
, RF USB (GHz)=23, RC=R5C10
, RF USB (GHz)=23, RC=R5C12
, RF USB (GHz)=23, RC=R6C11
, RF USB (GHz)=23, RC=R7C11
, RF USB (GHz)=23, RC=R7C13
, RF USB (GHz)=25, RC=R5C10
, RF USB (GHz)=25, RC=R5C12
, RF USB (GHz)=25, RC=R6C11
, RF USB (GHz)=25, RC=R7C11
, RF USB (GHz)=25, RC=R7C13
, RF USB (GHz)=27, RC=R5C10
RF USB (GHz)
=
27 RC
=
R5C12
XU1009-BD_5samples: LSB Conv Gain (dB) and IIP3 (dBm) vs. Vg1 (V)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm
-20
-15
-10
-5
0
5
10
15
20
25
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
Vg1 (V)
LSB Conv Gai n (dB) and IIP 3 (dBm)
, RF LSB (GHz)=21, RC=R5C10
, RF LSB (GHz)=21, RC=R5C12
, RF LSB (GHz)=21, RC=R6C11
, RF LSB (GHz)=21, RC=R7C11
, RF LSB (GHz)=21, RC=R7C13
, RF LSB (GHz)=23, RC=R5C10
, RF LSB (GHz)=23, RC=R5C12
, RF LSB (GHz)=23, RC=R6C11
, RF LSB (GHz)=23, RC=R7C11
, RF LSB (GHz)=23, RC=R7C13
, RF LSB (GHz)=25, RC=R5C10
, RF LSB (GHz)=25, RC=R5C12
, RF LSB (GHz)=25, RC=R6C11
, RF LSB (GHz)=25, RC=R7C11
, RF LSB (GHz)=25, RC=R7C13
, RF LSB (GHz)=27, RC=R5C10
, RF LSB (GHz)=27, RC=R5C12
, RF LSB (GHz)=27, RC=R6C11
, RF LSB (GHz)=27, RC=R7C11
, RF LSB (GHz)=27, RC=R7C13
, RF LSB (GHz)=29, RC=R5C10
, RF LSB (GHz)=29, RC=R5C12
, RF LSB (GHz)=29, RC=R6C11
, RF LSB (GHz)=29, RC=R7C13
, RF LSB (GHz)=21, RC=R5C10
, RF LSB (GHz)=21, RC=R5C12
, RF LSB (GHz)=21, RC=R6C11
, RF LSB (GHz)=21, RC=R7C11
, RF LSB (GHz)=21, RC=R7C13
, RF LSB (GHz)=23, RC=R5C10
, RF LSB (GHz)=23, RC=R5C12
, RF LSB (GHz)=23, RC=R6C11
, RF LSB (GHz)=23, RC=R7C11
, RF LSB (GHz)=23, RC=R7C13
, RF LSB (GHz)=25, RC=R5C10
, RF LSB (GHz)=25, RC=R5C12
, RF LSB (GHz)=25, RC=R6C11
, RF LSB (GHz)=25, RC=R7C11
, RF LSB (GHz)=25, RC=R7C13
, RF LSB (GHz)=27, RC=R5C10
, RF LSB (GHz)=27, RC=R5C12
, RF LSB (GHz)=27, RC=R6C11
, RF LSB (GHz)=27, RC=R7C11
, RF LSB (GHz)=27, RC=R7C13
, RF LSB (GHz)=29, RC=R5C10
, RF LSB (GHz)=29, RC=R5C12
, RF LSB (GHz)=29, RC=R6C11
, RF LSB (GHz)=29, RC=R7C13
XU1009-BD_4samples: USB Conversion Gain (dB) vs. RF (GHz)
IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
RF USB (GHz)
USB Conversion Gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-0BD_4samples: LSB Conversion Gain (dB) vs. RF (GHz)
IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
RF LSB (GHz)
LSB Conversion Gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
July 2007 - Rev 27-Jul-07
18.0-36.0 GHz GaAs MMIC
Transmitter
Page 4 of 9
Transmitter Measurements (cont.)
XU1009-BD_4samples: LSB IIP3 (dBm) vs. RF (GHz)
IF = -10dBm per tone, LO Power = 2 and 4dBm, Nominal Bias
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
RF LSB (GHz)
LSB IIP3 (dBm)
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C12
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C12
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-BD_4samples: USB IIP3 (dBm) vs. RF (GHz)
IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
RF USB (GHz)
USB IIP3 (dBm)
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
July 2007 - Rev 27-Jul-07
XU1009-BD Tch_max and Rth vs. Backplate Temp
Nominal Datasheet Bias Conditions
50
75
100
125
150
175
200
225
250
20 30 40 50 60 70 80 90 100 110 120 130 140
Backplate Temp (C)
Tch_max (C)
20
25
30
35
40
45
50
55
60
Rth (C/W)
Tch_max (C)
Rth (C/W)
Vd2
Vg1 Vd3
IF2
LO
Vg4
IF1
Vd1
RF
Vg2
Vg3
1
234
8
9
10
5 6 7
11
12
Vss
1
234
8
9
10
0.295
(0.012)
2.000
(0.079)
0.305
(0.012)
0.904
(0.036)
1.904
(0.075)
5
2.104
(0.083)
6
2.504
(0.099)
7
2.904
(0.114)
3.200
(0.126)
0.996
(0.039)
2.704
(0.106)
2.305
(0.091)
11
0.904
(0.036)
0.0
0.0
12
0.504
(0.020)
18.0-36.0 GHz GaAs MMIC
Transmitter
Page 5 of 9
Mechanical Drawing
Bias Arrangement
Bypass Capacitors - See App Note [2]
(Note: Engineering designator is 26TX0555)
Units: millimeters (inches) Bond pad dimensions are shown to center of bond pad.
Thickness: 0.110 +/- 0.010 (0.0043 +/- 0.0004), Backside is ground, Bond Pad/Backside Metallization: Gold
All DC/IF Bond Pads are 0.100 x 0.100 (0.004 x 0.004). All RF Bond Pads are 0.100 x 0.200 (0.004 x 0.008).
Bond pad centers are approximately 0.109 (0.004) from the edge of the chip.
Dicing tolerance: +/- 0.005 (+/- 0.0002). Approximate weight: 3.968 mg.
Bond Pad #1 (RF Out)
Bond Pad #2 (Vd1)
Bond Pad #3 (IF1)
Bond Pad #4 (Vg4)
Bond Pad #5 (Vg3)
Bond Pad #6 (Vg2)
Bond Pad #7 (Vss)
Bond Pad #8 (LO)
Bond Pad #9 (Vd3)
Bond Pad #10 (Vd2)
Bond Pad #11 (IF2)
Bond Pad #12 (Vg1)
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
XU1009-BD
XU1009-BD
July 2007 - Rev 27-Jul-07
18.0-36.0 GHz GaAs MMIC
Transmitter
Page 6 of 9
MTTF
These numbers were calculated based on accelerated life test information and thermal model analysis received from the fabricating foundry.
App Note [1] Biasing - As shown in the bonding diagram, this device is operated by separately biasing Vd(1,2,3)=5.0V,
Vss=-5.0V, Id1=230mA, Id2=140mA, Id3=75mA and Iss=50mA. Additionally, a mixer and doubler bias are also required
with Vg3=Vg4=-0.5V. Adjusting Vg3 and Vg4 above or below this value can adversely affect conversion gain, LO/RF
isolation and intercept point performance. Gain control can be adjusted by varying Vg1 from 0.0 to -1.2 V with 0.0 V
providing minimum attenuation and -1.2 V providing maximum attenuation. It is also recommended to use active
biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results.
Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single
transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the
current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate
voltage needed to do this is -0.2V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also,
make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain
supply.
App Note [2] Bias Arrangement -
For Parallel Stage Bias (Recommended for general applications) -- The same as Individual Stage Bias but all the drain or
gate pad DC bypass capacitors (~100-200 pF) can be combined. Additional DC bypass capacitance (~0.01 uF) is also
recommended to all DC or combination (if gate or drains are tied together) of DC bias pads.
For Individual Stage Bias -- Each DC pad (Vd1,2,3, Vss, and Vg1,2,3,4) needs to have DC bypass capacitance (~100-200 pF)
as close to the device as possible. Additional DC bypass capacitance (~0.01 uF) is also recommended.
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
July 2007 - Rev 27-Jul-07
XU1009-BD MTTF (hours) vs. Backplate Temp (degC)
Nominal Datasheet Bias Conditions
1.0E+04
1.0E+05
1.0E+06
1.0E+07
1.0E+08
1.0E+09
1.0E+10
20 30 40 50 60 70 80 90 100 110 120 130
Backplate Temp (C)
MTTF (hours)
18.0-36.0 GHz GaAs MMIC
Transmitter
Page 7 of 9
App Note [3] USB/LSB Selection -
USB
LSB
IF1
IF2
An alternate method of Selection of USB or LSB:
For Lower Side Band operation (LSB):
With IF1 and IF2 connected to the
direct port (0º) and coupled port (180º)
respectively as shown in the diagram,
the LSB signal will reside on the input
port. The isolated port must be loaded
with 50 ohms.
With IF1 and IF2 connected to the
direct port (0º) and coupled port (180º)
respectively as shown in the diagram,
the USB signal will reside on the
isolated port. The input port must be
loaded with 50 ohms.
For Upper Side Band operation (USB):
-180º
In Phase Combiner
USB
In Phase Combiner
LSB
-180º
IF2 IF1 IF2 IF1
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
July 2007 - Rev 27-Jul-07
18.0-36.0 GHz GaAs MMIC
Transmitter
Page 8 of 9
Device Schematic
Block Diagram
RF Out
Vg1
IF1 Vd2 Vd3 Vss
Vg2
IF2 Vg4
LO InLO OutLORFRF Out RF In
Vd1
LO Buffer
Mixer
Vg3
Output Amp
LO
LO In
LO Out
Doubler
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
July 2007 - Rev 27-Jul-07
18.0-36.0 GHz GaAs MMIC
Transmitter
Page 9 of 9
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
U1009-BD
Handling and Assembly Information
CAUTION! - Mimix Broadband MMIC Products contain gallium arsenide (GaAs) which can be hazardous to the
human body and the environment. For safety, observe the following procedures:
Do not ingest.
Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical
processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
Observe government laws and company regulations when discarding this product. This product must be
discarded in accordance with methods specified by applicable hazardous waste procedures.
Life Support Policy - Mimix Broadband's products are not authorized for use as critical components in life support
devices or systems without the express written approval of the President and General Counsel of Mimix
Broadband. As used herein: (1) Life support devices or systems are devices or systems which, (a) are intended for
surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user. (2) A critical component is any component of a life support device or system whose
failure to perform can be reasonably expected to cause the failure of the life support device or system, or to
affect its safety or effectiveness.
ESD - Gallium Arsenide (GaAs) devices are susceptible to electrostatic and mechanical damage. Die are supplied
in antistatic containers, which should be opened in cleanroom conditions at an appropriately grounded anti-
static workstation. Devices need careful handling using correctly designed collets, vacuum pickups or, with care,
sharp tweezers.
Die Attachment - GaAs Products from Mimix Broadband are 0.100 mm (0.004") thick and have vias through to the
backside to enable grounding to the circuit. Microstrip substrates should be brought as close to the die as possible. The
mounting surface should be clean and flat. If using conductive epoxy, recommended epoxies are Tanaka TS3332LD, Die
Mat DM6030HK or DM6030HK-Pt cured in a nitrogen atmosphere per manufacturer's cure schedule. Apply epoxy
sparingly to avoid getting any on to the top surface of the die. An epoxy fillet should be visible around the total die
periphery. For additional information please see the Mimix "Epoxy Specifications for Bare Die" application note. If
eutectic mounting is preferred, then a fluxless gold-tin (AuSn) preform, approximately 0.0012 thick, placed between the
die and the attachment surface should be used. A die bonder that utilizes a heated collet and provides scrubbing action
to ensure total wetting to prevent void formation in a nitrogen atmosphere is recommended. The gold-tin eutectic
(80% Au 20% Sn) has a melting point of approximately 280 ºC (Note: Gold Germanium should be avoided). The work
station temperature should be 310 ºC +/- 10 ºC. Exposure to these extreme temperatures should be kept to minimum.
The collet should be heated, and the die pre-heated to avoid excessive thermal shock. Avoidance of air bridges and force
impact are critical during placement.
Wire Bonding - Windows in the surface passivation above the bond pads are provided to allow wire bonding to
the die's gold bond pads. The recommended wire bonding procedure uses 0.076 mm x 0.013 mm (0.003" x
0.0005") 99.99% pure gold ribbon with 0.5-2% elongation to minimize RF port bond inductance. Gold 0.025 mm
(0.001") diameter wedge or ball bonds are acceptable for DC Bias connections. Aluminum wire should be
avoided. Thermo-compression bonding is recommended though thermosonic bonding may be used providing
the ultrasonic content of the bond is minimized. Bond force, time and ultrasonics are all critical parameters.
Bonds should be made from the bond pads on the die to the package or substrate. All bonds should be as short
as possible.
Ordering Information
Part Number Description
XU1009-BD-000V Where “V is RoHS compliant die packed in vacuum release gel paks
XU1009-BD-EV1 XU1009 die evaluation module
July 2007 - Rev 27-Jul-07