© Semiconductor Components Industries, LLC, 2006
January, 2006 − Rev. 2 1Publication Order Number:
MJE13003/D
MJE13003
SWITCHMODEt Series NPN
Silicon Power Transistor
These devices are designed for high−voltage, high−speed power
switching inductive circuits where fall time is critical. They are
particularly suited for 115 and 220 V SWITCHMODE applications
such as Switching Regulators, Inverters, Motor Controls,
Solenoid/Relay drivers and Deflection circuits.
Features
Reverse Biased SOA with Inductive Loads @ TC = 100_C
Inductive Switching Matrix 0.5 to 1.5 A, 25 and 100_C
tc @ 1 A, 100_C is 290 ns (Typ)
700 V Blocking Capability
SOA and Switching Applications Information
Pb−Free Package is Available*
MAXIMUM RATINGS
Rating Symbol Value Unit
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Collector−Emitter Voltage
ÎÎÎ
ÎÎÎ
VCEO(sus)
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Collector−Emitter Voltage
ÎÎÎ
ÎÎÎ
VCEV
ÎÎÎÎ
ÎÎÎÎ
700
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎ
VEBO
ÎÎÎÎ
9
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current − Continuous
− Peak (Note 1)
ÎÎÎ
Î
Î
Î
ÎÎÎ
IC
ICM
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.5
3
ÎÎÎ
Î
Î
Î
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current − Continuous
− Peak (Note 1)
ÎÎÎ
Î
Î
Î
ÎÎÎ
IB
IBM
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.75
1.5
ÎÎÎ
Î
Î
Î
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Current Continuous
− Peak (Note 1)
ÎÎÎ
ÎÎÎ
IE
IEM
ÎÎÎÎ
ÎÎÎÎ
2.25
4.5
ÎÎÎ
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TA = 25_C
Derate above 25_C
ÎÎÎ
Î
Î
Î
ÎÎÎ
PD
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.4
11.2
ÎÎÎ
Î
Î
Î
ÎÎÎ
W
mW/_C
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 25_C
Derate above 25_C
ÎÎÎ
ÎÎÎ
PD
ÎÎÎÎ
ÎÎÎÎ
40
320
ÎÎÎ
ÎÎÎ
W
mW/_C
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction
Temperature Range
ÎÎÎ
Î
Î
Î
ÎÎÎ
TJ, Tstg
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
–65 to
+150
ÎÎÎ
Î
Î
Î
ÎÎÎ
_C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction−to−Case
ÎÎÎ
ÎÎÎ
RqJC
ÎÎÎÎ
ÎÎÎÎ
3.12
ÎÎÎ
ÎÎÎ
_C/W
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Res istance, Junc t ion−to−Ambient
ÎÎÎ
ÎÎÎ
RqJA
ÎÎÎÎ
ÎÎÎÎ
89
ÎÎÎ
ÎÎÎ
_C/W
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Load Tem perature for Soldering
Purposes: 1/8 from Cas e for 5 Seconds
ÎÎÎ
ÎÎÎ
TL
ÎÎÎÎ
ÎÎÎÎ
275
ÎÎÎ
ÎÎÎ
_C
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
Device Package Shipping
ORDERING INFORMATION
MJE13003 TO−225 500 Units/Box
1.5 AMPERES
NPN SILICON POWER
TRANSISTORS
300 AND 400 VOLTS
40 WATTS
http://onsemi.com
MJE13003G TO−225
(Pb−Free) 500 Units/Box
TO−225
CASE 77
STYLE 3
21
3
MARKING DIAGRAM
YWW
JE
13003G
Y = Year
WW = Work Week
JE13003 = Device Code
G = Pb−Free Package
1 BASE
2 COLLECTOR
3 EMITTER
MJE13003
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎ
ÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS (Note 2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector−Emitter Sustaining Voltage (IC = 10 mA, IB = 0)
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎ
ÎÎÎ
400
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICEV
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1
5
ÎÎÎ
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current (VEB = 9 Vdc, IC = 0)
ÎÎÎÎÎ
ÎÎÎÎÎ
IEBO
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with bass forward biased
ÎÎÎÎÎ
ÎÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
See Figure 11
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Clamped Inductive SOA with base reverse biased
ÎÎÎÎÎ
ÎÎÎÎÎ
RBSOA
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
See Figure 12
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (Note 2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 0.5 Adc, VCE = 2 Vdc)
(IC = 1 Adc, VCE = 2 Vdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎÎ
Î
Î
Î
ÎÎÎ
8
5
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
40
25
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector−Emitter Saturation Voltage
(IC = 0.5 Adc, IB = 0.1 Adc)
(IC = 1 Adc, IB = 0.25 Adc)
(IC = 1.5 Adc, IB = 0.5 Adc)
(IC = 1 Adc, IB = 0.25 Adc, TC = 100_C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
0.5
1
3
1
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base−Emitter Saturation Voltage
(IC = 0.5 Adc, IB = 0.1 Adc)
(IC = 1 Adc, IB = 0.25 Adc)
(IC = 1 Adc, IB = 0.25 Adc, TC = 100_C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VBE(sat)
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1
1.2
1.1
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Current−Gain − Bandwidth Product (IC = 100 mAdc, VCE = 10 Vdc, f = 1 MHz)
ÎÎÎÎÎ
ÎÎÎÎÎ
fT
ÎÎÎ
ÎÎÎ
4
ÎÎÎ
ÎÎÎ
10
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
MHz
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
ÎÎÎÎÎ
ÎÎÎÎÎ
Cob
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
21
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 125 Vdc, IC = 1 A,
IB1 = IB2 = 0.2 A, tp = 25 ms,
Duty Cycle v 1%)
ÎÎÎÎÎ
ÎÎÎÎÎ
td
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.05
ÎÎÎÎ
ÎÎÎÎ
0.1
ÎÎÎ
ÎÎÎ
ms
Rise Time
ÎÎÎÎÎ
ÎÎÎÎÎ
tr
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.5
ÎÎÎÎ
ÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
ms
Storage Time
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
2
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎ
ÎÎÎ
ms
Fall Time
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.4
ÎÎÎÎ
ÎÎÎÎ
0.7
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1, Figure 13)
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 1 A, Vclamp = 300 Vdc,
IB1 = 0.2 A, VBE(off) = 5 Vdc, TC = 100_C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.7
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎ
ÎÎÎ
ms
Crossover Time
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.29
ÎÎÎÎ
ÎÎÎÎ
0.75
ÎÎÎ
ÎÎÎ
ms
Fall Time
ÎÎÎÎÎ
ÎÎÎÎÎ
tfi
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.15
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ms
2. Pulse Test: PW = 300 ms, Duty Cycle v 2%.
MJE13003
http://onsemi.com
3
C, CAPACITANCE (pF) VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS
)
0.02
IC, COLLECTOR CURRENT (AMP)
0.35
0.3
0.2
1.4
IC, COLLECTOR CURRENT (AMP)
1.2
1
0.8
0.6
0.02
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
40.05 0.1 0.7 2
10
Figure 2. Collector Saturation Region
0.01
IB, BASE CURRENT (AMP)
0.02 0.05
1.2
0.4
0
80
hFE, DC CURRENT GAIN
VCE = 2 V
VCE = 5 V
0.1 0.2 0.5 1
Figure 3. Base−Emitter Voltage Figure 4. Collector−Emitter Saturation Region
Figure 5. Collector Cutoff Region
2
0.8
104
VBE, BASE−EMITTER VOLTAGE (VOLTS)
10−1
0
TJ = 25°C
TJ = 150°C
20
0.07 0.3
−0.4
Figure 6. Capacitance
500
VR, REVERSE VOLTAGE (VOLTS)
Cib
0.1
, COLLECTOR CURRENT (A)μIC
0.05
103
102
101
100
−0.2 +0.2 +0.4 +0.6
REVERSE FORWARD
VCE = 250 V
70
10
2 20 500 1000
1.6
0.0050.002
0.4 0
0.1
25°C
−55 °C
0.3 A
IC = 0.1 A
TJ = −55°C
6
0.03 0.2 0.5 1 2
0.03 0.1 0.70.07 20.02 0.05 0.30.2 0.5 1
0.15
0.25
60
40
30
8
1 A
VBE(sat) @ IC/IB = 3
VBE(on) @ VCE = 2 V
300
200
100
50
5
7
20
30
2001005010510.50.2
150°C
0.03 0.1 0.70.07 20.05 0.30.2 0.5 1
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
IC/IB = 3
0.5 A 1.5 A
25°C
25°C
Cob
TJ = −55°C
25°C
150°C
TJ = 150°C
125°C
100°C
75°C
50°C
25°C
TJ = 25°C
MJE13003
http://onsemi.com
4
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING RESISTIVE
SWITCHING
OUTPUT WAVEFORMS
TEST CIRCUITS
CIRCUIT
VALUES
TEST WAVEFORMS
NOTE
PW and VCC Adjusted for Desired IC
RB Adjusted for Desired IB1
5 V
PW
DUTY CYCLE 10%
tr, tf 10 ns 68
1 k
0.001 mF
0.02 mF
1N4933
270
+5 V
1
k2N2905
47
1/2 W 100
−VBE(off)
MJE200
T.U.T.
IB
RB
1N4933
1N4933 33
33
2N222
2
1
k
MJE210
VCC
+5 V
L
IC
MR826*
Vclamp
*SELECTED FOR 1 kV
VCE
5.1 k
51
+125 V
RC
SCOPE
−4.0
V
D1
RB
TUT
Coil Data:
Ferroxcube Core #6656
Full Bobbin (~200 Turns) #20
GAP for 30 mH/2 A
Lcoil = 50 mH VCC = 20 V
Vclamp = 300 Vdc
VCC = 125 V
RC = 125 W
D1 = 1N5820 or Equiv.
RB = 47 W
IC
VCE
IC(pk)
t
t2
tf CLAMPED t1 Adjusted to
Obtain IC
t1
Lcoil (ICpk)
VCC
t2
Lcoil (ICpk)
Vclamp
Test Equipment
Scope−Tektronics
475 or Equivalent
+10.3 V 25 ms
0
8.5 V
tr, tf < 10 ns
Duty Cycle = 1.0%
RB and RC adjusted
for desired IB and IC
t
VCEor
Vclamp
TIME
t1tf
Table 1. Test Conditions for Dynamic Performance
MJE13003
http://onsemi.com
5
trv
TIME
IC
VCE
90% IB1
tsv
ICPK Vclamp
90% Vclamp 90% IC
10% Vclamp 10%
ICPK 2% IC
IB
tfi tti
tc
Figure 7. Inductive Switching Measurements
Table 2. Typical Inductive Switching Performance
ÎÎÎ
Î
Î
Î
ÎÎÎ
IC
AMP
ÎÎÎ
Î
Î
Î
ÎÎÎ
TC
_C
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
tsv
ms
ÎÎÎ
Î
Î
Î
ÎÎÎ
trv
ms
ÎÎÎ
Î
Î
Î
ÎÎÎ
tfi
ms
ÎÎÎ
Î
Î
Î
ÎÎÎ
tti
ms
ÎÎÎ
Î
Î
Î
ÎÎÎ
tc
ms
ÎÎÎ
ÎÎÎ
0.5
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎÎ
ÎÎÎÎ
1.3
1.6
ÎÎÎ
ÎÎÎ
0.23
0.26
ÎÎÎ
ÎÎÎ
0.30
0.30
ÎÎÎ
ÎÎÎ
0.35
0.40
ÎÎÎ
ÎÎÎ
0.30
0.36
ÎÎÎ
Î
Î
Î
ÎÎÎ
1
ÎÎÎ
Î
Î
Î
ÎÎÎ
25
100
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.5
1.7
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.10
0.13
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.14
0.26
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.05
0.06
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.16
0.29
ÎÎÎ
Î
Î
Î
ÎÎÎ
1.5
ÎÎÎ
Î
Î
Î
ÎÎÎ
25
100
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.8
3
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.07
0.08
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.10
0.22
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.05
0.08
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.16
0.28
NOTE: All Data Recorded in the Inductive Switching Circuit in Table 1
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However , for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp
trv = Voltage Rise Time, 1090% Vclamp
tfi = Current Fall Time, 9010% IC
tti = Current Tail, 102% IC
tc = Crossover Time, 10% Vclamp to 10% IC
An enlarged portion of the inductive switching
waveforms is shown in Figure 7 to aid in the visual identity
of these terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN−222:
PSWT = 1/2 VCCIC(tc)f
In general, trv + tfi ] tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25_C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100_C.
MJE13003
http://onsemi.com
6
t, TIME (s)μ
t, TIME (s)μ
t, TIME OR PULSE WIDTH (ms)
1
0.01
0.02
0.7
0.2
0.1
0.05
0.02
r(t), EFFECTIVE TRANSIENT THERMAL
0.05 1 2 5 10 20 50 100 200 500
ZqJC(t) = r(t) RqJC
RqJC = 3.12°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) RqJC(t)
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.2
0.05
0.02
0.01
SINGLE PULSE
0.1
0.1 0.50.2
RESISTANCE (NORMALIZED)
1000
0.5
0.3
0.07
0.03
0.03 0.3 3
IC, COLLECTOR CURRENT (AMP)
0.02 0.2 10.1
tr
0.5 20.05 0.7
td @ VBE(off) = 5 V
Figure 8. Turn−On Time Figure 9. Turn−Off Time
0.1
0.7
0.5
0.3
0.2
10
5
3
2
1
Figure 10. Thermal Response
0.03
0.02
2
1
0.5
0.3
0.7
0.2
IC, COLLECTOR CURRENT (AMP)
0.1 0.5 200.3 0.70.02 0.2 10
VCC = 125 V
IC/IB = 5
TJ = 25°C
0.07
0.05
0.07
0.1
7 VCC = 125 V
IC/IB = 5
TJ = 25°C
0.03 0.07 0.30.050.03
0.01
ts
tf
RESISTIVE SWITCHING PERFORMANCE
MJE13003
http://onsemi.com
7
The Safe Operating Area figures shown in Figures 1 1 and 12 are
specified ratings for these devices under the test conditions
shown.
IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP)
1.6
0
800
0.4
100 300
TJ 100°C
IB1 = 1 A
500 700
VBE(off) = 9 V
0
0.8
VCEV, COLLECTOR−EMITTER CLAMP VOLTAGE (VOLTS)
1.2
100 ms10 ms
1.0 ms
dc
5
5
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
0.01
10 500
1
0.5
2
0.2
0.0
5
0.02
20 50 100 200
Figure 11. Active Region Safe Operating
Area
TC = 25°C
Figure 12. Reverse Bias Safe Operating Area
0.1
300
200 400 600
5 V
1.5 V
5.0ms
10
MJE13003
MJE13003
3 V
THERMAL LIMIT (SINGLE PULSE)
BONDING WIRE LIMIT
SECOND BREAKDOWN LIMIT
CURVES APPLY BELOW RATED VCEO
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC − V CE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 11 is based on TC = 25_C; T J(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25_C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 11 may be found at
any case temperature by using the appropriate curve on
Figure 13.
TJ(pk) may be calculated from the data in Figure 10. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn−off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltage−current conditions during
reverse biased turn−off. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 12 gives RBSOA characteristics.
TC, CASE TEMPERATURE (°C)
040 120 160
0.6
POWER DERATING FACTOR
SECOND BREAKDOWN
DERATING
1
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
20
Figure 13. Forward Bias Power Derating
MJE13003
http://onsemi.com
8
PACKAGE DIMENSIONS
TO−225
CASE 77−09
ISSUE Z
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 077−01 THRU −08 OBSOLETE, NEW STANDARD
077−09.
−B−
−A− M
K
FC
Q
H
V
G
S
D
JR
U
132
2 PL
M
A
M
0.25 (0.010) B M
M
A
M
0.25 (0.010) B M
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.425 0.435 10.80 11.04
B0.295 0.305 7.50 7.74
C0.095 0.105 2.42 2.66
D0.020 0.026 0.51 0.66
F0.115 0.130 2.93 3.30
G0.094 BSC 2.39 BSC
H0.050 0.095 1.27 2.41
J0.015 0.025 0.39 0.63
K0.575 0.655 14.61 16.63
M5 TYP 5 TYP
Q0.148 0.158 3.76 4.01
R0.045 0.065 1.15 1.65
S0.025 0.035 0.64 0.88
U0.145 0.155 3.69 3.93
V0.040 −−− 1.02 −−−
__
STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its of ficers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
MJE13003/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.