Symbol Parameter Min. Max. Units
VBHigh Side Floating Supply Voltage -0.3 VS + 20
VSHigh Side Floating Supply Offset Voltage -5 400
VHO High Side Floating Output Voltage VS - 0.3 VB + 0.3
VCC Logic Supply Voltage -0.3 20 V
VERR Error Signal Voltage -0.3 VCC + 0.3
VCS Current Sense Voltage VS - 0.3 VB + 0.3
VIN Logic Input Voltage -0.3 VCC + 0.3
dVs/dt Allowable Offset Supply Voltage Transient 50 V/ns
PDPackage Power Dissipation @ TA £ +25°C 1.0 W
RqJA Thermal Resistance, Junction to Ambient 100 °C/W
TJJunction Temperature -55 125
TSStorage Temperature -55 150 °C
TLLead Temperature (Soldering, 10 seconds) 300
Features
nFloating channel designed for bootstrap
operation
Fully operational to +400V
Tolerant to negative transient voltage
dV/dt immune
nGate drive supply range from 12 to 18V
nUndervoltage lockout
nCurrent detection and limiting loop to limit driven
power transistor current
nError lead indicates fault conditions and pro
grams shutdown time
nOutput in phase with input
Description
The IR2125Z is a high voltage, high speed power
MOSFET and IGBT driver with over-current limiting
protection circuitry. Proprietary GVIC and latch immune
CMOS technologies enable ruggedized minilithic
consturction. Logic inputs are compatible with standard
CMOS or LSTTL outputs. the ouput driver features a high
pulse current buffer stage designed for minimum driver
cross-conduction.
IR2125Z
CURRENT LIMITING SINGLE CHANNEL DRIVER
Product Summary
VOFFSET 400V max.
IO+/- 1A / 2A
VOUT 12 - 18V
VCSth 230mV
ton/off (typ.) 150ns & 150ns
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage
parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings
are measured under board mounted and still air conditions.
The protection circuitry detects over-current in the driven
power transistor and limits the gate drive voltage. Cycle
by cycle shutdown is programmed by an external
capacitor which directly controls the time interval
between detection of the over-current limiting conditions
and latched shutdown. The floating channel can be used
to drive an N-channel power MOSFET or IGBT in the high
or low side configuration which operates up to 400 volts.
05/02/11
www.irf.com 1
PD-60024D
IR2125Z
2www.irf.com
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be
used within the recommended conditions. The VS offset ratings are tested with all supplies biased at
15V differential.
Symbol Parameter Min. Max. Units
VBHigh Side Floating Supply Absolute Voltage VS + 12 VS + 18
VSHigh Side Floating Supply Offset Voltage -5 400
VHO High Side Floating Output Voltage VSVB
VCC Low Side Fixed Supply Voltage 12 18 V
VIN Logic Input Voltage VSS VCC
VERR Error Signal Voltage VSS VCC
VCS Current Sense Signal Voltage VSVB
Tj = 25°C Tj =
-55 to 125°C
Symbol Parameter Min. Typ. Max. Min. Max. Units Test Conditions
ton Turn-On Propagation Delay 150 200 270
toff Turn-Off Propagation Delay 150 300 330
trTurn-On Rise Time 43 60 80 VS = 0V to 400V
tfTurn-Off Fall Time 26 35 50 CL = 3300pf
tcs CS to output shutdown propagation 0.7 1.2 1.4
delay
tsd Shutdown Propagation Delay 1.7 2.2 2.5 µs
terr CS to ERR pull-up propagation time 9 22 25 VS = 0V TO 400V
Cerr= 270pf
ns
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, and CL = 3300 PF and Ta = 25°C unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3 through 6.
Typical Connection
VCC VB
CS
OUT
VS
COM
IN
ERR
VCC
IN
TO
LOAD
up to 400V
IR2125Z
www.irf.com 3
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and Ta = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are
referenced to COM . VO and IO parameters are referenced to VS.
Tj = 25°C Tj =
-55 to 125°C
Symbol Parameter Min. Typ. Max. Min. Max. Units Test Conditions
ILK Offset Supply Leakage Current 50 250 VB = VS = 400V
IQBS Quiescent VBS Supply Current 400 1000 1300 IN = CS = 0V, or 5V
IQCC Quiescent VCC Supply Current 700 1200 1500 IN = CS = 0V, or 5V
IIN+Logic 1 Input Bias Current 4 25 30 µA IN = 5V
IIN-Logic 0 Input Bias Current 1.0 1.0 IN = 0V
ICS+High CS Bias Current 6 15 30 CS = 3V
ICS-Low CS Bias Current 1.0 1.0 CS = 0V
VIH Logic 1 Input Voltage 3.0
VIL Logic 0 Input Voltage 0.8 VCC = 10 TO 20V
VERR+Logic 1 ERR Input Voltage 2.2 V
VERR-Logic 0 ERR Input Voltage 0.8
VCSTH+CS Input Positive Going Threshold 150 230 320 10V < VCC < 20V
VCSTH-CS Input Positive Going Threshold 130 200 300 10V < VCC < 20V
VBSUV+VBS Supply Overvoltage Positive 8.5 9.3 10
Going Threshold
VBSUV-VBS Supply Undervoltage Negative 7.7 8.5 9.0
Going Threshold
VBSOV+VBS Supply Overvoltage Positive 19.8 21.5 23
Going Threshold
VBSOV-VBS Supply Undervoltage Negative 19.1 20.8 22.4 V
Going Threshold
VCCUV+VCC Supply Overvoltage Positive 8.3 8.8 9.6
Going Threshold
VCCUV-VCC Supply Undervoltage Negative 7.3 8.1 8.7
Going Threshold
VCCOV+VCC Supply Overvoltage Positive 20 21.2 23
Going Threshold
VCCOV-VCC Supply Undervoltage Negative 19.3 20.7 22.5
Going Threshold
IERR ERR Timing Charge Current 40 100 130 µA IN = 5V, CS = 3V
ERR < VERR+
IERR+ERR Pull-up Current 8.0 15 IN = 5V, CS = 3V
ERR > VERR+
IERR-ERR Pull-down Current 16 30 IN = 0V
VOH High Level Output Voltage VB-0.1 VB-0.1 IN = 5V, IO = 0A
VOL Low Level Output Voltage VS+0.1 VS+0.1 IN = 0V, IO = 0A
Ron,ON Output High on Resistance 9
Ron,OFF Output Low on Resistance 3
mA
V
mV
IR2125Z
4www.irf.com
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit
4
Figure 3. Switching Time Waveform Definitions Figure 4. ERR Shutdown Waveform Definitions
Figure 5. CS Shutdown Waveform Definitions Figure 6. CS to ERR Waveform Definitions
dt C dV
IC1.8V
100 uA
ERR
ERR
CS
IN
HO
IN
t
r
t
on
t
f
t
off
HO
50%
50%
90%
90%
10%
10%
CS
t
cs
HO
50%
90%
CS
t
cs
OUT
50%
90%
CS
terr
ERR
50%
50%
1.8V
dt
HV = 10 to 400 V
< 50 V/ns
IR2125Z
www.irf.com 5
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
ERR to Output Shutdown Delay Time (µs)
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-Off Delay Time (ns)
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-On Delay Time (ns)
Max.
Typ.
Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage
Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Voltage
Figure 9B. ERR to Output Shutdown vs. Voltage
Figure 9A. ERR to Output Shutdown vs. Temperature
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Time (ns)
Max.
Typ.
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Time (ns)
Max.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
ERR to Output Shutdown Delay Time (µs)
Max.
Typ.
IR2125Z
6www.irf.com
Figure 12A. Logic 1 Input Threshold vs. Temperature Figure 12B. Logic 1 Input Threshold vs. Voltage
Figure 10A. Turn-On Rise Time vs. Temperature
Figure 11B. Turn-Off Fall Time vs. Voltage
Figure 10B. Turn-On Rise Time vs. Voltage
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-On Rise Time (ns)
Max .
Typ.
0
20
40
60
80
100
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Rise Time (ns)
Max.
Typ.
0
10
20
30
40
50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Fall Time (ns)
Max.
Typ.
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "1" Input Threshold (V)
Min.
0.0
3.0
6.0
9.0
12.0
15.0
5 7.5 10 12.5 15 17.5 20
VDD Logic Supply Voltage (V)
Logic "1" Input Threshold (V)
Min.
Figure 11A. Turn-Off Fall Time vs. Temperature
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-Off Fall Time (ns)
Max.
Typ.
IR2125Z
www.irf.com 7
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "1" Input Threshold (V)
Min.
Figure 14A. Logic 1 Input Threshold vs. Tempera-
ture
Figure 14B. Logic 1 Input Threshold vs. Voltage
Figure 13B. CS to ERR Pull-Up vs. VoltageFigure 13A. CS to ERR Pull-Up vs. Temperature
Figure 15A. Logic 0 Input Threshold vs. Tempera-
ture
Figure 15B. Logic 0 Input Threshold vs. Voltage
0.0
4.0
8.0
12.0
16.0
20.0
10 12 14 16 18 20
VBIAS Supply Voltage (V)
CS to ERR Pull-Up Delay Time (µ s)
Max .
Typ.
0.0
4.0
8.0
12.0
16.0
20.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
CS to ERR Pull-Up Delay Time (µ s)
Max.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
Logic "1" Input Threshold (V)
Min.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
Logic "0" Input Threshold (V)
Max.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "0" Input Threshold (V)
Max.
IR2125Z
8www.irf.com
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
High Level Output Voltage (V)
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
CS Input Positive Going Threshold (mV)
Min.
Typ.
Max.
Figure 17A. CS Input Threshold (-) vs. Temperature Figure 17B. CS Input Threshold (-) vs. Voltage
Figure 16A. CS Input Threshold (+) vs. Temperature Figure 16B. CS Input Threshold (+) vs. Voltage
Figure 18A. High Level Output vs. Temperature Figure 18B. High Level Output vs. Voltage
0
100
200
300
400
500
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
CS Input Positive Going Threshold (mV)
Min.
Typ.
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
CS Input Negative Going Threshold (mV)
Max.
Typ.
Min.
0
100
200
300
400
500
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
CS Input Negative Going Threshold (mV
)
Min.
Typ.
Max.
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
High Level Output Voltage (V)
Max.
IR2125Z
www.irf.com 9
0.00
0.40
0.80
1.20
1.60
2.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
BS
Supply Current (mA)
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
Offset Supply Leakage Current A)
Max.
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Low Level Output Voltage (V)
Max.
Figure 20A. Offset Supply Current vs. Temperature
Figure 20B. Offset Supply Current vs. Voltage
Figure 19A. Low Level Output vs. Temperature
Figure 19B. Low Level Output vs. Voltage
Figure 21A. VBS Supply Current vs. Temperature Figure 21B. VBS Supply Current vs. Voltage
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
Low Level Output Voltage (V)
Max.
0
100
200
300
400
500
0 100 200 300 400 500
VB Boost Voltage (V)
Offset Supply Leakage Current A)
Max.
0.00
0.40
0.80
1.20
1.60
2.00
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
V
BS
Supply Current (mA)
Max.
Typ.
IR2125Z
10 www.irf.com
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "0" Input Bias Current A)
Max.
0
5
10
15
20
25
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "1" Input Bias Current A)
Max.
Typ.
0.00
0.40
0.80
1.20
1.60
2.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC
Supply Current (mA)
Max.
Typ.
Figure 23A. Logic 1 Input Current vs. Temperature Figure 23B. Logic 1 Input Current vs. Voltage
Figure 22A. VCC Supply Current vs. Temperature Figure 22B. VCC Supply Current vs. Voltage
Figure 24A. Logic 0 Input Current vs. Temperature Figure 24B. Logic 0 Input Current vs. Voltage
0.00
0.40
0.80
1.20
1.60
2.00
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
V
CC
Supply Current (mA)
Max.
Typ.
0
5
10
15
20
25
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
Logic "1" Input Bias Current A)
Max.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
Logic "0" Input Bias Current A)
Max.
IR2125Z
www.irf.com 11
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
BS
Undervoltage Lockout + (V)
Max.
Typ.
Min.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
"Low" CS Bias Current (µA)
Max.
0.0
5.0
10.0
15.0
20.0
25.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
"High" CS Bias Current (µ A)
Max.
Typ.
Figure 26A. Low CS Bias Current vs. Temperature Figure 26B. Low CS Bias Current vs. Voltage
Figure 25A. High CS Bias Current vs. Temperature Figure 25B. High CS Bias Current vs. Voltage
Figure 27. VBS Undervoltage (+) vs. Temperature Figure 28. VBS Undervoltage (-) vs. Temperature
0.0
5.0
10.0
15.0
20.0
25.0
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
"High" CS Bias Current (µ A)
Max.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
"Low" CS Bias Current (µA)
Max.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
VBS Undervoltage Lockout - (V)
Max.
Typ.
Min.
IR2125Z
12 www.irf.com
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
ERR Timing Charge Current A)
Max.
Typ.
Min.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC
Undervoltage Lockout + (V)
Max.
Typ.
Min.
Figure 31A. ERR Timing Charge Current vs. Temperature Figure 31B. ERR Timing Charge Current vs. Voltage
Figure 29. VCC Undervoltage (+) vs. Temperature Figure 30. VCC Undervoltage (-) vs. Temperature
Figure 32A. ERR Pull-Up Current vs. Temperature Figure 32B. ERR Pull-Up Current vs. Voltage
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC
Undervoltage Lockout - (V)
Max.
Typ.
Min.
0
50
100
150
200
250
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
ERR Timing Charge Current A)
Min.
Typ.
Max.
0.0
5.0
10.0
15.0
20.0
25.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
ERR Pull-Up Current (µA)
Typ.
Min.
0.0
5.0
10.0
15.0
20.0
25.0
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
ERR Pull-Up Current (µA)
Min.
Typ.
IR2125Z
www.irf.com 13
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Sink Current (A)
Typ.
Min.
0.00
0.50
1.00
1.50
2.00
2.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Source Current (A)
Typ.
Min.
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125
Temperature (°C)
ERR Pull-Down Current (µA)
Typ.
Min.
Figure 34A. Output Source Current
vs.Temperature
Figure 34B. Output Source Current vs. Voltage
Figure 33A. ERR Pull-Down Current
vs.Temperature
Figure 33B. ERR Pull-Down Current vs. Voltage
Figure 35A. Output Sink Current vs.Temperature Figure 35B. Output Sink Current vs. Voltage
0
10
20
30
40
50
10 12 14 16 18 20
VCC Logic Supply Voltage (V)
ERR Pull-Down Current A)
Max.
Typ.
0.00
0.50
1.00
1.50
2.00
2.50
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
Output Source Current (A)
Min.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
Output Sink Current (A)
Min.
Typ.
IR2125Z
14 www.irf.com
Figure 36A. Turn-On Time vs. Input Voltage Figure 36B. Turn-Off Time vs. Input Voltage
Figure 37. Maximum VS Negative Offset vs. Supply
Voltage
0
100
200
300
400
500
5 7.5 10 12.5 15
Input Voltage (V)
Turn-On Time (ns)
Typ.
VCC = 15V
0
100
200
300
400
500
5 7.5 10 12.5 15
Input Voltage (V)
Turn-Off Time (ns)
Typ.
VCC = 15V
-15.00
-12.00
-9.00
-6.00
-3.00
0.00
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
V
S
Offset Supply Voltage (V)
Typ.
IR2125Z
www.irf.com 15
Lead Definitions
Symbol Description
VCC Logic and gate drive supply
IN Logic input for gate driver output (HO), in phase with HO
ERR Serves multiple functions; status reporting, linear mode timing and cycle by cycle logic
shutdown
COM Logic ground
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
CS Current sense input to current sense comparator
Functional Block Diagram
DOWN
SHIFTERS
Q
R
UV
DETECT
ERROR
TIMING
PULSE
GEN
UV
DETECT
PULSE
FILTER
PRE
DRIVER
PULSE
GEN
500 ns
BLANK
COMPAR AT OR
BUFFER
0.2 3V
HV
LEVEL
V
B
HO
V
S
CS
R
S
R
Q
V
CC
IN
UP
SHIFTERS
COM
ERR
LATCHED
SHUTDOWN
1.8V
1.8V
AMPLIFER
-
+
PULSE
FILTER
V
B
S
SHIFT
HV
LEVEL
SHIFT
IR2125Z
16 www.irf.com
Case Outline and Dimensions- MO-036AA
IR2125Z IR2153Z
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 05/2011