

DS314-1 (v1.0) October 18, 2004

Spartan-3 Automotive XA FPGA Family: Introduction and Ordering

Advance Product Specification

Introduction

The Xilinx Automotive (XA) Spartan[™]-3 family of Field-Programmable Gate Arrays is specifically designed to meet the needs of high volume, cost-sensitive automotive consumer electronic applications. The four-member family offers densities ranging from 50,000 to five million system gates, as shown in Table 1.

XA devices are available in both the extended-temperature Q-grade (-40°C to +125°C) and industrial I-grade (-40°C to +100°C) and are qualified to the industry-recognized AEC-Q100 standard.

The XA Spartan-3 family builds on the success of the earlier XA Spartan-IIE family by increasing the amount of logic resources, the capacity of internal RAM, the total number of I/Os, and the overall level of performance as well as by improving clock management functions. Numerous enhancements derive from state-of-the-art Virtex[™]-II technology. These Spartan-3 enhancements, combined with advanced process technology, deliver more functionality and bandwidth per dollar than was previously possible, setting new standards in the programmable logic industry.

Because of their exceptionally low cost, Spartan-3 FPGAs are ideally suited to a wide range of advanced automotive electronics modules and systems ranging from the latest driver assistance and infotainment systems to reconfigurable instrument clusters and ECU gateways.

The Spartan-3 family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, the lengthy development cycles, and the inherent inflexibility of conventional ASICs. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary, an impossibility with ASICs.

Features

- AEC-Q100 device qualification and full PPAP support available in both extended temperature Q-grade and I-grade.
- Guaranteed to meet full electrical specifications over T_{J} =-40°C to +125°C.
- Revolutionary 90-nanometer process technology
- Very low cost, high-performance logic solution for high-volume, automotive applications
 - 326 MHz system clock rate
 - Three power rails: for core (1.2V), I/Os (1.2V to 3.3V), and auxiliary purposes (2.5V)
- SelectIO[™] signaling

- Up to 333 I/O pins
- 622 Mb/s data transfer rate per I/O
- Seventeen single-ended signal standards
- Seven differential signal standards including LVDS
- Termination by Digitally Controlled Impedance
- Signal swing ranging from 1.14V to 3.45V
- Double Data Rate (DDR) support
- Logic resources
 - Abundant logic cells with shift register capability
 - Wide multiplexers
 - Fast look-ahead carry logic
 - Dedicated 18 x 18 multipliers
 - JTAG logic compatible with IEEE 1149.1/1532
- SelectRAM[™] hierarchical memory
 - Up to 576 Kbits of total block RAM
 - Up to 120 Kbits of total distributed RAM
- Digital Clock Manager (up to four DCMs)
 - Clock skew elimination
 - Frequency synthesis
- Fully supported by Xilinx ISE development system
 - Synthesis, mapping, placement and routing
- MicroBlaze[™] processor, CAN, LIN, PCI, and other cores
- Pb-free packaging options
- Additionally, Xilinx and all of our production partners are qualified to QS-9000, moving to TS16949 in 2005.

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

www.xilinx.com 1-800-255-7778

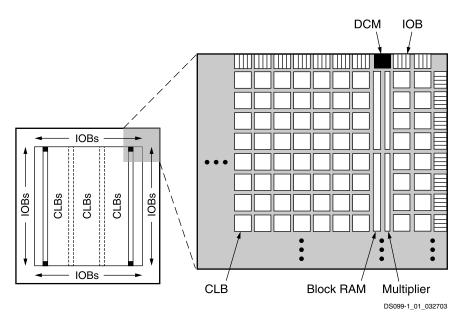
	System	Logic	CLB Array (One CLB = Four Slices)			Distributed	Block RAM	Dedicated		Maximum	Maximum Differential
Device	Gates	Cells	Rows	Columns	Total CLBs	RAM (bits ¹)	(bits ¹)	Multipliers	DCMs	User I/O	I/O Pairs
XA3S50	50K	1,728	16	12	192	12K	72K	4	2	63	56
XA3S200	200K	4,320	24	20	480	30K	216K	12	4	173	76
XA3S400	400K	8,064	32	28	896	56K	288K	16	4	173	116
XA3S1000	1M	17,280	48	40	1,920	120K	432K	24	4	333	175

Table 1: Summary of Spartan-3 FPGA Attributes

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

Architectural Overview


The Spartan-3 family architecture consists of five fundamental programmable functional elements:

- Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to implement logic and storage elements that can be used as flip-flops or latches. CLBs can be programmed to perform a wide variety of logical functions as well as to store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Twenty-four different signal standards. including seven high-performance differential standards, are available as shown in Table 2. Double Data-Rate (DDR) registers are included. The Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations, simplifying board designs.
- Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

- Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product.
- Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. The XA3S50 has a single column of block RAM embedded in the array. Those devices ranging from the XA3S200 to the XA3S1000 have two columns of block RAM. Each column is made up of several 18K-bit RAM blocks; each block is associated with a dedicated multiplier. The DCMs are positioned at the ends of the outer block RAM columns.

The Spartan-3 family features a rich network of traces and switches that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

Notes:

1. The XA3S50 has only the block RAM column on the far left. The recommended memory for storing the configuration data is the low-cost XA Platform Flash PROM family device/package combination, which comprises the XAF00S PROMs for serial configuration.

Figure 1: Spartan-3 Family Architecture

Configuration

Spartan-3 FPGAs are programmed by loading configuration data into robust static memory cells that collectively control all functional elements and routing resources. Before powering on the FPGA, configuration data is stored externally in a PROM or some other nonvolatile medium either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes: Master Parallel, Slave Parallel, Master Serial, Slave Serial and Boundary Scan (JTAG). The Master and Slave Parallel modes use an 8-bit wide SelectMAP[™] port.

The recommended memory for storing the configuration data is the low-cost Xilinx Platform Flash PROM family,

which includes the XCF00S PROMs for serial configuration and the higher density XCF00P PROMs for parallel or serial configuration.

I/O Capabilities

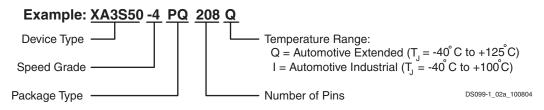
The SelectIO feature of Spartan-3 devices supports 17 single-ended standards and seven differential standards as listed in Table 2. Many standards support the DCI feature, which uses integrated terminations to eliminate unwanted signal reflections. Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

Standard Category	Description	V _{CCO} (V)	Class	Symbol	DCI Option
Single-Ende	d				·
GTL	Gunning Transceiver Logic	N/A	Terminated	GTL	Yes
			Plus	GTLP	Yes
HSTL	High-Speed Transceiver Logic	1.5	I	HSTL_I	Yes
			III	HSTL_III	Yes
		1.8	I	HSTL_I_18	Yes
			II	HSTL_II_18	Yes
			III	HSTL_III_18	Yes
LVCMOS	Low-Voltage CMOS	1.2	N/A	LVCMOS12	No
		1.5	N/A	LVCMOS15	Yes
		1.8	N/A	LVCMOS18	Yes
		2.5	N/A	LVCMOS25	Yes
		3.3	N/A	LVCMOS33	Yes
LVTTL	Low-Voltage Transistor-Transistor Logic	3.3	N/A	LVTTL	No
PCI	Peripheral Component Interconnect	3.0	33 MHz	PCI33_3	No
SSTL	Stub Series Terminated Logic	1.8	N/A	SSTL18_I	Yes
		2.5	I	SSTL2_I	Yes
			II	SSTL2_II	Yes
Differential					I
LDT (ULVDS)	Lightning Data Transport (HyperTransport™)	2.5	N/A	LDT_25	No
LVDS	Low-Voltage Differential Signaling	-	Standard	LVDS_25	Yes
			Bus	BLVDS_25	No
			Extended Mode	LVDSEXT_25	Yes
LVPECL	Low-Voltage Positive Emitter-Coupled Logic	2.5	N/A	LVPECL_25	No
RSDS	Reduced-Swing Differential Signaling	2.5	N/A	RSDS_25	No

Table 2: Signal Standards Supported by the Spartan-3 Family

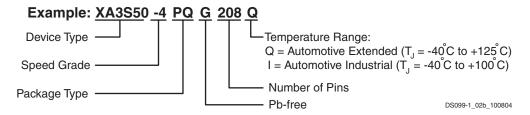
Table 3: Spartan-3 XA I/O Chart

Available User I/Os and Differential (Diff) Pairs						/0		
	VQG	i 100	PQG	i208	FTG	256	FGG	456
Device	User	Diff	User	Diff	User	Diff	User	Diff
XA3S50	63	29	124	56	-	-	-	-
XA3S200	63	29	141	62	173	76	-	-
XA3S400	-	-	141	62	173	76	-	-
XA3S1000	-	-	-	-	-	-	333	149


Notes:

1. All device options listed in a given package column are pin-compatible.

Ordering Information


Spartan-3 FPGAs are available in both standard and Pb-free packaging options for all device/package combinations. The Pb-free packages include a special 'G' character in the ordering code.

Standard Packaging

Pb-Free Packaging

For additional information on Pb-free packaging, see XAPP427: Xilinx Lead Free Packages.

Device Speed Grade			Package Type / Number of Pins	Temperature Range (T _J)		
XA3S50	-4 Standard Performance	VQ(G)100	100-pin Very Thin Quad Flat Pack (VQFP)	Ι	Automotive Industrial (-40°C to +100°C)	
XA3S200		PQ(G)208	208-pin Plastic Quad Flat Pack (PQFP)	Q	Automotive Extended (-40°C to +125°C)	
XA3S400		FT(G)256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		1	
XA3S1000		FG(G)456	456-ball Fine-Pitch Ball Grid Array (FBGA)			

Revision History

Date	Version No.	Description
10/18/04	1.0	Initial Xilinx release.

The Spartan-3 Family Data Sheet

DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)