1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN–
1IN+
VCC+
2IN+
2IN–
2OUT
4OUT
4IN–
4IN+
GND
3IN+
3IN–
3OUT
LMV324 . . . D (SOIC) OR PW (TSSOP) PACKAGE
(TOP VIEW)
LMV358 . . . D (SOIC), DDU (VSSOP),
DGK (MSOP), OR PW (TSSOP) PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN–
1IN+
GND
VCC+
2OUT
2IN–
2IN+
LMV321 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE
(TOP VIEW)
VCC+
OUT
1
2
3
5
4
1IN+
GND
1IN–
1OUT
1IN–
1IN+
VCC
2IN+
2IN–
2OUT
1/2 SHDN
4OUT
4IN–
4IN+
GND
3IN+
3IN–
3OUT
3/4 SHDN
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
LMV324S . . . D (SOIC) OR PW (TSSOP) PACKAGE
(TOP VIEW)
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
Check for Samples: LMV321 SINGLE,LMV358 DUAL,LMV324 QUAD,LMV324S QUAD WITH SHUTDOWN
1FEATURES
2.7-V and 5-V Performance
–40°C to 125°C Operation
Low-Power Shutdown Mode (LMV324S)
No Crossover Distortion
Low Supply Current
LMV321 . . . 130 μA Typ
LMV358 . . . 210 μA Typ
LMV324 . . . 410 μA Typ
LMV324S . . . 410 μA Typ
Rail-to-Rail Output Swing
ESD Protection Exceeds JESD 22
2000-V Human-Body Model (A114-A)
1000-V Charged-Device Model (C101)
DESCRIPTION/
ORDERING INFORMATION
The LMV321, LMV358, and LMV324/LMV324S are
single, dual, and quad low-voltage (2.7 V to 5.5 V)
operational amplifiers with rail-to-rail output swing.
The LMV324S, which is a variation of the standard
LMV324, includes a power-saving shutdown feature
that reduces supply current to a maximum of 5 μA
per channel when the amplifiers are not needed.
Channels 1 and 2 together are put in shutdown, as
are channels 3 and 4. While in shutdown, the outputs
actively are pulled low.
The LMV321, LMV358, LMV324, and LMV324S are
the most cost-effective solutions for applications
where low-voltage operation, space saving, and low
cost are needed. These amplifiers are designed
specifically for low-voltage (2.7 V to 5 V) operation,
with performance specifications meeting or exceeding
the LM358 and LM324 devices that operate from 5 V
to 30 V. Additional features of the LMV3xx devices
are a common-mode input voltage range that
includes ground, 1-MHz unity-gain bandwidth, and 1-
V/μs slew rate.
The LMV321 is available in the ultra-small DCK (SC-
70) package, which is approximately one-half the size
of the DBV (SOT-23) package. This package saves
space on printed circuit boards and enables the
design of small portable electronic devices. It also
allows the designer to place the device closer to the
signal source to reduce noise pickup and increase
signal integrity.
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Copyright © 1999–2012, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
ORDERING INFORMATION(1)
TOP-SIDE
TAPACKAGE(2) ORDERABLE PART NUMBER MARKING(3)
Reel of 3000 LMV321IDCKR
–40°C to 85°C Single SC-70 DCK R3_
Reel of 250 LMV321IDCKT
Reel of 3000 LMV321IDBVR
–40°C to 125°C Single SOT-23 DBV RC1_
Reel of 250 LMV321IDBVT
Reel of 2500 LMV358IDGKR R5_
MSOP/VSSOP DGK Reel of 250 LMV358IDGKT PREVIEW
Tube of 75 LMV358ID
SOIC D MV358I
–40°C to 125°C Dual Reel of 2500 LMV358IDR
Tube of 150 LMV358IPW
TSSOP PW MV358I
Reel of 2000 LMV358IPWR
VSSOP DDU Reel of 3000 LMV358IDDUR RA5_
Tube of 50 LMV324ID
–40°C to 125°C Quad SOIC D LMV324I
Reel of 2500 LMV324IDR
Tube of 50 LMV324SID
–40°C to 85°C Quad SOIC D LMV324SI
Reel of 2500 LMV324SIDR
Reel of 2000 LMV324IPWR MV324I
–40°C to 125°C Quad TSSOP PW Reel of 2000 LMV324SIPWR MV324SI
Reel of 2500 LMV358QDGKR
MSOP/VSSOP DGK RH_
Reel of 250 LMV358QDGKT
Tube of 75 LMV358QD
SOIC D MV358Q
Dual Reel of 2500 LMV358QDR
Tube of 150 LMV358QPW
TSSOP PW MV358Q
–40°C to 125°C Reel of 2000 LMV358QPWR
VSSOP DDU Reel of 3000 LMV358QDDUR RAH_
Tube of 50 LMV324QD
SOIC D LMV324Q
Reel of 2500 LMV324QDR
Quad Tube of 90 LMV324QPW
TSSOP PW MV324Q
Reel of 2000 LMV324QPWR
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(3) DBV/DCK/DDU/DGK: The actual top-side marking has one additional character that designates the wafer fab/assembly site.
2Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
VBIAS4
+
+
IN+
IN-
VBIAS1
VBIAS2
VBIAS3
+
+
Output
VCC
VCC
VCC
VCC
+
IN–
IN+
OUT
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
SYMBOL (EACH AMPLIFIER)
LMV324 SIMPLIFIED SCHEMATIC
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 3
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
Absolute Maximum Ratings(1)
over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT
VCC Supply voltage(2) 5.5 V
VID Differential input voltage(3) ±5.5 V
VIInput voltage range (either input) –0.2 5.5 V
At or below TA= 25°C,
Duration of output short circuit (one amplifier) to ground(4) Unlimited
VCC 5.5 V 8 pin 97
D package 14 pin 86
16 pin 73
DBV package 5 pin 206
DCK package 5 pin 252
θJA Package thermal impedance(5) (6) °C/W
DDU package 8 pin 210
DGK package 8 pin 172
8 pin 149
PW package 14 pin 113
16 pin 108
TJOperating virtual junction temperature 150 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND.
(3) Differential voltages are at IN+ with respect to IN–.
(4) Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
(5) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD= (TJ(max) TA)/θJA. Operating at the absolute maximum TJof 150°C can affect reliability.
(6) The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions(1)
MIN MAX UNIT
VCC Supply voltage (single-supply operation) 2.7 5.5 V
VCC = 2.7 V 1.7
VIH Amplifier turn-on voltage level (LMV324S)(2) V
VCC = 5 V 3.5
VCC = 2.7 V 0.7
VIL Amplifier turn-off voltage level (LMV324S) V
VCC = 5 V 1.5
I temperature (LMV321, –40 125
LMV358, LMV324)
TAOperating free-air temperature I temperature (LMV324S, °C
-40 85
LMV321IDCK)
Q temperature –40 125
(1) All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. See the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
(2) VIH should not be allowed to exceed VCC.
4Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
Electrical Characteristics
VCC+ = 2.7 V, TA= 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VIO Input offset voltage 1.7 7 mV
Average temperature coefficient of
αVIO 5μV/°C
input offset voltage
IIB Input bias current 11 250 nA
IIO Input offset current 5 50 nA
CMRR Common-mode rejection ratio VCM = 0 to 1.7 V 50 63 dB
kSVR Supply-voltage rejection ratio VCC = 2.7 V to 5 V, VO= 1 V 50 60 dB
0 –0.2
Common-mode input voltage
VICR CMRR 50 dB V
range 1.9 1.7
High level VCC 100 VCC 10
VOOutput swing RL= 10 kto 1.35 V mV
Low level 60 180
LMV321I 80 170
ICC Supply current LMV358I (both amplifiers) 140 340 μA
LMV324I/LMV324SI (all four amplifiers) 260 680
B1Unity-gain bandwidth CL= 200 pF 1 MHz
ΦmPhase margin 60 deg
GmGain margin 10 dB
VnEquivalent input noise voltage f = 1 kHz 46 nV/Hz
InEquivalent input noise current f = 1 kHz 0.17 pA/Hz
(1) Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the
application and configuration and may vary over time. Typical values are not ensured on production material.
Shutdown Characteristics (LMV324S)
VCC+ = 2.7 V, TA= 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
Supply current in shutdown mode
ICC(SHDN) SHDN 0.6 V 5 μA
(per channel)
t(on) Amplifier turn-on time AV= 1, RL= Open (measured at 50% point) 2 μs
t(off) Amplifier turn-off time AV= 1, RL= Open (measured at 50% point) 40 ns
(1) Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the
application and configuration and may vary over time. Typical values are not ensured on production material.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 5
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
Electrical Characteristics
VCC+ = 5 V, at specified free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS TA(1) MIN TYP(2) MAX UNIT
25°C 1.7 7
VIO Input offset voltage mV
Full range 9
Average temperature
αVIO coefficient of input offset 25°C 5 μV/°C
voltage 25°C 15 250
IIB Input bias current nA
Full range 500
25°C 5 50
IIO Input offset current nA
Full range 150
Common-mode rejection
CMRR VCM = 0 to 4 V 25°C 50 65 dB
ratio
Supply-voltage VCC = 2.7 V to 5 V, VO= 1 V,
kSVR 25°C 50 60 dB
rejection ratio VCM = 1 V 0 –0.2
Common-mode input
VICR CMRR 50 dB 25°C V
voltage range 4.2 4
25°C VCC 300 VCC 40
High level Full range VCC 400
RL= 2 kto 2.5 V 25°C 120 300
Low level Full range 400
VOOutput swing mV
25°C VCC 100 VCC 10
High level Full range VCC 200
RL= 10 kto 2.5 V 25°C 65 180
Low level Full range 280
25°C 15 100
Large-signal differential
AVD RL= 2 kV/mV
voltage gain Full range 10
Sourcing, VO= 0 V 5 60
Output short-circuit
IOS 25°C mA
current Sinking, VO= 5 V 10 160
25°C 130 250
LMV321I Full range 350
25°C 210 440
ICC Supply current LMV358I (both amplifiers) μA
Full range 615
25°C 410 830
LMV324I/LMV324SI
(all four amplifiers) Full range 1160
B1Unity-gain bandwidth CL= 200 pF 25°C 1 MHz
ΦmPhase margin 25°C 60 deg
GmGain margin 25°C 10 dB
Equivalent input
Vnf = 1 kHz 25°C 39 nV/Hz
noise voltage
Equivalent input
Inf = 1 kHz 25°C 0.21 pA/Hz
noise current
SR Slew rate 25°C 1 V/μs
(1) Full range TA= –40°C to 125°C for I temperature(LMV321, LMV358, LMV324), –40°C to 85°C for (LMV324S, LMV321IDCK) and –40°C
to 125°C for Q temperature.
(2) Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the
application and configuration and may vary over time. Typical values are not ensured on production material.
6Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
Shutdown Characteristics (LMV324S)
VCC+ = 5 V, TA= 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
Supply current in shutdown mode
ICC(SHDN) SHDN 0.6 V, TA= Full Temperature Range 5 μA
(per channel)
t(on) Amplifier turn-on time AV= 1, RL= Open (measured at 50% point) 2 μs
t(off) Amplifier turn-off time AV= 1, RL= Open (measured at 50% point) 40 ns
(1) Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the
application and configuration and may vary over time. Typical values are not ensured on production material.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 7
10 k 100 k 1 M 10 M
70
60
50
40
30
20
10
0
−10
−30
100
80
60
40
20
0
−20
−40
−60
−80
Phase Margin − Deg
Gain − dB
LMV321 FREQUENCY RESPONSE
vs
CAPACITIVE LOAD
−20
−100
Frequency − Hz
Gain
Phase
0 pF
100 pF
500 pF
0 pF
1000 pF
500 pF
100 pF
Vs = 5.0 V
RL = 100 k
CL =0 pF
100 pF
500 pF
1000 pF
1000 pF
10 k 100 k 1 M 10 M
70
60
50
40
30
20
10
0
−10
−30
100
80
60
40
20
0
−20
−40
−60
−80
Phase Margin − Deg
Gain − dB
LMV321 FREQUENCY RESPONSE
vs
CAPACITIVE LOAD
−20
−100
Frequency − Hz
Gain
Phase0 pF
100 pF
500 pF
1000 pF
0 pF
100 pF
500 pF
1000 pF
Vs = 5.0 V
RL = 600
CL = 0 pF
100 pF
500 pF
1000 pF
80
70
60
50
40
30
20
10
0
−10
120
105
90
75
60
45
30
15
0
−15
1 k 10 k 100 k 1 M 10 M
Phase Margin − Deg
Gain − dB
LMV321 FREQUENCY RESPONSE
vs
RESISTIVE LOAD
Vs = 2.7 V
RL = 100 k, 2 kΩ, 600
Frequency − Hz
Gain
Phase
600
100 k
2 k
600
2 k
100 k
1 k 10 k 100 k 1 M 10 M
80
70
60
50
40
30
20
10
0
−10
120
105
90
75
60
45
30
15
0
−15
Phase Margin − Deg
LMV321 FREQUENCY RESPONSE
vs
RESISTIVE LOAD
Vs = 5.0 V
RL = 100 k, 2 kΩ, 600
Frequency − Hz
Gain
Phase
Gain − dB
100 k
2 k
600
600
100 k
2 k
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
TYPICAL CHARACTERISTICS
Figure 1. Figure 2.
Figure 3. Figure 4.
8Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
10
100
1000
10000
1.510.50−0.5−1−1.5−2.0
Capacitive Load − nF
STABILITY
vs
CAPACITIVE LOAD
Output Voltage − V
VCC = ±2.5 V
RL = 2 k
AV = 10
VO = 100 mVPP
_
+
VI
−2.5 V
RL
+2.5 V
VO
CL
LMV3xx
(25% Overshoot)
LMV324S
(25% Overshoot)
134 k1.21 M
80
70
60
50
40
30
20
10
0
−10
120
105
90
75
60
45
30
15
0
−15
Phase Margin − Deg
LMV321 FREQUENCY RESPONSE
vs
TEMPERATURE
Vs = 5.0 V
RL = 2 k
Frequency − Hz
Gain
Phase
85°C
25°C
−40°C
85°C
25°C
−40°C
Gain − dB
1 k 10 k 100 k 1 M 10 M
10
100
1000
10000
1.510.50−0.5−1−1.5−2
LMV3xx
(25% Overshoot)
LMV324S
(25% Overshoot)
VCC = ±2.5 V
AV = +1
RL = 2 k
VO = 100 mVPP
Output Voltage − V
Capacitive Load − pF
STABILITY
vs
CAPACITIVE LOAD
_
+
VI
−2.5 V
RL
2.5 V
VO
CL
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
TYPICAL CHARACTERISTICS (continued)
Figure 5. Figure 6.
Figure 7. Figure 8.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 9
Input Current − nA
INPUT CURRENT
vs
TEMPERATURE
−60
−50
−40
−30
−20
−10
−40 −30−20 −10 0 10 20 30 40 50 60 70 80
LMV3xx
LMV324S
TA°C
VCC = 5 V
VI = VCC/2
0
100
200
300
400
500
600
700
0 1 2 3 4 5
LMV3xx
LMV324S
SUPPLY CURRENT
vs
SUPPLY VOLTAGE − QUAD AMPLIFIER
VCC − Supply Voltage − V
Supply Current − Aµ
TA = 85°C
TA = 25°C
TA = −40°C
6
10
100
1000
10000
1.510.50−0.5−1−1.5−2.0
STABILITY
vs
CAPACITIVE LOAD
Output Voltage − V
Capacitive Load − nF
VCC = ±2.5 V
RL = 1 M
AV = 10
VO = 100 mVPP
_
+
VI
−2.5 V
RL
+2.5 V
VO
CL
LMV3xx
(25% Overshoot)
LMV324S
(25% Overshoot)
134 k1.21 M
0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
2.5 3.0 3.5 4.0 4.5 5.0
PSLEW
NSLEW
NSLEW
− Supply Voltage − V
Slew Rate − V/
SLEW RATE
vs
SUPPLY VOLTAGE
LMV3xx
PSLEW
RL = 100 k
µs
VCC
Gain
LMV324S
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
TYPICAL CHARACTERISTICS (continued)
Figure 9. Figure 10.
Figure 11. Figure 12.
10 Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Sinking Current − mA
SINKING CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to GND − V
LMV3xx
VCC = 2.7 V
LMV324S
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Sinking Current − mA
SINKING CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to GND − V
VCC = 5 V
LMV324S
LMV324
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Sourcing Current − mA
SOURCE CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to VCC+ − V
LMV324S
LMV3xx
VCC = 2.7 V
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Sourcing Current − mA
SOURCE CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to VCC+ − V
LMV324S
LMV3xx
VCC = 5 V
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
TYPICAL CHARACTERISTICS (continued)
Figure 13. Figure 14.
Figure 15. Figure 16.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 11
0
10
20
30
40
50
60
70
80
90
100 1k 10k 100k 1M
+kSVR
vs
FREQUENCY
Frequency − Hz
VCC = 5 V
RL = 10 k
+kSVR− dB
LMV324S
LMV3xx
0
10
20
30
40
50
60
70
80
100 1k 10k 100k 1M
−kSVR
vs
FREQUENCY
Frequency − Hz
−k
VCC = −5 V
RL = 10 k
SVR− dB
LMV324S
LMV3xx
0
30
60
90
120
150
180
210
240
270
300
−40−30−20−10 0 10 20 30 40 50 60 70 80 90
SHORT-CIRCUIT CURRENT
vs
TEMPERATURE
Sinking Current − mA
TA°C
LMV324S
VCC = 5 V LMV3xx
VCC = 5 V
LMV324S
VCC = 2.7 V
LMV3xx
VCC = 2.7 V
TA°C
SHORT-CIRCUIT CURRENT
vs
TEMPERATURE
Sourcing Current − mA
0
20
40
60
80
100
120
−40 −30−20−10 0 10 20 30 40 50 60 70 80 90
LMV324S
VCC = 2.7 V
LMV3xx
VCC = 5 V
LMV324S
VCC = 5 V
LMV3xx
VCC = 2.7 V
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
TYPICAL CHARACTERISTICS (continued)
Figure 17. Figure 18.
Figure 19. Figure 20.
12 Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
VCC − Supply Voltage − V
0
10
20
30
40
50
60
70
2.5 3.0 3.5 4.0 4.5 5.0
Output Voltage Swing − mV
LMV3xx
LMV324S
OUTPUT VOLTAGE SWING FROM RAILS
vs
SUPPLY VOLTAGE
Negative Swing
Positive Swing
RL = 10 k
OUTPUT VOLTAGE
vs
FREQUENCY
Peak Output Voltage − V
Frequency − Hz
OPP
0
1
2
3
4
5
6
1k 10k 100k 1M 10M
RL = 10 k
THD > 5%
AV = 3
LMV3xx
VCC = 5 V
LMV324S
VCC = 5 V
LMV3xx
VCC = 2.7 V
LMV324S
VCC = 2.7 V
0
10
20
30
40
50
60
70
80
100 1k 10k 100k 1M
−kSVR
vs
FREQUENCY
Frequency − Hz
VCC = −2.7 V
RL = 10 k
−kSVR − dB
LMV324S
LMV3xx
+kSVR
0
10
20
30
40
50
60
70
80
100 1k 10k 100k 1M
Frequency − Hz
+kSVR
vs
FREQUENCY
VCC = 2.7 V
RL = 10 k
− dB
LMV324S
LMV3xx
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
TYPICAL CHARACTERISTICS (continued)
Figure 21. Figure 22.
Figure 23. Figure 24.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 13
1 V/Div
NONINVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
LMV3xx
LMV324S
Input
VCC = ±2.5 V
RL = 2 k
T = 25°C
1 V/Div
LMV3xx
LMV324S
Input
1 µs/Div
NONINVERTING LARGE-SIGNAL
PULSE RESPONSE
VCC = ±2.5 V
RL = 2 k
TA = 85°C
90
100
110
120
130
140
150
100 1k 10k 100k
Crosstalk Rejection − dB
CROSSTALK REJECTION
vs
FREQUENCY
Frequency − Hz
VCC = 5 V
RL = 5 k
AV = 1
VO = 3 VPP
20
30
40
50
60
70
80
90
100
110
1 1M 2M 3M 4M
LMV3xx
VCC = 5 V
Impedance −
OPEN-LOOP OUTPUT IMPEDANCE
vs
FREQUENCY
Frequency − Hz
LMV3xx
VCC = 2.7 V
LMV324S
VCC = 5 V
LMV324S
VCC = 2.7 V
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
TYPICAL CHARACTERISTICS (continued)
Figure 25. Figure 26.
Figure 27. Figure 28.
14 Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
NONINVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
50 mV/Div
LMV3xx
LMV324S
Input
VCC = ±2.5 V
RL = 2 k
TA = 85°C
LMV3xx
Input
LMV324S
NONINVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
50 mV/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
1 V/Div
LMV3xx
LMV324S
Input
NONINVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
LMV3xx
LMV324S
Input
50 mV/Div
NONINVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
VCC = ±2.5 V
RL = 2 k
TA = 25°C
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
TYPICAL CHARACTERISTICS (continued)
Figure 29. Figure 30.
Figure 31. Figure 32.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 15
LMV3xx
LMV324S
Input
1 µs/Div
50 mV/Div
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VCC = ±2.5 V
RL = 2 k
TA = 25°C
1 V/Div
1 µs/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
INVERTING LARGE-SIGNAL
PULSE RESPONSE
LMV324S
LMV3xx
Input
LMV3xx
LMV324S
Input
INVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
1 V/Div
VCC = ±2.5 V
RL = 2 k
TA = 85°C
1 V/Div
INVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
LMV3xx
LMV324S
Input
VCC = ±2.5 V
RL = 2 k
TA = 25°C
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
TYPICAL CHARACTERISTICS (continued)
Figure 33. Figure 34.
Figure 35. Figure 36.
16 Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
0.00
0.20
0.40
0.60
0.80
10 100 1k 10k
Input Current Noise − pA/
INPUT CURRENT NOISE
vs
FREQUENCY
Frequency − Hz
Hz
VCC = 2.7 V
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
10 100 1k 10k
Input Current Noise − pA/
INPUT CURRENT NOISE
vs
FREQUENCY
Frequency − Hz
Hz
VCC = 5 V
INVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
50 mV/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
LMV3xx
LMV324S
Input
LMV3xx
LMV324S
Input
1 µs/Div
50 mV/Div
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VCC = ±2.5 V
RL = 2 k
TA = 85°C
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
TYPICAL CHARACTERISTICS (continued)
Figure 37. Figure 38.
Figure 39. Figure 40.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 17
THD + N
vs
FREQUENCY
Frequency − Hz
0.001
0.010
0.100
1.000
10.000
10 100 1000 10000 100000
LMV324S
LMV3xx
THD − %
VCC = 2.7 V
RL = 10 k
AV = 10
VO = 1 VPP
0.001
0.010
0.100
1.000
10.000
10 100 1000 10000 100000
Frequency − Hz
THD + N
vs
FREQUENCY
LMV324S
LMV3xx
VCC = 5 V
RL = 10 k
AV = 1
VO = 1 VPP
THD − %
20
40
60
80
100
120
140
160
180
200
10 100 1k 10k
INPUT VOLTAGE NOISE
vs
FREQUENCY
Frequency − Hz
VCC = 2.7 V
VCC = 5 V
Input Voltage Noise − nV/ Hz
0.001
0.010
0.100
1.000
10.000
10 100 1000 10000 100000
Frequency − Hz
THD + N
vs
FREQUENCY
LMV3xx
VCC = 2.7 V
RL = 10 k
AV = 1
VO = 1 VPP
THD − %
LMV324S
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
TYPICAL CHARACTERISTICS (continued)
Figure 41. Figure 42.
Figure 43. Figure 44.
18 Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
0.001
0.010
0.100
1.000
10.000
10 100 1000 10000 100000
THD + N
vs
FREQUENCY
Frequency − Hz
THD − %
LMV324S
LMV3xx
VCC = 5 V
RL = 10 k
AV = 10
VO = 2.5 VPP
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
www.ti.com
SLOS263U AUGUST 1999REVISED JULY 2012
TYPICAL CHARACTERISTICS (continued)
Figure 45.
Copyright © 1999–2012, Texas Instruments Incorporated Submit Documentation Feedback 19
LMV321 SINGLE, LMV358 DUAL
LMV324 QUAD, LMV324S QUAD WITH SHUTDOWN
SLOS263U AUGUST 1999REVISED JULY 2012
www.ti.com
REVISION HISTORY
Changes from Revision T (September 2007) to Revision U Page
Updated θJA value for DDU package. ................................................................................................................................... 4
20 Submit Documentation Feedback Copyright © 1999–2012, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com 16-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
LMV321IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDBVTE4 ACTIVE SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDCKT ACTIVE SC70 DCK 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDCKTE4 ACTIVE SC70 DCK 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321IDCKTG4 ACTIVE SC70 DCK 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324ID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IPWRE ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 16-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
LMV324QD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QPWE4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SID NRND SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIDE4 NRND SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIDG4 NRND SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIDR NRND SOIC D 16 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIDRE4 NRND SOIC D 16 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIDRG4 NRND SOIC D 16 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIPWR NRND TSSOP PW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIPWRE4 NRND TSSOP PW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324SIPWRG4 NRND TSSOP PW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 16-Aug-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
LMV358ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDDUR ACTIVE VSSOP DDU 8 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDDURE4 ACTIVE VSSOP DDU 8 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDDURG4 ACTIVE VSSOP DDU 8 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPWE4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 16-Aug-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
LMV358QDDUR ACTIVE VSSOP DDU 8 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDDURE4 ACTIVE VSSOP DDU 8 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDDURG4 ACTIVE VSSOP DDU 8 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QPWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
PACKAGE OPTION ADDENDUM
www.ti.com 16-Aug-2012
Addendum-Page 5
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LMV321, LMV324, LMV358 :
Automotive: LMV321-Q1, LMV324-Q1, LMV358-Q1
NOTE: Qualified Version Definitions:
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LMV321IDBVR SOT-23 DBV 5 3000 180.0 9.2 3.17 3.23 1.37 4.0 8.0 Q3
LMV321IDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3
LMV321IDBVT SOT-23 DBV 5 250 180.0 9.2 3.17 3.23 1.37 4.0 8.0 Q3
LMV321IDBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3
LMV321IDCKR SC70 DCK 5 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3
LMV321IDCKR SC70 DCK 5 3000 180.0 9.2 2.3 2.55 1.2 4.0 8.0 Q3
LMV321IDCKT SC70 DCK 5 250 180.0 9.2 2.3 2.55 1.2 4.0 8.0 Q3
LMV321IDCKT SC70 DCK 5 250 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3
LMV324IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
LMV324IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
LMV324IPWR TSSOP PW 14 2000 330.0 12.4 7.0 5.6 1.6 8.0 12.0 Q1
LMV324IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
LMV324IPWRG4 TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
LMV324QDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
LMV324QPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
LMV324SIDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
LMV324SIPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
LMV358IDDUR VSSOP DDU 8 3000 180.0 8.4 2.25 3.35 1.05 4.0 8.0 Q3
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Aug-2012
Pack Materials-Page 1
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LMV358IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LMV358IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
LMV358IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
LMV358IPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
LMV358IPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
LMV358IPWRG4 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
LMV358QDDUR VSSOP DDU 8 3000 180.0 8.4 2.25 3.35 1.05 4.0 8.0 Q3
LMV358QDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.3 1.3 8.0 12.0 Q1
LMV358QDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
LMV358QPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LMV321IDBVR SOT-23 DBV 5 3000 205.0 200.0 33.0
LMV321IDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0
LMV321IDBVT SOT-23 DBV 5 250 205.0 200.0 33.0
LMV321IDBVT SOT-23 DBV 5 250 180.0 180.0 18.0
LMV321IDCKR SC70 DCK 5 3000 180.0 180.0 18.0
LMV321IDCKR SC70 DCK 5 3000 205.0 200.0 33.0
LMV321IDCKT SC70 DCK 5 250 205.0 200.0 33.0
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Aug-2012
Pack Materials-Page 2
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LMV321IDCKT SC70 DCK 5 250 180.0 180.0 18.0
LMV324IDR SOIC D 14 2500 333.2 345.9 28.6
LMV324IDR SOIC D 14 2500 367.0 367.0 38.0
LMV324IPWR TSSOP PW 14 2000 364.0 364.0 27.0
LMV324IPWR TSSOP PW 14 2000 367.0 367.0 35.0
LMV324IPWRG4 TSSOP PW 14 2000 367.0 367.0 35.0
LMV324QDR SOIC D 14 2500 367.0 367.0 38.0
LMV324QPWR TSSOP PW 14 2000 367.0 367.0 35.0
LMV324SIDR SOIC D 16 2500 333.2 345.9 28.6
LMV324SIPWR TSSOP PW 16 2000 367.0 367.0 35.0
LMV358IDDUR VSSOP DDU 8 3000 202.0 201.0 28.0
LMV358IDGKR VSSOP DGK 8 2500 358.0 335.0 35.0
LMV358IDR SOIC D 8 2500 340.5 338.1 20.6
LMV358IDR SOIC D 8 2500 367.0 367.0 35.0
LMV358IPWR TSSOP PW 8 2000 367.0 367.0 35.0
LMV358IPWR TSSOP PW 8 2000 364.0 364.0 27.0
LMV358IPWRG4 TSSOP PW 8 2000 367.0 367.0 35.0
LMV358QDDUR VSSOP DDU 8 3000 202.0 201.0 28.0
LMV358QDGKR VSSOP DGK 8 2500 370.0 355.0 55.0
LMV358QDR SOIC D 8 2500 340.5 338.1 20.6
LMV358QPWR TSSOP PW 8 2000 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Aug-2012
Pack Materials-Page 3
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated