

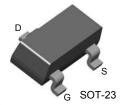
Is Now Part of

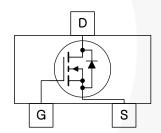
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

October 2014


2N7002L N-Channel Enhancement Mode Field Effect Transistor


Features

- High Density Cell Design for Low R_{DS(ON)}
- · Voltage Controlled Small Signal Switch
- Rugged and Reliable
- · High Saturation Current Capability
- · Very Low Capacitance
- · Fast Switching Speed

Description

This N-channel enhancement mode field effect transistor is produced using high cell density, trench MOSFET technology. This product minimizes on-state resistance while providing rugged, reliable and fast switching performance. This product is particularly suited for low-voltage, low-current applications such as small servo motor control, power MOSFET gate drivers, logic level translator, high speed line drivers, power management/power supply, and switching applications.

Ordering Information

Part Number	Marking	Package	Packing Method
2N7002L	70L	SOT-23 3L	Tape and Reel

1

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter		Value	Unit
V _{DSS}	Drain-Source Voltage		60	V
V _{DGR}	Drain-Gate Voltage ($R_{GS} \le 1 M\Omega$)		60	V
V	Gate-Source Voltage	Continuous	±20	V
V_{GSS}	Gate-Source voltage	Non Repetitive (t _p < 50 μs)	±40	
	Maximum Drain Current	Continuous	115	mA
I _D	IVIAXIII DI AIII CUITEIII	Pulsed	800	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16 inch from Case for 10 Seconds		300	°C

Thermal Characteristics(1)

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Value	Unit
D	Maximum Power Dissipation	200	mW
P_{D}	Derate Above 25°C	1.6	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	380	°C/W

Note:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 380°C/W when mounted on a minimum pad.

Scale 1: 1 on letter size paper

ESD Rating(2)

Symbol	nbol Parameter		Unit
HBM	HBM Human Body Model per ANSI/ESDA/JEDEC JS-001-2012		V
CDM	CDM Charged Device Model per JEDEC C101C		V

Note:

2. ESD values are in typical, no over-voltage rating is implied, ESD CDM zap voltage is 2000 V maximum.

Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Charact	eristics			1	I.	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 10 \mu\text{A}$	60.0	65.2		V
	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V		0.024	1	μА
I _{DSS}		V _{DS} = 60 V, V _{GS} = 0 V, T _J = 125°C		0.080	500	
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V		0.107	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V		-0.037	-100	nA
On Charact	eristics ⁽³⁾			1	I.	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	0.80	1.81	2.50	V
	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 500 mA		3.35	7.50	Ω
		V _{GS} = 10 V, I _D = 500 mA, T _J = 100°C		5.62	13.50	
R _{DS(ON)}		$V_{GS} = 5 \text{ V}, I_D = 50 \text{ mA}$		2.68	7.50	
		V _{GS} = 5 V, I _D = 50 mA, T _J = 100°C		3.97	13.50	
.,	Drain-Source On-Voltage	V _{GS} = 10 V, I _D = 500 mA		1.68	3.75	V
V _{DS(ON)}		V _{GS} = 5 V, I _D = 50 mA		0.13	1.50	
	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} \ge 2 \text{ V}_{DS(ON)}$	500	557		mA
I _{D(ON)}		V _{GS} = 4.5 V, V _{DS} = 10 V	75	571		
9 _{FS}	Forward Trans-conductance	$V_{DS} \ge 2 V_{DS(ON)}$, $I_D = 200 \text{ mA}$	80	214		mS
Dynamic Cl	haracteristics				I.	
C _{iss}	Input Capacitance			12.8	50	pF
C _{oss}	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		3.25	25	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1.0 WI 12		1.52	5	pF
R_{G}	Gate Resistance	V _{GS} = 0 V, f = 1.0 MHz		22.2		Ω
Switching C	Characteristics ⁽³⁾			1	I.	7
t _{on}	Turn-On Time	V_{DD} = 30 V, R_{L} = 150 Ω , I_{D} = 200 mA, V_{GS} = 10 V, R_{GEN} = 25 Ω		4.35	20	ns
t _{off}	Turn-Off Time			15.6	20	ns
	ce Diode Characteristics and Maxin	num Ratings				
I _S	Maximum Continuous Drain-Source	Diode Forward Current			115	mA
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				0.8	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 115 \text{ mA}^{(3)}$		0.818	1.5	٧

Note:

3. Pulse test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2.0%.

Typical Performance Characteristics

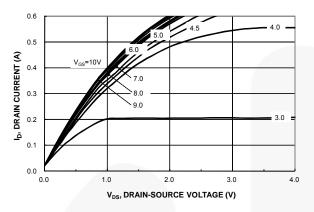
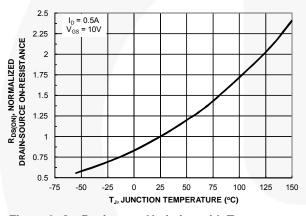



Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current

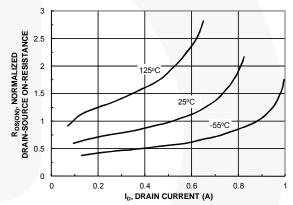
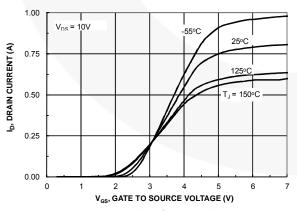



Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Drain Current and Temperature

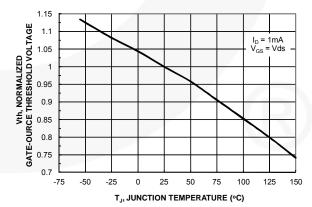
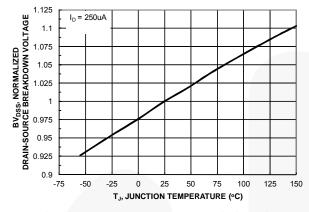



Figure 5. Transfer Characteristics

Figure 6. Gate Threshold Variation with Temperature

Typical Performance Characteristics (Continued)

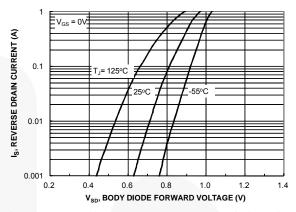
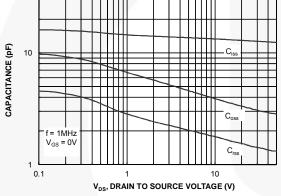



Figure 7. Breakdown Voltage Variation with Temperature

Figure 8. Body Diode Forward Voltage Variation with Source Current and Temperature

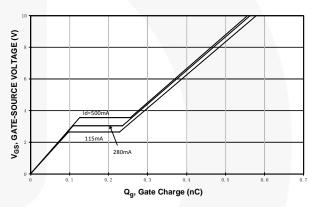
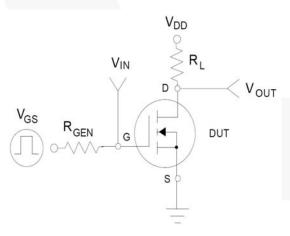



Figure 9. Capacitance Characteristics

Figure 10. Gate Charge Characteristics

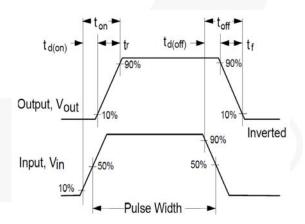


Figure 11.

Figure 12. Switching Waveforms

Typical Performance Characteristics (Continued)

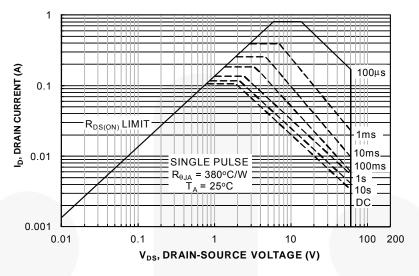


Figure 13. Maximum Safe Operating Area

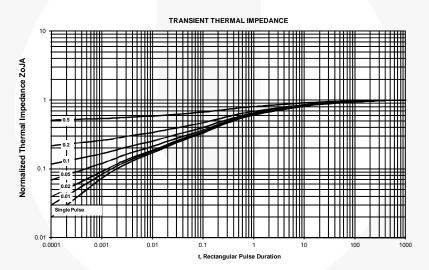
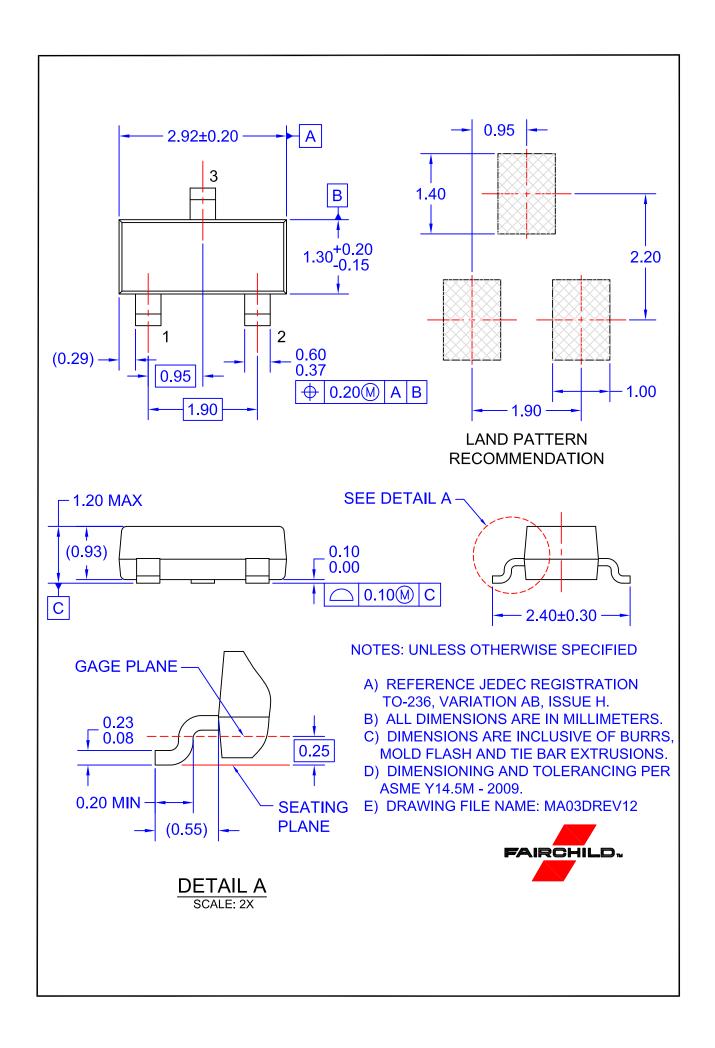



Figure 14. Transient Thermal Response Curve

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: 2N7002L