This is information on a product in full production.
January 2016 DocID15131 Rev 9 1/133
SPC560B54x, SPC560B60x,
SPC560B64x
32-bit MCU family built on the Power Architecture® for automotive
body electronics applications
Datasheet - production data
Features
High performance 64 MHz e200z0h CPU
32-bit Power Architecture® technology
CPU
Up to 60 DMI Ps op er at i on
Variable length encoding (VLE)
Memory
Up to 1.5 MB on-chip Code Flash with ECC
64 KB on-chip Data Flash with ECC
Up to 96 KB on-chip SRAM with ECC
8-entry MPU
Interrupts
16 priority levels
Non-maskable interrupt (NMI)
Up to 51 external interrupts lines including
27 wake-up lines
16-channel eDMA (linked to PITs, DSPI,
ADCs, eMIOS, LINF lex and I2C)
GPIOs: 77 (LQFP100), 121 (LQFP144) and
149 (LQFP176)
Timer units
8-channel 32-bit pe riodic interrupt timer
4-channel 32-bit system timer
System watchdog timer
Real-time clock timer
eMIOS, 16-bit counter timed I/O units
Up to 64 channels with PWM/MC/IC/OC
Up to 10 cou nt er bas i s
ADC diagnostic trigger via CTU
One 10-bit and one 12-bit ADC with up to 53
channels
Extendable to 81 channels
Individual conversion registers
Cross triggering unit (CTU)
Dedicated diagnostic module for lighting
Advanced PWM generation
Time-triggered diagnostics
PWM-synchronized ADC measurements
On-chip CAN/UART bootstrap loader
Communications interfaces
Up to 6 FlexCAN (2.0B active) with 64
message buffers each
Up to 10 LINFlex/UART channels
Up to 6 buffered DSPI channels
–I
2C interface
Clock generation
4 to 16 MHz fast external crystal oscillator
32 kHz slow external crystal oscillator
16 MHz fast internal RC oscillator
128 kHz slow internal RC oscillator for low-
power modes
Software-controlled FMPLL
Clock monitoring unit
Low-power capabilities
Several low-power mode configurations
Ultra-low-power standby with RTC and
communication
Fast wakeup schemes
Exhaustive debugging capability
Nexus 2+ interface on LBGA208 package
Nexus 1 on all packages
Voltage supply
Single 5 V or 3.3 V supply
On-chip voltage regu la to r
External ballast resistor support
LQFP100, LQFP144, and LQFP176 packages;
LBGA208 package for Nexus2+
Operating temperature range -40 to 125 °C
LQFP144LQFP100 LQFP176
(20 x 20 x 1.4 mm) (24 x 24 x 1.4 mm)(14 x 14 x 1.4 mm)
Table 1. Device summary
Package 768 KByte
Code Flash 1 MByte
Code Flash 1.5 MByte
Code Flash
LQFP176 SPC560B60L7 SPC560B64L7
LQFP144 SPC560B54L5 SPC560B60L5 SPC560B64L5
LQFP100 SPC560B54L3 SPC560B60L3 SPC560B64L3
www.st.com
Contents SPC560B54x/6x
2/133 DocID15131 Rev 9
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Pad configuration during reset phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Pad configuration during standby mode exit . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Functional port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Nexus 2+ pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 57
4.2.3 NVUSRO[WATCHDOG_EN] field description . . . . . . . . . . . . . . . . . . . . 57
4.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1 External ballast resistor recommendations . . . . . . . . . . . . . . . . . . . . . . 61
4.5.2 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.3 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.4 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
DocID15131 Rev 9 3/133
SPC560B54x/6x Contents
4
4.6.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 79
4.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 79
4.8.2 Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . 81
4.9 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.10.1 Program/erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.10.2 Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.10.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.11 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 86
4.11.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 86
4.11.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.11.3 Absolute ma xim um ra tin gs (electrical sensitivity) . . . . . . . . . . . . . . . . . 87
4.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 88
4.13 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . 91
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 94
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 95
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.17.2 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.17.3 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.18.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.18.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.18.4 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
5.2.1 LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.2 LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.3 LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Contents SPC560B54x/6x
4/133 DocID15131 Rev 9
5.2.4 LBGA208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Appendix A Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DocID15131 Rev 9 5/133
SPC560B54x/6x List of tables
6
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. SPC560B54/6x family comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. SPC560B54/6x series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. Voltage supply pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. System pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 7. Nexus 2+ pin descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 8. Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 9. PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 10. OSCILLATOR_MARGIN field description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 11. WATCHDOG_EN field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 12. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 13. Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 14. Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 15. LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 16. I/O input DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 17. I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 18. SLOW co nfig u ra tio n ou tp ut buf fe r ele ctr ical ch ar acteristics . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 19. MEDIUM con fig u ra tio n ou tp ut buf fer electrical ch aracteristics . . . . . . . . . . . . . . . . . . . . . . 66
Table 20. FAST configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 21. Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 22. I/O supply segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 23. I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 24. I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 25. Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 26. Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 27. Low volt ag e det ect or elec tric al ch ar acteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 28. Power consumption on VDD_BV and VDD_HV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 29. Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 30. Flash module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 31. Flash read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 32. Flash power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 33. Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 34. EMI radiated emission measureme nt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 35. ESD absolute maximum ratin gs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 36. Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 37. Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics. . . . . . . . . . . . . . . . 90
Table 39. Crystal motional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 93
Table 41. FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 94
Table 43. Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 95
Table 44. ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 45. ADC_0 conversion characteristics (10-bit ADC_0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 46. ADC_1 conversion characteristics (12-bit ADC_1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 47. On-chip per ipherals current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 48. DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
List of tables SPC560B54x/6x
6/133 DocID15131 Rev 9
Table 49. Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 50. JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 51. LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 52. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 53. LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 54. LBGA208 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 55. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 56. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DocID15131 Rev 9 7/133
SPC560B54x/6x List of fig ures
7
List of figures
Figure 1. SPC560B54/6x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. LQFP176 pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. LQFP144 pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. LQFP100 pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. LBGA208 configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 7. Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 8. Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 9. Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 10. Low voltage detector vs reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 11. Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 12. Fast external crystal oscillator (4 to 16 MHz) timing diagram. . . . . . . . . . . . . . . . . . . . . . . 90
Figure 13. Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 14. Equivalent circuit of a quartz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 15. Slow external crystal oscillator (32 kHz) timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 16. ADC_0 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 17. Input equiva lent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 18. Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 19. Transient behavior during sampling phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 20. Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 21. ADC_1 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 22. DSPI classic SPI timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 23. DSPI classic SPI timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 24. DSPI classic SPI timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 25. DSPI classic SPI timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 26. DSPI modified transfer format timing — master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . 113
Figure 27. DSPI modified transfer format timing — master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . 114
Figure 28. DSPI modified transfer format timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 29. DSPI modified transfer format timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 30. DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 31. Nexus TDI, TMS, TDO timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 32. Timing diagram — JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 33. LQFP176 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 34. LQFP144 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 35. LQFP100 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 36. LBGA208 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 37. Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Introduction SPC560B54x/6x
8/133 DocID15131 Rev 9
1 Introduction
1.1 Document overview
This document describes the features of the family and options available within the family
members, an d high l ig h ts important electrica l and physical characteristics of the device.
1.2 Description
This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in
integrated automotive application controllers. It belongs to an expanding family of
automotive-focused products designed to address the next wave of body el ectronics
applications within the vehicle.
The advanced and cost-e fficient e200z0h host processor core of this automotive controller
family complies with the Power Architecture technology and only implements the VLE
(variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density.
It operates at spee ds of up to 64 MHz and o f fers high performa nce processing optimi zed for
low power consumption. It capitalizes on the available development infrastructure of current
Power Architecture devices and is supported with software drivers, operating systems and
configuration code to assist with users implementations.
Table 2. SPC560B 54 /6 x family comparison(1)
Feature SPC560B54 SPC560B60 SPC560B64
CPU e200z0h
Execution speed(2) Up to 64 MHz
Code flash memory 768 KB 1 MB 1.5 MB
Data flash memory 64 (4 16) KB
SRAM 64 KB 80 KB 96 KB
MPU 8-entry
eDMA 16 ch
10-bit ADC Yes
dedicated(3) 7 ch 15 ch 7 ch 15 ch 29 ch 7 ch 15 ch 29 ch 29 ch
shared with 12-bit ADC 19 ch
12-bit ADC Yes
dedicated(4) 5 ch
shared with 10-bit ADC 19 ch
Total timer I/O(5) eMIOS 37 ch,
16-bit 64 ch,
16-bit 37 ch,
16-bit 64 ch,
16-bit 64 ch,
16-bit 37 ch,
16-bit 64 ch,1
6-bit 64 ch,
16-bit 64 ch,
16-bit
Counter / OPWM / ICOC(6) 10 ch
O(I)PWM / OPWFMB /
OPWMCB / ICOC(7) 7 ch
O(I)PWM / ICOC(8) 7 ch 14 ch 7 ch 14 ch 14 ch 7 ch 14 ch 14 ch 14 ch
DocID15131 Rev 9 9/133
SPC560B54x/6x Introduction
132
OPWM / ICOC(9) 13 ch 33 ch 13 ch 33 ch 33 ch 13 ch 33 ch 33 ch 33 ch
SCI (LINFlex) 4 8 4 8 10 4 8 10 10
SPI (DSPI) 3 5 3 5 6 3 5 6 6
CAN (FlexCAN) 6
I2C 1
32 KHz oscillator Yes
GPIO(10) 77 121 77 121 149 77 121 149 149
Debug JTAG N2+
Package LQFP
100 LQFP
144 LQFP
100 LQFP
144 LQFP
176 LQFP
100 LQFP
144 LQFP
176 LBGA208(11)
1. Feature set dependent on selected peripheral multiplexing; table shows example.
2. Based on 125 C ambient operating temperature.
3. Not shared with 12-bit ADC, but possibly shared with other alternate functions.
4. Not shared with 10-bit ADC, but possibly shared with other alternate functions.
5. See the eMIOS section of the chip reference manual for information on the channel configuration and functions.
6. Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.
7. Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.
8. Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse
width measurement.
9. Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.
10. Maximum I/O count based on multiplexing with peripherals.
11. LBGA208 available only as development package for Nexus2+.
Table 2. SPC560B54/6x family comparison(1) (continued)
Feature SPC560B54 SPC560B60 SPC560B64
Block diagram SPC560B54x/6x
10/133 DocID15131 Rev 9
2 Block diagram
Figure 1 shows a top-level block diagram of the SPC560B54/6x.
Figure 1. SPC560B54/6x block diagram
6
DSPI
FMPLL
Nexus 2+
Nexus
SRAM
SIU
L
Reset Control
96 KB
External
IMUX
GPIO &
JTAG
Pad Control
JTAG Port
Nexus Port e200z0h
Interrupt req ue st s
64-bit 2
3 Crossbar Switch
6
FlexCAN
Peripheral Bridge
Interrupt
Request
Interrupt
Request
I/O
Clocks
Instructions
Data
Voltage
Regulator
NMI
SWT PIT
STM
NMI
SIUL
. . .
INTC
I
2
C
. . .
10
LINFlex
64 ch
29 ch 10-bit
MPU
CMU
SRAM Flash
Code Flash
1.5 MB Data Flash
64 KB
MC_PCUMC_MEMC_CGMMC_RGM BAM
CTU
RTC SSCM
(Master)
(Master)
(Slave)
(Slave)
(Slave)
Controller
Controller
Legend:
ADC Analog-to-Digital Converter
BAM Boot Assist Module
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DSPIDeserial Serial Peripheral Interface
ECSM Error Correction St atus Module
eDMA Enhanced Direct Memory Access
eMIOS Enhanced Modular Input Output System
Flash F l ash memor y
FlexCAN Controller Area Network
FMPLL Frequency-Modulated Phase-L ocked Loop
GPIO General-purpose input/output
I2C Inter-Integrated Circuit bus
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG controller
LINFlex Serial Communication Interface (LIN support)
MC_CGM Clock Generation Module
MC_ME Mode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPU Memory Protection Unit
NMI Non-Maskable Interrupt
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System T imer Module
SWT Software W atchdog Timer
VREG Voltage regulator
WKPU Wakeup Unit
XBAR Crossbar switch
MPU
ECSM
from peripheral
Registers
blocks
ADC eMIOS
19 ch 10-bit/12-bit
ADC
(Master)
. . .
. . .
. . .
WKPU
5 ch 12-bit
ADC
eDMA
Interrupt
request w ith
wakeup
functionality
DocID15131 Rev 9 11/133
SPC560B54x/6x Block diagram
132
Table 3 summarizes the functions of the blocks present on the SPC560B54/6x.
Table 3. SPC560B54/6x series block summary
Block Function
Analog-to-digital converter
(ADC) Converts analog voltages to digital values
Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock generation module
(MC_CGM) Provides logic and control required for the generatio n of system and peripheral
clocks
Clock monitor unit (CMU) Monitors clock source (internal and external) integrity
Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS
or from the PIT
Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width.
Deserial serial peripheral
interface (DSPI) Provides a synchronous serial interface for communication with external devices
Enhanced direct memory
access (eDMA) Performs complex data transfers with minimal intervention from a host processor
via “n” programmable channels
Enhanced modular input output
system (eMIOS) Provides the functionality to generate or measure events
Error correction status module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset status
register, wakeup control for exiting sleep modes, and optional fe atures such as
information on memory errors reported by error-correcting codes
Flash memory Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area
network) Supports the standard CAN communications protocol
Frequency-modulated phase-
locked loop (FM P LL ) Generates high-speed system clocks and supports programmable frequency
modulation
Inter-integrated circuit (I2C) bus Two- wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Internal multiplexer (IMUX) SIU
subblock Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC) Provides the means to test chip functionality and co nnectivity while remaining
transparent to system logic when not in test mode
LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages
effi ci en tl y w ith a mi ni mu m of CPU lo ad
Memory protection unit (MPU) Provides hardware access control for all memory references generated in a
device
Block diagram SPC560B54x/6x
12/133 DocID15131 Rev 9
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control unit,
reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI) Handles externa l events that must produce an immediate response, such as
power down detection
Periodic interrupt timer (PIT) Produces periodic interrupts and triggers
Power control unit (MC_PCU) Reduces the overall power consu mption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Real-time counter (RTC) A free running counter used for time keeping applications, the RTC can be
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode)
Reset generation module
(MC_RGM) Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory
(SRAM) Provides storage for program code, constants, and variables
System integration unit lite
(SIUL)
Provides control over all the electrical pad controls and up 32 ports with 16 bits of
bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
System status and configuration
module (SSCM)
Provides system configuration and status dat a ( such as memory siz e and status,
device mode and security status), devi ce identification data, debug status port
enable and selection, and bus and peripheral abort enable/disabl e
System timer module (STM) Provides a set of output compare events to support AUTOSAR (Automotive
Open System Architecture) and operating system tasks
Software watchdog timer (SWT) Provides protection from runa way code
Wakeup unit (WKPU) The wakeup unit supports up to 27 external sources that can generate interrupts
or wakeup events, of which 1 can cause non-maskable interrupt requests or
wakeup events.
Table 3. SPC560B54/6x series block summary (continued)
Block Function
DocID15131 Rev 9 13/133
SPC560B54x/6x Package pinouts and signal descriptions
132
3 Package pinouts and signal descriptions
3.1 Package pinouts
The available LQFP pinouts and the ballmap are provided in the following figures. For pin
signal descriptions, please see Table 6.
Figure 2 shows the SPC560B54/6x in the LQFP176 package.
Figure 2. LQFP176 pin configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
PI[10]
PI[9]
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PB[3]
PC[9]
PC[14]
PC[15]
PJ[4]
VDD_HV
VSS_HV
PH[15]
PH[13]
PH[14]
PI[6]
PI[7]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PJ[3]
PJ[2]
PJ[1]
PJ[0]
PI[15]
PI[14]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
VDD_HV
VSS_HV
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PI[0]
PI[1]
PI[2]
PI[3]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PI[4]
PI[5]
PH[12]
PH[11]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
LQFP176
Top view
Package pinouts and signal descriptions SPC560B54x/6x
14/133 DocID15131 Rev 9
Figure 3 shows the SPC560B54/6x in the LQFP144 package.
Figure 3. LQFP144 pin configuration
Figure 4 shows the SPC560B54/6x in the LQFP100 package.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_ADC1
VSS_HV_ADC1
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
LQFP144
Top view
DocID15131 Rev 9 15/133
SPC560B54x/6x Package pinouts and signal descriptions
132
Figure 4. LQFP100 pin configuration
Figure 5 shows the SPC560B54/6x in the LBGA208 package.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_ADC1
VSS_HV_ADC1
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PE[12]
LQFP100
Top view
Package pinouts and signal descriptions SPC560B54x/6x
16/133 DocID15131 Rev 9
3.2 Pad configuration during reset phases
All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are tristate with the following exceptions:
PA[9] (FAB) is pull-down. Without external strong pull-up the device st arts fetching from
flash.
PA[8], PC[0] and PH[9:10] are in input weak pull-up when out of reset.
RESET pad is driven low by the device till 40 FIRC clock cycles after phase2
completion. Minimum phase3 duration is 40 FIRC cycles.
Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
APC[8] PC[13] PH[15] PJ[4] PH[8] PH[4] PC[5] PC[0] PI[0] PI[1] PC[2] PI[4] PE[15] PH[11] NC NC A
BPC[9] PB[2] PH[13] PC[12] PE[6] PH[5] PC[4] PH[9] PH[10] PI[2] PC[3] PG[11] PG[15] PG[14] PA[11] PA[10] B
CPC[14] VDD_H
VPB[3] PE[7] PH[7] PE[5] PE[3] VSS_LV PC[1] PI[3] PA[5] PI[5] PE[14] PE[12] PA[9] PA[8] C
DPH[14] PI[6] PC[15] PI[7] PH[6] PE[4] PE[2] VDD_L
VVDD_H
VNC PA[6] PH[12] PG[10] PF[14] PE[13] PA[7] D
EPG[4] PG[5] PG[3] PG[2] PG[1] PG[0] PF[15] VDD_H
VE
FPE[0] PA[2] PA[1] PE[1] PH[0] PH[1] PH[3] PH[2] F
GPE[9] PE[8] PE[10] PA[0] VSS_H
VVSS_H
VVSS_H
VVSS_H
VVDD_H
VPI[12] PI[13] MSEO G
HVSS_HV PE[11] VDD_H
VNC VSS_H
VVSS_H
VVSS_H
VVSS_H
VMDO3 MDO2 MDO0 MDO1 H
JRESET VSS_LV NC NC VSS_H
VVSS_H
VVSS_H
VVSS_H
VPI[8] PI[9] PI[10] PI[11] J
KEVTI NC VDD_B
VVDD_L
VVSS_H
VVSS_H
VVSS_H
VVSS_H
V
VDD_H
V_ADC
1PG[12] PA[3] PG[13] K
LPG[9] PG[8] NC EVTO PB[15] PD[15] PD[14] PB[14] L
MPG[7] PG[6] PC[10] PC[11] PB[13] PD[13] PD[12] PB[12] M
NPB[1] PF[9] PB[0] VDD_H
VPJ[0] PA[4] VSS_LV EXTAL VDD_H
VPF[0] PF[4] VSS_H
V_ADC
1PB[11] PD[10] PD[9] PD[11] N
PPF[8] PJ[3] PC[7] PJ[2] PJ[1] PA[14] VDD_L
VXTAL PB[10] PF[1] PF[5] PD[0] PD[3] VDD_H
V_ADC
0PB[6] PB[7] P
RPF[12] PC[6] PF[10] PF[11] VDD_H
VPA[15] PA[13] PI[14] XTAL32 PF[3] PF[7] PD[2] PD[4] PD[7] VSS_H
V_ADC
0PB[5] R
TNC NC NC MCKO NC PF[13] PA[12] PI[15] EXTAL
32 PF[2] PF[6] PD[1] PD[5] PD[6] PD[8] PB[4] T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NOTE: The LBGA208 is available only as development package for Nexus 2+. NC = Not connected
Figure 5. LBGA208 configuration
DocID15131 Rev 9 17/133
SPC560B54x/6x Package pinouts and signal descriptions
132
3.3 Pad configuration during standby mode exit
Pad configuration ( input bu ff er enable, pull enable) fo r low-power wakeu p p ads is controlled
by both the SIUL and WKPU modules. During standby exit, all low power pads
PA[0,1,2,4,15], PB[1,3,8,9,10](a), PC[7,9,11], PD[0,1], PE[0,9,11], PF[9,11,13](b),
PG[3,5,7,9](b), PI[1,3](c) are configured according to their respective configuration done in
the WKPU module. All other pads will have the same configuration as expected after a
reset.
The TDO pad has been moved into the STANDBY domain in order to allow low-power
debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad
while in STANDBY mode. At this time the pad is configu red as an input. When no debu gger
is connected the TDO pad is floating cau sing additional current consumption.
To avoid the extra consumption TDO must be connected. An external pull-up resistor in the
range of 47–100 kOhms should be added between the TDO pin and VDD. Only if the TDO
pin is used as an application pin and a pull-up cannot be used should a pull-down resistor
with the same value be used instead between the TDO pin and GND.
3.4 Voltage supply pins
Voltage supply pins are used to provide power to the device. Thr ee dedicated
VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.
a. PB[8, 9] ports have wakeup functionality in all modes except STANDBY.
b. PF[9,11,13], PG[3,5,7,9], PI[1,3] are not available in the 100-pin LQFP.
c. PI[1,3] are not available in the 144-pin LQFP.
Table 4. Voltage supply pin descriptions
Port pin Function Pin number
LQFP100 LQFP144 LQFP176 LBGA208
VDD_HV Digital supply voltage 15, 37, 70, 84 19, 51, 100,
123 6, 27, 59, 85,
124, 151
C2, D9, E16,
G13, H3, N4,
N9, R5
VSS_HV Digital ground 14, 16, 35,
69, 83 18, 20, 49,
99, 122 7, 26, 28, 57,
86, 123, 150
G7, G8, G9,
G10, H7, H8,
H9, H10, J7,
J8, J9, J10,
K7, K8, K9,
K10
VDD_LV
1.2 V decoupling pins. Decoupling
capacitor must be connected
between these pins and the
nearest VSS_LV pin.(1) 19, 32, 85 23, 46, 124 31, 54, 152 D8, K4, P7
VSS_LV
1.2 V decoupling pins. Decoupling
capacitor must be connected
between these pins and the
nearest VDD_LV pin .(1) 18, 33, 86 22, 47, 125 30, 55, 153 C8, J2, N7
Package pinouts and signal descriptions SPC560B54x/6x
18/133 DocID15131 Rev 9
3.5 Pad types
In the device the following types of pads are available for system pins and functional port
pins:S = Slow(d)
M = Medium(d) (e)
F = Fast(d) (e)
I = Input only with analog feature(d)
J = Input/Output (‘S’ pad) with analog feature
X = Oscillator
3.6 System pins
The system pins are listed in Table 5.
VDD_BV Internal regulator supply voltage 20 24 32 K3
VSS_HV_ADC0 Reference ground and analog
ground for the A/D converter 0 (10-
bit) 51 73 89 R15
VDD_HV_ADC0 Reference voltage and analog
supply for the A/D converter 0 (10-
bit) 52 74 90 P14
VSS_HV_ADC1 Reference ground and analog
ground for the A/D converter 1 (12-
bit) 59 81 98 N12
VDD_HV_ADC1 Reference voltage and analog
supply for the A/D converter 1 (12-
bit) 60 82 99 K13
1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage
(see the recommended operating conditions in the device datasheet).
Table 4. Voltage supply pin descriptions (continued)
Port pin Function Pin number
LQFP100 LQFP144 LQFP176 LBGA208
d. See the I/O pad electrical characteristics in the chip datasheet for details.
e. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium.
The only exception is PC[1] which is in medium configuration by default (see the PCR.SRC description in the
chip reference manual, Pad Configuration Registers (PCR0–PCR148)).
DocID15131 Rev 9 19/133
SPC560B54x/6x Package pinouts and signal descriptions
132
3.7 Functional port pins
The functional port pins are listed in Table 6.
Table 5. System pi n des cri pt io n s
Port pin Function
I/O direction
Pad type
RESET
configuration
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(1)
RESET Bidirectional reset with Schmitt-
Trigger characteristics and noise
filter. I/O M
Input weak
pull-up after
RGM PHASE2
and 40 FIRC
cycles
17 21 29 J1
EXTAL
Analog output of the oscillator
amplifier circuit, when the oscillator is
not in bypass mode.
Analog input for the clock generator
when the oscillator is in bypass
mode.
I/O X Tristate 36 50 58 N8
XTAL Analog input of the oscillator amplifier
circuit. Needs to be grounded if
oscillator bypass mode is used. I X Tristate 34 48 56 P8
1. LBGA208 available only as development package for Nexus2+.
Package pinouts and signal descriptions SPC560B54x/6x
20/133 DocID15131 Rev 9
Table 6. Functional port pin descriptions
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Port A
PA[0] PCR[0]
AF0
AF1
AF2
AF3
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKPU[19](5)
SIUL
eMIOS_0
MC_CGM
eMIOS_0
WKPU
I/O
I/O
O
I/O
I
M Tristate 12 16 24 G4
PA[1] PCR[1]
AF0
AF1
AF2
AF3
GPIO[1]
E0UC[1]
NMI(6)
WKPU[2](5)
SIUL
eMIOS_0
WKPU
WKPU
I/O
I/O
I
I
STristate 7 11 19 F3
PA[2] PCR[2]
AF0
AF1
AF2
AF3
GPIO[2]
E0UC[2]
MA[2]
WKPU[3](5)
SIUL
eMIOS_0
ADC_0
WKPU
I/O
I/O
O
I
S Tristate 5 9 17 F2
PA[3] PCR[3]
AF0
AF1
AF2
AF3
GPIO[3]
E0UC[3]
LIN5TX
CS4_1
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
LINFlex_5
DSPI_1
SIUL
ADC_1
I/O
I/O
O
O
I
I
J Tristate 68 90 114 K15
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 21/133
PA[4] PCR[4]
AF0
AF1
AF2
AF3
GPIO[4]
E0UC[4]
CS0_1
LIN5RX
WKPU[9](5)
SIUL
eMIOS_0
DSPI_1
LINFlex_5
WKPU
I/O
I/O
I/O
I
I
S Tristate 29 43 51 N6
PA[5] PCR[5]
AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
LIN4TX
SIUL
eMIOS_0
LINFlex_4
I/O
I/O
O
M Tristate 79 118 146 C11
PA[6] PCR[6]
AF0
AF1
AF2
AF3
GPIO[6]
E0UC[6]
CS1_1
EIRQ[1]
LIN4RX
SIUL
eMIOS_0
DSPI_1
SIUL
LINFlex_4
I/O
I/O
O
I
I
S Tristate 80 119 147 D11
PA[7] PCR[7]
AF0
AF1
AF2
AF3
GPIO[7]
E0UC[7]
LIN3TX
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
LINFlex_3
SIUL
ADC_1
I/O
I/O
O
I
I
J Tristate 71 104 128 D16
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
22/133 DocID15131 Rev 9
PA[8] PCR[8]
AF0
AF1
AF2
AF3
N/A(7)
GPIO[8]
E0UC[8]
E0UC[14]
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS_0
eMIOS_0
SIUL
BAM
LINFlex_3
I/O
I/O
I/O
I
I
I
SInput,
weak pull-
up 72 105 129 C16
PA[9] PCR[9]
AF0
AF1
AF2
AF3
N/A(7)
GPIO[9]
E0UC[9]
CS2_1
FAB
SIUL
eMIOS_0
DSPI_1
BAM
I/O
I/O
O
I
SPull-
down 73 106 130 C15
PA[10] PCR[10]
AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
LIN2TX
ADC1_S[2]
SIUL
eMIOS_0
I2C_0
LINFlex_2
ADC_1
I/O
I/O
I/O
O
I
J Tristate 74 107 131 B16
PA[11] PCR[11]
AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
EIRQ[16]
LIN2RX
ADC1_S[3]
SIUL
eMIOS_0
I2C_0
SIUL
LINFlex_2
ADC_1
I/O
I/O
I/O
I
I
I
J Tristate 75 108 132 B15
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 23/133
PA[12] PCR[12]
AF0
AF1
AF2
AF3
GPIO[12]
E0UC[28]
CS3_1
EIRQ[17]
SIN_0
SIUL
eMIOS_0
DSPI_1
SIUL
DSPI_0
I/O
I/O
O
I
I
S Tristate 31 45 53 T7
PA[13] PCR[13]
AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
E0UC[29]
SIUL
DSPI_0
eMIOS_0
I/O
O
I/O
M Tristate 30 44 52 R7
PA[14] PCR[14]
AF0
AF1
AF2
AF3
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
I/O
I/O
I/O
I/O
I
M Tristate 28 42 50 P6
PA[15] PCR[15]
AF0
AF1
AF2
AF3
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKPU[10](5)
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKPU
I/O
I/O
I/O
I/O
I
M Tristate 27 40 48 R6
Port B
PB[0] PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
E0UC[30]
LIN0TX
SIUL
FlexCAN_0
eMIOS_0
LINFlex_0
I/O
O
I/O
O
M Tristate 23 31 39 N3
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
24/133 DocID15131 Rev 9
PB[1] PCR[17]
AF0
AF1
AF2
AF3
GPIO[17]
E0UC[31]
WKPU[4](5)
CAN0RX
LIN0RX
SIUL
eMIOS_0
WKPU
FlexCAN_0
LINFlex_0
I/O
I/O
I
I
I
S Tristate 24 32 40 N1
PB[2] PCR[18]
AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
E0UC[30]
SIUL
LINFlex_0
I2C_0
eMIOS_0
I/O
O
I/O
I/O
M Tristate 100 144 176 B2
PB[3] PCR[19]
AF0
AF1
AF2
AF3
GPIO[19]
E0UC[31]
SCL
WKPU[11](5)
LIN0RX
SIUL
eMIOS_0
I2C_0
WKPU
LINFlex_0
I/O
I/O
I/O
I
I
STristate111C3
PB[4] PCR[20]
AF0
AF1
AF2
AF3
ADC0_P[0]
ADC1_P[0]
GPIO[20]
ADC_0
ADC_1
SIUL
I
I
I
ITristate 50 72 88 T16
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 25/133
PB[5] PCR[21]
AF0
AF1
AF2
AF3
ADC0_P[1]
ADC1_P[1]
GPIO[21]
ADC_0
ADC_1
SIUL
I
I
I
ITristate 53 75 91 R16
PB[6] PCR[22]
AF0
AF1
AF2
AF3
ADC0_P[2]
ADC1_P[2]
GPIO[22]
ADC_0
ADC_1
SIUL
I
I
I
ITristate 54 76 92 P15
PB[7] PCR[23]
AF0
AF1
AF2
AF3
ADC0_P[3]
ADC1_P[3]
GPIO[23]
ADC_0
ADC_1
SIUL
I
I
I
ITristate 55 77 93 P16
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
26/133 DocID15131 Rev 9
PB[8] PCR[24]
AF0
AF1
AF2
AF3
GPIO[24]
OSC32K_XTAL(8)
WKPU[25](5)
ADC0_S[0]
ADC1_S[4]
SIUL
OSC32K
WKPU
ADC_0
ADC_1
I
I(9)
I
I
I 39 53 61 R9
PB[9] PCR[25]
AF0
AF1
AF2
AF3
GPIO[25]
OSC32K_EXTAL(8)
WKPU[26](5)
ADC0_S[1]
ADC1_S[5]
SIUL
OSC32K
WKPU
ADC_0
ADC_1
I
I(9)
I
I
I 38 52 60 T9
PB[10] PCR[26]
AF0
AF1
AF2
AF3
GPIO[26]
WKPU[8](5)
ADC0_S[2]
ADC1_S[6]
SIUL
WKPU
ADC_0
ADC_1
I/O
I
I
I
J Tristate 40 54 62 P9
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 27/133
PB[11] PCR[27]
AF0
AF1
AF2
AF3
GPIO[27]
E0UC[3]
CS0_0
ADC0_S[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
I/O
I
JTristate 97 N13
PB[12] PCR[28]
AF0
AF1
AF2
AF3
GPIO[28]
E0UC[4]
CS1_0
ADC0_X[0]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 61 83 101 M16
PB[13] PCR[29]
AF0
AF1
AF2
AF3
GPIO[29]
E0UC[5]
CS2_0
ADC0_X[1]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 63 85 103 M13
PB[14] PCR[30]
AF0
AF1
AF2
AF3
GPIO[30]
E0UC[6]
CS3_0
ADC0_X[2]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 65 87 105 L16
PB[15] PCR[31]
AF0
AF1
AF2
AF3
GPIO[31]
E0UC[7]
CS4_0
ADC0_X[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 67 89 107 L13
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
28/133 DocID15131 Rev 9
Port C
PC[0](10) PCR[32]
AF0
AF1
AF2
AF3
GPIO[32]
TDI
SIUL
JTAGC
I/O
I
MInput,
weak pull-
up 87 126 154 A8
PC[1](10) PCR[33]
AF0
AF1
AF2
AF3
GPIO[33]
TDO
SIUL
JTAGC
I/O
O
F(11) Tristate 82 121 149 C9
PC[2] PCR[34]
AF0
AF1
AF2
AF3
GPIO[34]
SCK_1
CAN4TX
DEBUG[0]
EIRQ[5]
SIUL
DSPI_1
FlexCAN_4
SSCM
SIUL
I/O
I/O
O
O
I
M Tristate 78 117 145 A11
PC[3] PCR[35]
AF0
AF1
AF2
AF3
GPIO[35]
CS0_1
MA[0]
DEBUG[1]
EIRQ[6]
CAN1RX
CAN4RX
SIUL
DSPI_1
ADC_0
SSCM
SIUL
FlexCAN_1
FlexCAN_4
I/O
I/O
O
O
I
I
I
S Tristate 77 116 144 B11
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 29/133
PC[4] PCR[36]
AF0
AF1
AF2
AF3
GPIO[36]
E1UC[31]
DEBUG[2]
EIRQ[18]
SIN_1
CAN3RX
SIUL
eMIOS_1
SSCM
SIUL
DSPI_1
FlexCAN_3
I/O
I/O
O
I
I
I
M Tristate 92 131 159 B7
PC[5] PCR[37]
AF0
AF1
AF2
AF3
GPIO[37]
SOUT_1
CAN3TX
DEBUG[3]
EIRQ[7]
SIUL
DSPI_1
FlexCAN_3
SSCM
SIUL
I/O
O
O
O
I
M Tristate 91 130 158 A7
PC[6] PCR[38]
AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
E1UC[28]
DEBUG[4]
SIUL
LINFlex_1
eMIOS_1
SSCM
I/O
O
I/O
O
S Tristate 25 36 44 R2
PC[7] PCR[39]
AF0
AF1
AF2
AF3
GPIO[39]
E1UC[29]
DEBUG[5]
LIN1RX
WKPU[12](5)
SIUL
eMIOS_1
SSCM
LINFlex_1
WKPU
I/O
I/O
O
I
I
S Tristate 26 37 45 P3
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
30/133 DocID15131 Rev 9
PC[8] PCR[40]
AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
E0UC[3]
DEBUG[6]
SIUL
LINFlex_2
eMIOS_0
SSCM
I/O
O
I/O
O
S Tristate 99 143 175 A1
PC[9] PCR[41]
AF0
AF1
AF2
AF3
GPIO[41]
E0UC[7]
DEBUG[7]
WKPU[13](5)
LIN2RX
SIUL
eMIOS_0
SSCM
WKPU
LINFlex_2
I/O
I/O
O
I
I
STristate222B1
PC[10] PCR[42]
AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC_0
I/O
O
O
O
M Tristate 22 28 36 M3
PC[11] PCR[43]
AF0
AF1
AF2
AF3
GPIO[43]
MA[2]
WKPU[5](5)
CAN1RX
CAN4RX
SIUL
ADC_0
WKPU
FlexCAN_1
FlexCAN_4
I/O
O
I
I
I
S Tristate 21 27 35 M4
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 31/133
PC[12] PCR[44]
AF0
AF1
AF2
AF3
GPIO[44]
E0UC[12]
EIRQ[19]
SIN_2
SIUL
eMIOS_0
SIUL
DSPI_2
I/O
I/O
I
I
M Tristate 97 141 173 B4
PC[13] PCR[45]
AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SOUT_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
O
S Tristate 98 142 174 A2
PC[14] PCR[46]
AF0
AF1
AF2
AF3
GPIO[46]
E0UC[14]
SCK_2
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
STristate333C1
PC[15] PCR[47]
AF0
AF1
AF2
AF3
GPIO[47]
E0UC[15]
CS0_2
EIRQ[20]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
MTristate444D3
Port D
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
32/133 DocID15131 Rev 9
PD[0] PCR[48]
AF0
AF1
AF2
AF3
GPIO[48]
WKPU[27](5)
ADC0_P[4]
ADC1_P[4]
SIUL
WKPU
ADC_0
ADC_1
I
I
I
I
ITristate 41 63 77 P12
PD[1] PCR[49]
AF0
AF1
AF2
AF3
GPIO[49]
WKPU[28](5)
ADC0_P[5]
ADC1_P[5]
SIUL
WKPU
ADC_0
ADC_1
I
I
I
I
ITristate 42 64 78 T12
PD[2] PCR[50]
AF0
AF1
AF2
AF3
GPIO[50]
ADC0_P[6]
ADC1_P[6]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 43 65 79 R12
PD[3] PCR[51]
AF0
AF1
AF2
AF3
GPIO[51]
ADC0_P[7]
ADC1_P[7]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 44 66 80 P13
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 33/133
PD[4] PCR[52]
AF0
AF1
AF2
AF3
GPIO[52]
ADC0_P[8]
ADC1_P[8]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 45 67 81 R13
PD[5] PCR[53]
AF0
AF1
AF2
AF3
GPIO[53]
ADC0_P[9]
ADC1_P[9]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 46 68 82 T13
PD[6] PCR[54]
AF0
AF1
AF2
AF3
GPIO[54]
ADC0_P[10]
ADC1_P[10]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 47 69 83 T14
PD[7] PCR[55]
AF0
AF1
AF2
AF3
GPIO[55]
ADC0_P[11]
ADC1_P[11]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 48 70 84 R14
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
34/133 DocID15131 Rev 9
PD[8] PCR[56]
AF0
AF1
AF2
AF3
GPIO[56]
ADC0_P[12]
ADC1_P[12]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 49 71 87 T15
PD[9] PCR[57]
AF0
AF1
AF2
AF3
GPIO[57]
ADC0_P[13]
ADC1_P[13]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 56 78 94 N15
PD[10] PCR[58]
AF0
AF1
AF2
AF3
GPIO[58]
ADC0_P[14]
ADC1_P[14]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 57 79 95 N14
PD[11] PCR[59]
AF0
AF1
AF2
AF3
GPIO[59]
ADC0_P[15]
ADC1_P[15]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 58 80 96 N16
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 35/133
PD[12] PCR[60]
AF0
AF1
AF2
AF3
GPIO[60]
CS5_0
E0UC[24]
ADC0_S[4]
SIUL
DSPI_0
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 100 M15
PD[13] PCR[61]
AF0
AF1
AF2
AF3
GPIO[61]
CS0_1
E0UC[25]
ADC0_S[5]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
I/O
I/O
I
J Tristate 62 84 102 M14
PD[14] PCR[62]
AF0
AF1
AF2
AF3
GPIO[62]
CS1_1
E0UC[26]
ADC0_S[6]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 64 86 104 L15
PD[15] PCR[63]
AF0
AF1
AF2
AF3
GPIO[63]
CS2_1
E0UC[27]
ADC0_S[7]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 66 88 106 L14
Port E
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
36/133 DocID15131 Rev 9
PE[0] PCR[64]
AF0
AF1
AF2
AF3
GPIO[64]
E0UC[16]
WKPU[6](5)
CAN5RX
SIUL
eMIOS_0
WKPU
FlexCAN_5
I/O
I/O
I
I
S Tristate 6 10 18 F1
PE[1] PCR[65]
AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX
SIUL
eMIOS_0
FlexCAN_5
I/O
I/O
O
M Tristate 8 12 20 F4
PE[2] PCR[66]
AF0
AF1
AF2
AF3
GPIO[66]
E0UC[18]
EIRQ[21]
SIN_1
SIUL
eMIOS_0
SIUL
DSPI_1
I/O
I/O
I
I
M Tristate 89 128 156 D7
PE[3] PCR[67]
AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
SIUL
eMIOS_0
DSPI_1
I/O
I/O
O
M Tristate 90 129 157 C7
PE[4] PCR[68]
AF0
AF1
AF2
AF3
GPIO[68]
E0UC[20]
SCK_1
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
SIUL
I/O
I/O
I/O
I
M Tristate 93 132 160 D6
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 37/133
PE[5] PCR[69]
AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
I/O
O
M Tristate 94 133 161 C6
PE[6] PCR[70]
AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M Tristate 95 139 167 B5
PE[7] PCR[71]
AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M Tristate 96 140 168 C4
PE[8] PCR[72]
AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX
E0UC[22]
CAN3TX
SIUL
FlexCAN_2
eMIOS_0
FlexCAN_3
I/O
O
I/O
O
M Tristate 9 13 21 G2
PE[9] PCR[73]
AF0
AF1
AF2
AF3
GPIO[73]
E0UC[23]
WKPU[7](5)
CAN2RX
CAN3RX
SIUL
eMIOS_0
WKPU
FlexCAN_2
FlexCAN_3
I/O
I/O
I
I
I
S Tristate 10 14 22 G1
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
38/133 DocID15131 Rev 9
PE[10] PCR[74]
AF0
AF1
AF2
AF3
GPIO[74]
LIN3TX
CS3_1
E1UC[30]
EIRQ[10]
SIUL
LINFlex_3
DSPI_1
eMIOS_1
SIUL
I/O
O
O
I/O
I
S Tristate 11 15 23 G3
PE[11] PCR[75]
AF0
AF1
AF2
AF3
GPIO[75]
E0UC[24]
CS4_1
LIN3RX
WKPU[14](5)
SIUL
eMIOS_0
DSPI_1
LINFlex_3
WKPU
I/O
I/O
O
I
I
S Tristate 13 17 25 H2
PE[12] PCR[76]
AF0
AF1
AF2
AF3
GPIO[76]
E1UC[19](12)
EIRQ[11]
SIN_2
ADC1_S[7]
SIUL
eMIOS_1
SIUL
DSPI_2
ADC_1
I/O
I/O
I
I
I
J Tristate 76 109 133 C14
PE[13] PCR[77]
AF0
AF1
AF2
AF3
GPIO[77]
SOUT_2
E1UC[20]
SIUL
DSPI_2
eMIOS_1
I/O
O
I/O
S Tristate 103 127 D15
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 39/133
PE[14] PCR[78]
AF0
AF1
AF2
AF3
GPIO[78]
SCK_2
E1UC[21]
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
SIUL
I/O
I/O
I/O
I
S Tristate 112 136 C13
PE[15] PCR[79]
AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
SIUL
DSPI_2
eMIOS_1
I/O
I/O
I/O
M Tristate 113 137 A13
Port F
PF[0] PCR[80]
AF0
AF1
AF2
AF3
GPIO[80]
E0UC[10]
CS3_1
ADC0_S[8]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 55 63 N10
PF[1] PCR[81]
AF0
AF1
AF2
AF3
GPIO[81]
E0UC[11]
CS4_1
ADC0_S[9]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 56 64 P10
PF[2] PCR[82]
AF0
AF1
AF2
AF3
GPIO[82]
E0UC[12]
CS0_2
ADC0_S[10]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
I/O
I
J Tristate 57 65 T10
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
40/133 DocID15131 Rev 9
PF[3] PCR[83]
AF0
AF1
AF2
AF3
GPIO[83]
E0UC[13]
CS1_2
ADC0_S[11]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 58 66 R10
PF[4] PCR[84]
AF0
AF1
AF2
AF3
GPIO[84]
E0UC[14]
CS2_2
ADC0_S[12]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 59 67 N11
PF[5] PCR[85]
AF0
AF1
AF2
AF3
GPIO[85]
E0UC[22]
CS3_2
ADC0_S[13]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 60 68 P11
PF[6] PCR[86]
AF0
AF1
AF2
AF3
GPIO[86]
E0UC[23]
CS1_1
ADC0_S[14]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 61 69 T11
PF[7] PCR[87]
AF0
AF1
AF2
AF3
GPIO[87]
CS2_1
ADC0_S[15]
SIUL
DSPI_1
ADC_0
I/O
O
I
J Tristate 62 70 R11
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 41/133
PF[8] PCR[88]
AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX
CS4_0
CAN2TX
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
M Tristate 34 42 P1
PF[9] PCR[89]
AF0
AF1
AF2
AF3
GPIO[89]
E1UC[1]
CS5_0
WKPU[22](5)
CAN2RX
CAN3RX
SIUL
eMIOS_1
DSPI_0
WKPU
FlexCAN_2
FlexCAN_3
I/O
I/O
O
I
I
I
S Tristate 33 41 N2
PF[10] PCR[90]
AF0
AF1
AF2
AF3
GPIO[90]
CS1_0
LIN4TX
E1UC[2]
SIUL
DSPI_0
LINFlex_4
eMIOS_1
I/O
O
O
I/O
M Tristate 38 46 R3
PF[11] PCR[91]
AF0
AF1
AF2
AF3
GPIO[91]
CS2_0
E1UC[3]
WKPU[15](5)
LIN4RX
SIUL
DSPI_0
eMIOS_1
WKPU
LINFlex_4
I/O
O
I/O
I
I
S Tristate 39 47 R4
PF[12] PCR[92]
AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
LIN5TX
SIUL
eMIOS_1
LINFlex_5
I/O
I/O
O
M Tristate 35 43 R1
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
42/133 DocID15131 Rev 9
PF[13] PCR[93]
AF0
AF1
AF2
AF3
GPIO[93]
E1UC[26]
WKPU[16](5)
LIN5RX
SIUL
eMIOS_1
WKPU
LINFlex_5
I/O
I/O
I
I
S Tristate 41 49 T6
PF[14] PCR[94]
AF0
AF1
AF2
AF3
GPIO[94]
CAN4TX
E1UC[27]
CAN1TX
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_1
I/O
O
I/O
O
M Tristate 102 126 D14
PF[15] PCR[95]
AF0
AF1
AF2
AF3
GPIO[95]
E1UC[4]
EIRQ[13]
CAN1RX
CAN4RX
SIUL
eMIOS_1
SIUL
FlexCAN_1
FlexCAN_4
I/O
I/O
I
I
I
S Tristate 101 125 E15
Port G
PG[0] PCR[96]
AF0
AF1
AF2
AF3
GPIO[96]
CAN5TX
E1UC[23]
SIUL
FlexCAN_5
eMIOS_1
I/O
O
I/O
M Tristate 98 122 E14
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 43/133
PG[1] PCR[97]
AF0
AF1
AF2
AF3
GPIO[97]
E1UC[24]
EIRQ[14]
CAN5RX
SIUL
eMIOS_1
SIUL
FlexCAN_5
I/O
I/O
I
I
S Tristate 97 121 E13
PG[2] PCR[98]
AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
SOUT_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
O
M Tristate 8 16 E4
PG[3] PCR[99]
AF0
AF1
AF2
AF3
GPIO[99]
E1UC[12]
CS0_3
WKPU[17](5)
SIUL
eMIOS_1
DSPI_3
WKPU
I/O
I/O
I/O
I
S Tristate 7 15 E3
PG[4] PCR[100]
AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
SCK_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
I/O
M Tristate 6 14 E1
PG[5] PCR[101]
AF0
AF1
AF2
AF3
GPIO[101]
E1UC[14]
WKPU[18](5)
SIN_3
SIUL
eMIOS_1
WKPU
DSPI_3
I/O
I/O
I
I
S Tristate 5 13 E2
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
44/133 DocID15131 Rev 9
PG[6] PCR[102]
AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
LIN6TX
SIUL
eMIOS_1
LINFlex_6
I/O
I/O
O
M Tristate 30 38 M2
PG[7] PCR[103]
AF0
AF1
AF2
AF3
GPIO[103]
E1UC[16]
E1UC[30]
WKPU[20](5)
LIN6RX
SIUL
eMIOS_1
eMIOS_1
WKPU
LINFlex_6
I/O
I/O
I/O
I
I
S Tristate 29 37 M1
PG[8] PCR[104]
AF0
AF1
AF2
AF3
GPIO[104]
E1UC[17]
LIN7TX
CS0_2
EIRQ[15]
SIUL
eMIOS_1
LINFlex_7
DSPI_2
SIUL
I/O
I/O
O
I/O
I
S Tristate 26 34 L2
PG[9] PCR[105]
AF0
AF1
AF2
AF3
GPIO[105]
E1UC[18]
SCK_2
WKPU[21](5)
LIN7RX
SIUL
eMIOS_1
DSPI_2
WKPU
LINFlex_7
I/O
I/O
I/O
I
I
S Tristate 25 33 L1
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 45/133
PG[10] PCR[106]
AF0
AF1
AF2
AF3
GPIO[106]
E0UC[24]
E1UC[31]
SIN_4
SIUL
eMIOS_0
eMIOS_1
DSPI_4
I/O
I/O
I/O
I
S Tristate 114 138 D13
PG[11] PCR[107]
AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
CS0_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
I/O
M Tristate 115 139 B12
PG[12] PCR[108]
AF0
AF1
AF2
AF3
GPIO[108]
E0UC[26]
SOUT_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
O
M Tristate 92 116 K14
PG[13] PCR[109]
AF0
AF1
AF2
AF3
GPIO[109]
E0UC[27]
SCK_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
I/O
M Tristate 91 115 K16
PG[14] PCR[110]
AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
LIN8TX
SIUL
eMIOS_1
LINFlex_8
I/O
I/O
O
S Tristate 110 134 B14
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
46/133 DocID15131 Rev 9
PG[15] PCR[111]
AF0
AF1
AF2
AF3
GPIO[111]
E1UC[1]
LIN8RX
SIUL
eMIOS_1
LINFlex_8
I/O
I/O
I
M Tristate 111 135 B13
Port H
PH[0] PCR[112]
AF0
AF1
AF2
AF3
GPIO[112]
E1UC[2]
SIN_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I
M Tristate 93 117 F13
PH[1] PCR[113]
AF0
AF1
AF2
AF3
GPIO[113]
E1UC[3]
SOUT_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
O
M Tristate 94 118 F14
PH[2] PCR[114]
AF0
AF1
AF2
AF3
GPIO[114]
E1UC[4]
SCK_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 95 119 F16
PH[3] PCR[115]
AF0
AF1
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 96 120 F15
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 47/133
PH[4] PCR[116]
AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
SIUL
eMIOS_1
I/O
I/O
M Tristate 134 162 A6
PH[5] PCR[117]
AF0
AF1
AF2
AF3
GPIO[117]
E1UC[7]
SIUL
eMIOS_1
I/O
I/O
S Tristate 135 163 B6
PH[6] PCR[118]
AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
MA[2]
SIUL
eMIOS_1
ADC_0
I/O
I/O
O
M Tristate 136 164 D5
PH[7] PCR[119]
AF0
AF1
AF2
AF3
GPIO[119]
E1UC[9]
CS3_2
MA[1]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M Tristate 137 165 C5
PH[8] PCR[120]
AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M Tristate 138 166 A5
PH[9](10) PCR[121]
AF0
AF1
AF2
AF3
GPIO[121]
TCK
SIUL
JTAGC
I/O
I
SInput,
weak pull-
up 88 127 155 B8
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
48/133 DocID15131 Rev 9
PH[10](10) PCR[122]
AF0
AF1
AF2
AF3
GPIO[122]
TMS
SIUL
JTAGC
I/O
I
MInput,
weak pull-
up 81 120 148 B9
PH[11] PCR[123]
AF0
AF1
AF2
AF3
GPIO[123]
SOUT_3
CS0_4
E1UC[5]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
O
I/O
I/O
M Tristate 140 A14
PH[12] PCR[124]
AF0
AF1
AF2
AF3
GPIO[124]
SCK_3
CS1_4
E1UC[25]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
I/O
O
I/O
M Tristate 141 D12
PH[13] PCR[125]
AF0
AF1
AF2
AF3
GPIO[125]
SOUT_4
CS0_3
E1UC[26]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
O
I/O
I/O
MTristate 9 B3
PH[14] PCR[126]
AF0
AF1
AF2
AF3
GPIO[126]
SCK_4
CS1_3
E1UC[27]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
I/O
O
I/O
M Tristate 10 D1
PH[15] PCR[127]
AF0
AF1
AF2
AF3
GPIO[127]
SOUT_5
E1UC[17]
SIUL
DSPI_5
eMIOS_1
I/O
O
I/O
MTristate 8 A3
Port I
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 49/133
PI[0] PCR[128]
AF0
AF1
AF2
AF3
GPIO[128]
E0UC[28]
LIN8TX
SIUL
eMIOS_0
LINFlex_8
I/O
I/O
O
S Tristate 172 A9
PI[1] PCR[129]
AF0
AF1
AF2
AF3
GPIO[129]
E0UC[29]
WKPU[24](5)
LIN8RX
SIUL
eMIOS_0
WKPU
LINFlex_8
I/O
I/O
I
I
S Tristate 171 A10
PI[2] PCR[130]
AF0
AF1
AF2
AF3
GPIO[130]
E0UC[30]
LIN9TX
SIUL
eMIOS_0
LINFlex_9
I/O
I/O
O
S Tristate 170 B10
PI[3] PCR[131]
AF0
AF1
AF2
AF3
GPIO[131]
E0UC[31]
WKPU[23](5)
LIN9RX
SIUL
eMIOS_0
WKPU
LINFlex_9
I/O
I/O
I
I
S Tristate 169 C10
PI[4] PCR[132]
AF0
AF1
AF2
AF3
GPIO[132]
E1UC[28]
SOUT_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
O
S Tristate 143 A12
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
50/133 DocID15131 Rev 9
PI[5] PCR[133]
AF0
AF1
AF2
AF3
GPIO[133]
E1UC[29]
SCK_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
S Tristate 142 C12
PI[6] PCR[134]
AF0
AF1
AF2
AF3
GPIO[134]
E1UC[30]
CS0_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
S Tristate 11 D2
PI[7] PCR[135]
AF0
AF1
AF2
AF3
GPIO[135]
E1UC[31]
CS1_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
O
S Tristate 12 D3
PI[8] PCR[136]
AF0
AF1
AF2
AF3
GPIO[136]
ADC0_S[16]
SIUL
ADC_0
I/O
I
J Tristate 108 J13
PI[9] PCR[137]
AF0
AF1
AF2
AF3
GPIO[137]
ADC0_S[17]
SIUL
ADC_0
I/O
I
J Tristate 109 J14
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 51/133
PI[10] PCR[138]
AF0
AF1
AF2
AF3
GPIO[138]
ADC0_S[18]
SIUL
ADC_0
I/O
I
J Tristate 110 J15
PI[11] PCR[139]
AF0
AF1
AF2
AF3
GPIO[139]
ADC0_S[19]
SIN_3
SIUL
ADC_0
DSPI_3
I/O
I
I
J Tristate 111 J16
PI[12] PCR[140]
AF0
AF1
AF2
AF3
GPIO[140]
CS0_3
ADC0_S[20]
SIUL
DSPI_3
ADC_0
I/O
I/O
I
J Tristate 112 G14
PI[13] PCR[141]
AF0
AF1
AF2
AF3
GPIO[141]
CS1_3
ADC0_S[21]
SIUL
DSPI_3
ADC_0
I/O
O
I
J Tristate 113 G15
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
52/133 DocID15131 Rev 9
PI[14] PCR[142]
AF0
AF1
AF2
AF3
GPIO[142]
ADC0_S[22]
SIN_4
SIUL
ADC_0
DSPI_4
I/O
I
I
J Tristate 76 R8
PI[15] PCR[143]
AF0
AF1
AF2
AF3
GPIO[143]
CS0_4
ADC0_S[23]
SIUL
DSPI_4
ADC_0
I/O
I/O
I
J Tristate 75 T8
Port J
PJ[0] PCR[144]
AF0
AF1
AF2
AF3
GPIO[144]
CS1_4
ADC0_S[24]
SIUL
DSPI_4
ADC_0
I/O
O
I
J Tristate 74 N5
PJ[1] PCR[145]
AF0
AF1
AF2
AF3
GPIO[145]
ADC0_S[25]
SIN_5
SIUL
——
ADC_0
DSPI_5
I/O
I
I
J Tristate 73 P5
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
SPC560B54x/6x Package pinouts and signal descriptions
DocID15131 Rev 9 53/133
PJ[2] PCR[146]
AF0
AF1
AF2
AF3
GPIO[146]
CS0_5
ADC0_S[26]
SIUL
DSPI_5
ADC_0
I/O
I/O
I
J Tristate 72 P4
PJ[3] PCR[147]
AF0
AF1
AF2
AF3
GPIO[147]
CS1_5
ADC0_S[27]
SIUL
DSPI_5
ADC_0
I/O
O
I
J Tristate 71 P2
PJ[4] PCR[148]
AF0
AF1
AF2
AF3
GPIO[148]
SCK_5
E1UC[18]
SIUL
DSPI_5
eMIOS_1
I/O
I/O
I/O
MTristate 5 A4
1. Alternate functions are chosen by setting the values of the PCR.PA bit fields inside the SIUL module. PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2;
PCR.PA = 11 AF2. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values
selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”.
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside
the SIUL module.
3. The RESET configuration applies during and after reset.
4. LBGA208 available only as development package for Nexus2+
5. All WKPU pins also support external interrupt capability. See the WKPU chapter for further details.
6. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
7. “Not applicable” because these functions are available only while the device is booting. Refer to the BAM information for details.
8. Value of PCR.IBE bit must be 0.
9. This wakeup input cannot be used to exit STANDBY mode.
Table 6. Functional port pin descriptions (continued)
Port pin PCR
Alternate function(1)
Function Peripheral
I/O direction(2)
Pad type
RESET
configuration(3)
Pin number
LQFP
100 LQFP
144 LQFP
176 LBGA
208(4)
Package pinouts and signal descriptions SPC560B54x/6x
54/133 DocID15131 Rev 9
10. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.
11. PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode after reset which has TDO functionality. The reset value of
PCR.OBE is ‘1’, but this setting has no impact as long as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset
value of PCR.OBE = 1.
12. Not available in LQFP100 package.
DocID15131 Rev 9 55/133
SPC560B54x/6x Package pinouts and signal descriptions
132
3.8 Nexus 2+ pins
In the LBGA208 package, eight additional debug pins are available (see Table 7).
Table 7. Nexus 2+ pin descriptions
Port pin Function I/O
direction Pad type Function
after reset
Pin number
LQFP
100 LQFP
144 LBGA
208(1)
MCKO Message clock out O F T4
MDO0 Message data out 0 O M H15
MDO1 Message data out 1 O M H16
MDO2 Message data out 2 O M H14
MDO3 Message data out 3 O M H13
EVTI Event in I M Pull-up K1
EVTO Event out O M L4
MSEO Message start/end out O M G16
1. LBGA208 available only as development package for Nexus2+.
Electrical characteristics SPC560B54x/6x
56/133 DocID15131 Rev 9
4 Electrical characteristics
This section contains electrical characteri stics of the device as well as temperature and
power considera tio ns .
This product contains devices to protect the inputs against damage due to high static
voltages. However, it is advisable to take precautions to avoid application of any voltage
higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD
or VSS). This could be done by the internal pull-up and pull-down, which is provided by the
product for most general purpose pins.
The parameter s listed in the followin g tables represent the characteri stics of the de vice and
its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
4.1 Parameter classification
The electrical p aramete rs shown in this su pplement are gua ranteed by various meth ods. To
give the custome r a better understanding, the cla ssific at i ons lis te d in Table 8 are used and
the parameters are tagged accordingly in the tables where appropriate.
Note: The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
4.2 NVUSRO register
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the
device configuration, namely electrical parameters such as high voltage supply and
oscillator margin, as well as digital functionality (watchdog enable/disable after reset).
Table 8. Parameter classifications
Classification tag Tag description
P Those parameters are guaranteed during producti on testing on each individual device.
CThose parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
TThose parameters are achieved by design characterization on a small sample size from
typical devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
D Those parameters are derived mainly from simulations.
DocID15131 Rev 9 57/133
SPC560B54x/6x Electrical characteristics
132
For a detailed description of the NVUSRO register, please refer to the device reference
manual.
4.2.1 NVUSRO[PAD3V5V] field description
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 9 shows
how NVUSRO[PAD3V5V] controls the device configuration.
4.2.2 NVUSRO[OSCILLATOR_MARGIN] field description
The fast external crystal oscillator consumption is dependent on the
OSCILLATOR_MARGIN bit value. Table 10 shows how NVUSRO[OSCILLATOR_MARGIN]
controls the device configuration.
4.2.3 NVUSRO[WATCHDOG_EN] field description
The watchdog enable/d isable configuration after reset is dependent on the
WATC HDOG_EN bit value. Table 11 shows how NVUSRO[WATCHDOG_EN] controls the
device configuration.
Table 9. PAD3V5V field description(1)
1. See the device reference manual for more information on the NVUSRO register.
Value(2)
2. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 10. OSCILLATOR_MARGIN field description(1)
1. See the device reference manual for more information on the NVUSRO register.
Value(2)
2. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 Low consumption configuration (4 MHz/8 MHz)
1 High margin configuration (4 MHz/16 MHz)
Table 11. WATCHDOG_EN field description
Value(1)
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 Disable after reset
1 Enable after reset
Electrical characteristics SPC560B54x/6x
58/133 DocID15131 Rev 9
4.3 Absolute maximum ratings
Note: Stresses exceeding the recommended ab solute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating cond itions for e xtended
periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS),
the voltage on pi ns with resp ect to gr ound (V SS) m ust no t excee d the r ecommen ded va lues.
Table 12. Absolute maximum ratings
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD SR Voltage on VDD_HV pins with respect to
ground (VSS)—–0.36.0V
VSS_LV SR V oltage on VSS_LV (low voltage digital supply)
pins with respect to ground (VSS)—V
SS – 0.1 VSS + 0.1 V
VDD_BV SR V oltage on VDD_BV (regulator supply) pin with
respect to ground (VSS)—–0.36.0
V
Relative to VDD –0.3 VDD + 0.3
VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1
(ADC reference) pins with respect to ground
(VSS)—V
SS – 0.1 VSS + 0.1 V
VDD_ADC SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1
(ADC reference) pins with respect to ground
(VSS)
—–0.36.0
V
Relative to VDD VDD0.3 VDD + 0.3
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)—–0.36.0
V
Relative to VDD —V
DD + 0.3
IINJPAD SR Inj ected input current on any pin during
overload condition —–1010
mA
IINJSUM SR Absolute sum of all injected input currents
during overload conditi on —–5050
IAVGSEG SR Sum of all the static I/O current within a supply
segment
VDD = 5.0 V ± 10%,
PAD3V5V = 0 —70
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 —64
TSTORAGE SR Storage temperature –55 150 °C
DocID15131 Rev 9 59/133
SPC560B54x/6x Electrical characteristics
132
4.4 Recommended operating conditions
Table 13. Recommended operating conditions (3.3 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD(1) SR Voltage on VDD_HV pins with respect to
ground (VSS)—3.03.6V
VSS_LV(2) SR Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground (VSS)—V
SS 0.1 VSS + 0.1 V
VDD_BV(3) SR Voltage on VDD_BV pin (regulator supply)
with respect to ground (VSS)—3.03.6
V
Relative to VDD VDD 0.1 VDD + 0.1
VSS_ADC SR Voltage on VSS_HV_ADC0,
VSS_HV_ADC1 (ADC reference) pin with
respect to ground (VSS)—V
SS 0.1 VSS + 0.1 V
VDD_ADC(4) SR Voltage on VDD_HV_ADC0,
VDD_HV_ADC1 (ADC reference) with
respect to ground (VSS)
—3.0
(5) 3.6 V
Relative to VDD VDD 0.1 VDD + 0.1
VIN SR Volt age on any GPIO pin with respect to
ground (VSS)—V
SS 0.1 V
Relative to VDD —V
DD + 0.1
IINJPAD SR Injected input current on any pin during
overload condition 55
mA
IINJSUM SR Absolute sum of all injected input currents
during overload condition 50 50
TVDD SR VDD slope to ensure correct power up(6) —3.0
(7) 250 x 103
(0.25
[V/µs])
V/s
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
3. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal to slope
of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.
4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is
reset.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
Electrical characteristics SPC560B54x/6x
60/133 DocID15131 Rev 9
Note: RAM data retention is guaranteed with VDD_LV not below 1.08 V.
Table 14. Recommended operating conditions (5.0 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS S
RDigital ground on VSS_HV pins 0 0 V
VDD(1) S
RV oltage on VDD_HV pins with respect to ground
(VSS)—4.55.5
V
Voltage drop(2) 3.0 5.5
VSS_LV(3) S
RVolt age on VSS_LV (low voltage digital supply)
pins with respect to ground (VSS)—V
SS 0.1 VSS + 0.1 V
VDD_BV(4) S
RVoltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)
—4.55.5
VVoltage drop(2) 3.0 5.5
Relative to VDD 3.0 VDD + 0.1
VSS_ADC S
R
Voltage on VSS_HV_ADC0, VSS_HV_ADC1
(ADC reference) pin with respect to ground
(VSS)—V
SS 0.1 VSS + 0.1 V
VDD_ADC(5) S
RVoltage on VDD_HV_ADC0, VDD_HV_ADC1
(ADC reference) with respect to ground (VSS)
—4.55.5
VVoltage drop(2) 3.0 5.5
Relative to VDD VDD 0.1 VDD + 0.1
VIN S
RV o ltage on any GPIO pin with respect to ground
(VSS)—V
SS 0.1 V
Relative to VDD —V
DD + 0.1
IINJPAD S
RInjected input current on any pin during
overload condition 55
mA
IINJSUM S
RAbsolute sum of all injected input currents
during overload condition 50 50
TVDD S
RVDD slope to ensure correct power up(6) —3.0
(7) 250 x 103
(0.25
[V/µs])
V/s
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog
electrical characteristics will not be guaranteed to stay within the stated limits.
3. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics). While the supply voltage ramps up, the slope on VDD_BV should be less
than 0.9VDD_HV in order to ensure the device does not enter regulator bypass mode.
5. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
DocID15131 Rev 9 61/133
SPC560B54x/6x Electrical characteristics
132
4.5 Thermal characteristics
4.5.1 External ballast resistor recommendations
External ballast resistor on VDD_BV pin helps in reducin g the overall power dissip ation inside
the device. This resistor is required only when maximum power consumption exceeds the
limit imposed by package thermal characteristics.
As stated in Table 15 LQFP thermal characteristics, considering a thermal resist ance of
LQFP144 as 48.3 °C/W, at ambient temperature TA = 125 °C, the junction temperature Tj
will cross 150 °C if the total power dissipation is greater than (150125)/48.3 = 517 mW.
Therefore, the total device current IDDMAX at 125 °C/5.5 V must not exceed 94.1 mA (i.e.,
PD/VDD). Assuming an average IDD(VDD_HV) of 15–20 mA consumption typically during
device RUN mode, the LV domain consumption IDD(VDD_BV) is thus limited to IDDMAX
IDD(VDD_HV), i.e., 80 mA.
Therefore, respectin g the maximum power allowed as explained in Section 4.5.2: Package
thermal characteristics, it is recommended to use this resistor only in the 125 °C/5.5 V
operating corner as per the following guidelines:
If IDD(VDD_BV) < 80 mA, then no resistor is required.
If 80 mA < IDD(VDD_BV) < 90 mA, then 4 resistor can be used.
If IDD(VDD_BV) > 90 mA, then 8 resistor can be used.
Using resist ance in the range of 4–8 , the gain will be around 10–20% of tot al consumption
on VDD_BV. For example, if 8 resistor is used, then power consumption when IDD(VDD_BV)
is 110 mA is equivalent to power consumption when IDD(VDD_BV) is 90 mA (approximately)
when resistor not used.
In order to ensure correct power up, the minimum VDD_BV to be guaranteed is 30 ms/V. If
the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply VDD_BV
pin gets trig gered leading to device reset. Until the supply reaches cert ain threshold, this low
voltage detector (LVD) generates destructive reset event in the system. This threshold
depends on the maximum IDD(VDD_BV) possible across the external resistor.
4.5.2 Package thermal characteristics
Table 15. LQFP thermal characteristics(1)
Symbol C Parameter Conditions(2) Pin count Value Unit
Min Typ Max
RJA CC D Thermal resistance, junction-to-
ambient natural convection(3)
Single-layer board — 1s
100 64
°C/W
144 64
176 64
Four-layer board — 2s2p
100 49.7
144 48.3
176 47.3
Electrical characteristics SPC560B54x/6x
62/133 DocID15131 Rev 9
4.5.3 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calcu lated using
Equation 1:
Equation 1 TJ = TA + (PD x RJA)
Where:
TA is the ambient temperature in °C.
RJA is the packag e junction-to-ambient therma l resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal
power.
PI/O represents the power dissipation on input and output pins; user dete rmined.
Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand,
PI/O may be significant, if the device is configured to continuously drive extern al modules
and/or memories.
An approximat e re lat i on sh ip between PD and TJ (if PI/O is neglected) is given by:
RJB CC Thermal resistance, junction-to-
board(4)
Single-layer board — 1s
100 36
°C/W
144 38
176 38
Four-layer board — 2s2p
100 33.6
144 33.4
176 33.4
RJC CC Thermal resistance, junction-to-
case(5)
Single-layer board — 1s
100 23
°C/W
144 23
176 23
Four-layer board — 2s2p
100 19.8
144 19.2
176 18.8
1. Thermal characteristics are targets based on simulation.
2. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C.
3. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA and RthJMA.
4. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package. When Greek letters are not available, the symbols are typed as RthJB.
5. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters
are not available, the symbols are typed as RthJC.
Table 15. LQFP thermal characteristics(1) (continued)
Symbol C Parameter Conditions(2) Pin count Value Unit
Min Typ Max
DocID15131 Rev 9 63/133
SPC560B54x/6x Electrical characteristics
132
Equation 2 PD = K / (TJ + 273 °C)
Therefore, solving equations <Cross Refs>1 and <Cross Refs>2:
Equation 3 K = PD x (TA + 273 °C) + RJA x PD2
Where:
K is a constant for the particular part, which may be determined from Equation 3
by measuring PD (at equilibrium) for a known TA. Using this value of K, the values
of PD and TJ may be obtained by solving equations Equation 1 and Equation 2
iteratively for any value of TA.
4.6 I/O pad electrical characteristics
4.6.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate
functions:
Slow pads—are the most common pads, providing a good compromise between
transition time and low electromagnetic emission.
Medium pads—provide transition fast enough for the serial communication channels
with controlled current to reduce electromagnetic emission.
Fast pads—provide maximum speed. These are used for improved Nexus de bugging
capability.
Input only pads—are associated with ADC channels and 32 kHz low power external
crystal oscillator p roviding low input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at
the cost of reducing AC performance.
4.6.2 I/O input DC characteristics
Table 16 provides input DC electrical characteristics as described in Figure 6.
Electrical characteristics SPC560B54x/6x
64/133 DocID15131 Rev 9
Figure 6. I/O input DC electrical characteristics definition
VIL
VIN
VIH
PDIx = ‘1
VDD
VHYS
(GPDI register of SIUL)
PDIx = ‘0’
Table 16. I/O input DC electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VIH SR P Input high level CMOS (Schmi tt
Trigger) —0.65V
DD —V
DD + 0.4
VVIL SR P Input low level CMOS (Schmitt
Trigger) 0.4 0.35VDD
VHYS CC C Input hysteresis CMOS (Schmitt
Trigger) —0.1V
DD ——
ILKG CC
D
Digital input leakage No injection on
adjacent pin
TA = 40 °C 2 200
nA
DT
A = 25 °C 2 200
DT
A = 85 °C 5 300
DT
A = 105 °C 1 2 500
PT
A = 125 °C 70 1000
WFI(2) SR P Wakeup input filtered pulse 40 ns
WNFI(2
)SR P Wakeup input not filtered pulse 1000 ns
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.
DocID15131 Rev 9 65/133
SPC560B54x/6x Electrical characteristics
132
4.6.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 17 provides weak pull figures. Both pull-up and pull-down resistances are
supported.
Table 18 provides output driver characteristics for I/O pads when in SLOW
configuration.
Table 19 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Table 20 provides output driver characteristics for I/O pads when in FAST
configuration.
Table 17. I/O pull-up/pull-down DC electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
|IWPU|CC
P
Weak pull-up current
absolute value VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150
µACPAD3V5V =
1(2) 10 250
PV
IN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
|IWPD|CC
PWeak pull-down current
absolute value VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150
µAC PAD3V5V = 1 10 2 50
PV
IN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 18. SLOW configuration output buffer elec trical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VOH C
C
P
Output high level
SLOW configuration Push Pull
IOH = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.8VDD ——
VC IOH = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(2) 0.8VDD ——
C
IOH = 1 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
VDD0.8
Electrical characteristics SPC560B54x/6x
66/133 DocID15131 Rev 9
VOL C
C
P
Output low level
SLOW configuration Push Pull
IOL = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.1VDD
VC IOL = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(2) 0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
——0.5
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 18. SLOW configuration output buffer electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
Table 19. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VOH CC
C
Output high level
MEDIUM configuration Push Pull
IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
V
PIOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended) 0.8VDD ——
CIOH = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.8VDD ——
CIOH = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended) VDD 0.8
CIOH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
VOL CC
C
Output low level
MEDIUM configuration Push Pull
IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 ——0.2V
DD
V
PIOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended) ——0.1V
DD
CIOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) ——0.1V
DD
CIOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended) ——0.5
CIOL = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 ——0.1V
DD
DocID15131 Rev 9 67/133
SPC560B54x/6x Electrical characteristics
132
4.6.4 Output pin transition times
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 20. FAST configuration output buffer electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VOH C
C
P
Output high level
FAST
configuration Push Pull
IOH = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.8VDD ——
VC IOH = 7 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(2) 0.8VDD ——
C
IOH = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
VDD
0.8 ——
VOL C
C
P
Output low level
FAST
configuration Push Pull
IOL = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.1VDD
VC IOL = 7 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(2) 0.1VDD
C
IOL = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
——0.5
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 21. Output pin transition times
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
ttr CC
D
Output transition time output pin(2)
SLOW configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
——50
ns
TC
L = 50 pF 100
DC
L = 100 pF 125
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1
——50
TC
L = 50 pF 100
DC
L = 100 pF 125
Electrical characteristics SPC560B54x/6x
68/133 DocID15131 Rev 9
4.6.5 I/O pad current specification
The I/O pads are distribute d acr oss t he I/O su pp ly seg m en t. Each I/O supply segment is
associated to a V DD/VSS supply pair as described in Table 22.
Table 23 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the IAVGSEG maximum value.
ttr CC
D
Output transition time output pin(2)
MEDIUM configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
SIUL.PCRx.SRC = 1
——10
ns
TC
L = 50 pF 20
DC
L = 100 pF 40
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1
SIUL.PCRx.SRC = 1
——12
TC
L = 50 pF 25
DC
L = 100 pF 40
ttr CC D Output transition time output pin(2)
FAST configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
—— 4
ns
CL = 50 pF 6
CL = 100 pF 12
CL = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1
—— 4
CL = 50 pF 7
CL = 100 pF 12
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. CL includes device and package capacitances (CPKG < 5 pF).
Table 21. Output pin transition times (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
Table 22. I/O supply segments
Package Supply segment
12345678
LBGA208
(1) Equivalent to LQFP176 segment pad distribution MCKO MDOn
/MSEO
LQFP176 pin7 –
pin27 pin28 –
pin57 pin59 –
pin85 pin86 –
pin123 pin124 –
pin150 pin151 –
pin6
LQFP144 pin20 –
pin49 pin51 –
pin99 pin100 –
pin122 pin 123 –
pin19
LQFP100 pin16 –
pin35 pin37 –
pin69 pin70 –
pin83 pin84 –
pin15
1. LBGA208 available only as development package for Nexus2+.
DocID15131 Rev 9 69/133
SPC560B54x/6x Electrical characteristics
132
Table 24 provides the weight of concurrent switching I/Os.
Table 23. I/O consumption
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
ISWTSLW(2) CC D Dynamic I/O current for
SLOW configuration CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——20
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——16
ISWTMED(2) CC D Dynamic I/O current for
MEDIUM configuration CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——29
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——17
ISWTFST(2) CC D Dynamic I/O current for
FAST configuration CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——110
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——50
IRMSSLW CC D Root mean square I/O
current for SLOW
configuration
CL = 25 pF, 2 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0
——2.3
mA
CL = 25 pF, 4 MHz 3.2
CL = 100 pF, 2 MHz 6.6
CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
——1.6
CL = 25 pF, 4 MHz 2.3
CL = 100 pF, 2 MHz 4.7
IRMSMED CC D Root mean square I/O
current for MEDIUM
configuration
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0
——6.6
mA
CL = 25 pF, 40 MHz 13.4
CL = 100 pF, 13 MHz 18.3
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
—— 5
CL = 25 pF, 40 MHz 8.5
CL = 100 pF, 13 MHz 11
IRMSFST CC D Root mean square I/O
current for FAST
configuration
CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0
——22
mA
CL = 25 pF, 64 MHz 33
CL = 100 pF, 40 MHz 56
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
——14
CL = 25 pF, 64 MHz 20
CL = 100 pF, 40 MHz 35
IAVGSEG SR D Sum of all the static I/O
current within a supply
segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70 mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 65
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Electrical characteristics SPC560B54x/6x
70/133 DocID15131 Rev 9
Due to the dynamic curren t limitations, the sum of th e weight of concurrent switching I/Os on
a single segment must not exceed 100% to ensure device functionality.
Table 24. I/O weight(1)
Supply segment
Pad
LQFP176 LQFP144/100
Weig ht 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
LQFP
176 LQFP
144 LQFP
100 SRC(2) =
0SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
644
PB[3] 5% 6% 13% 15%
PC[9] 4% 5% 13% 15%
PC[14] 4% 4% 13% 15%
PC[15] 3% 4% 4% 4% 12% 18% 15% 16%
PJ[4]3%4%3%3%————
1
PH[15]2%3%3%3%————
PH[13]3%4%3%4%————
PH[14]3%4%4%4%————
PI[6]4%—4%—————
PI[7]4%—4%—————
4
PG[5] 4% 5% 10% 12%
PG[4] 4% 6% 5% 5% 9% 13% 11% 12%
PG[3] 4% 5% 9% 11%
PG[2] 4% 6% 5% 5% 9% 12% 10% 11%
4
PA[2] 4% 5% 8% 10%
PE[0] 4% 5% 8% 9%
PA[1] 4% 5% 8% 9%
PE[1] 4% 6% 5% 6% 7% 10% 9% 9%
PE[8] 4% 6% 5% 6% 7% 10% 8% 9%
PE[9] 4% 5% 6% 8%
PE[10] 4% 5% 6% 7%
PA[0]4% 6%5%5%6%8%7%7%
PE[11] 4% 5% 5% 6%
DocID15131 Rev 9 71/133
SPC560B54x/6x Electrical characteristics
132
21
PG[9] 9% 10% 9% 10%
PG[8] 9% 11% 9% 11%
1PC[11] 9% 11% 9% 11%
PC[10] 9% 13% 11% 12% 9% 13% 11% 12%
PG[7] 9% 11% 9% 11%
PG[6] 10% 14% 11% 12% 10% 14% 11% 12%
1PB[0] 10% 14% 12% 12% 10% 14% 12% 12%
PB[1] 10% 12% 10% 12%
PF[9] 10% 12% 10% 12%
PF[8] 10% 14% 12% 13% 10% 14% 12% 13%
PF[12] 10% 15% 12% 13% 10% 15% 12% 13%
1PC[6] 10% 12% 10% 12%
PC[7] 10% 12% 10% 12%
PF[10] 10% 14% 11% 12% 10% 14% 11% 12%
PF[11] 9% 11% 9% 11%
1 PA[15] 8% 12% 10% 10% 8% 12% 10% 10%
PF[13] 8% 10% 8% 10%
1
PA[14] 8% 11% 9% 10% 8% 11% 9% 10%
PA[4] 7% 9% 7% 9%
PA[13] 7% 10% 8% 9% 7% 10% 8% 9%
PA[12] 7% 8% 7% 8%
Table 24. I/O weight(1) (continued)
Supply segment
Pad
LQFP176 LQFP144/100
Weig ht 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
LQFP
176 LQFP
144 LQFP
100 SRC(2) =
0SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
Electrical characteristics SPC560B54x/6x
72/133 DocID15131 Rev 9
3
2
2
PB[9] 1% 1% 1% 1%
PB[8] 1% 1% 1% 1%
PB[10] 5% 6% 6% 7%
PF[0] 5% 6% 6% 8%
PF[1] 5% 6% 7% 8%
PF[2] 6% 7% 7% 9%
PF[3] 6% 7% 8% 9%
PF[4] 6% 7% 8% 10%
PF[5] 6% 7% 9% 10%
PF[6] 6% 7% 9% 11%
PF[7] 6% 7% 9% 11%
PJ[3]6%—7%—————
PJ[2]6%—7%—————
PJ[1]6%—7%—————
PJ[0]6%—7%—————
PI[15]6%—7%—————
PI[14]6%—7%—————
22
PD[0] 1% 1% 1% 1%
PD[1] 1% 1% 1% 1%
PD[2] 1% 1% 1% 1%
PD[3] 1% 1% 1% 1%
PD[4] 1% 1% 1% 1%
PD[5] 1% 1% 1% 1%
PD[6] 1% 1% 1% 2%
PD[7] 1% 1% 1% 2%
Table 24. I/O weight(1) (continued)
Supply segment
Pad
LQFP176 LQFP144/100
Weig ht 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
LQFP
176 LQFP
144 LQFP
100 SRC(2) =
0SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
DocID15131 Rev 9 73/133
SPC560B54x/6x Electrical characteristics
132
422
PD[8] 1% 1% 1% 2%
PB[4] 1% 1% 1% 2%
PB[5] 1% 1% 1% 2%
PB[6] 1% 1% 1% 2%
PB[7] 1% 1% 1% 2%
PD[9] 1% 1% 1% 2%
PD[10] 1% 1% 1% 2%
PD[11] 1% 1% 1% 2%
Table 24. I/O weight(1) (continued)
Supply segment
Pad
LQFP176 LQFP144/100
Weig ht 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
LQFP
176 LQFP
144 LQFP
100 SRC(2) =
0SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
Electrical characteristics SPC560B54x/6x
74/133 DocID15131 Rev 9
4
PB[11]1%—1%—————
PD[12]11%13%—————
22
PB[12] 11% 13% 15% 17%
PD[13] 11% 13% 14% 17%
PB[13] 11% 13% 14% 17%
PD[14] 11% 13% 14% 17%
PB[14] 11% 13% 14% 16%
PD[15] 11% 13% 13% 16%
PB[15] 11% 13% 13% 15%
PI[8]10%12%—————
PI[9]10%12%—————
PI[10]10%12%—————
PI[11]10%12%—————
PI[12]10%12%—————
PI[13]10%11%—————
2
2 PA[3] 9% 11% 11% 13%
PG[13] 9% 13% 11% 11% 10% 14% 12% 13%
PG[12] 9% 13% 10% 11% 10% 14% 12% 12%
PH[0] 6% 8% 7% 7% 6% 9% 7% 8%
PH[1] 6% 8% 7% 7% 6% 8% 7% 7%
PH[2] 5% 7% 6% 6% 5% 7% 6% 7%
PH[3] 5% 7% 5% 6% 5% 7% 6% 6%
PG[1] 4% 5% 4% 5%
PG[0] 4% 5% 4% 5% 4% 5% 4% 5%
Table 24. I/O weight(1) (continued)
Supply segment
Pad
LQFP176 LQFP144/100
Weig ht 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
LQFP
176 LQFP
144 LQFP
100 SRC(2) =
0SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
DocID15131 Rev 9 75/133
SPC560B54x/6x Electrical characteristics
132
5
3
PF[15] 4% 4% 4% 4%
PF[14] 4% 6% 5% 5% 4% 6% 5% 5%
PE[13] 4% 5% 4% 5%
3
PA[7] 5% 6% 5% 6%
PA[8] 5% 6% 5% 6%
PA[9] 6% 7% 6% 7%
PA[10] 6% 8% 6% 8%
PA[11] 8% 9% 8% 9%
PE[12] 8% 9% 8% 9%
PG[14] 8% 9% 8% 9%
PG[15] 8% 11% 9% 10% 8% 11% 9% 10%
PE[14] 8% 9% 8% 9%
PE[15] 8% 11% 9% 10% 8% 11% 9% 10%
PG[10] 8% 9% 8% 9%
PG[11] 7% 11% 9% 9% 7% 11% 9% 9%
PH[11]7%10%9%9%————
PH[12]7%10%8%9%————
PI[5]7%—8%—————
PI[4]7%—8%—————
33
PC[3] 6% 8% 6% 8%
PC[2]6% 8%7%7%6%8%7%7%
PA[5]6% 8%7%7%6%8%7%7%
PA[6] 5% 6% 5% 6%
PH[10] 5% 7% 6% 6% 5% 7% 6% 6%
PC[1] 5% 19% 5% 13% 5% 19% 5% 13%
Table 24. I/O weight(1) (continued)
Supply segment
Pad
LQFP176 LQFP144/100
Weig ht 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
LQFP
176 LQFP
144 LQFP
100 SRC(2) =
0SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
Electrical characteristics SPC560B54x/6x
76/133 DocID15131 Rev 9
4.7 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
6
4
4
PC[0]6% 9%7%8%7%10%8%8%
PH[9] 7% 8% 7% 9%
PE[2] 7% 10% 8% 9% 8% 11% 9% 10%
PE[3] 7% 10% 9% 9% 8% 12% 10% 10%
PC[5] 7% 11% 9% 9% 8% 12% 10% 11%
PC[4] 8% 11% 9% 10% 9% 13% 10% 11%
PE[4] 8% 11% 9% 10% 9% 13% 11% 12%
PE[5] 8% 11% 10% 10% 9% 14% 11% 12%
PH[4] 8% 12% 10% 10% 10% 14% 12% 12%
PH[5] 8% 10% 10% 12%
PH[6] 8% 12% 10% 11% 10% 15% 12% 13%
PH[7] 9% 12% 10% 11% 11% 15% 13% 13%
PH[8] 9% 12% 10% 11% 11% 16% 13% 14%
4PE[6] 9% 12% 10% 11% 11% 16% 13% 14%
PE[7] 9% 12% 10% 11% 11% 16% 14% 14%
PI[3]9%—10%—————
PI[2]9%—10%—————
PI[1]9%—10%—————
PI[0]9%—10%—————
44
PC[12] 8% 12% 10% 11% 12% 18% 15% 16%
PC[13] 8% 10% 13% 15%
PC[8]8% —10%—13%—15%—
PB[2] 8% 11% 9% 10% 13% 18% 15% 16%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. SRC: “Slew Rate Control” bit in SIU_PCRx.
Table 24. I/O weight(1) (continued)
Supply segment
Pad
LQFP176 LQFP144/100
Weig ht 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
LQFP
176 LQFP
144 LQFP
100 SRC(2) =
0SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
DocID15131 Rev 9 77/133
SPC560B54x/6x Electrical characteristics
132
Figure 7. Start-up reset requirements
Figure 8. Noise filtering on reset signa l
VIL
VDD
device reset forced by RESET
VDDMIN
RESET
VIH
device start-up phase
VRESET
VIL
VIH
VDD
filtered by
hysteresis filtered by
lowpass filter
WFRST WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
Electrical characteristics SPC560B54x/6x
78/133 DocID15131 Rev 9
Table 25. Reset electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VIH SR P Input High Level CMOS
(Schmi tt Trigger) 0.65VDD —V
DD + 0.4 V
VIL SR P Input low Level CMOS
(Schmi tt Trigger) 0.4 0.35VDD V
VHYS CC C Input hysteresis CMOS
(Schmi tt Trigger) —0.1V
DD —— V
VOL CC P Output low level
Push Pull, IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended) 0.1VDD
V
Push Pull, IOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V =
1(2) 0.1VDD
Push Pull, IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended) ——0.5
ttr CC D Output transition time output
pin(3) MEDIUM configuration
CL = 25 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 10
ns
CL = 50 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 20
CL = 100 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 40
CL = 25 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 12
CL = 50 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 25
CL = 100 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 40
WFRST SR P RESET input filtered pulse 40 ns
WNFRST SR P RESET input not filtered pulse 1000 ns
|IWPU|CC
P
Wea k pull-up curren t ab so l ut e
value
VDD = 3.3 V ± 10%, PAD3V5V = 1 10 150
µA
DV
DD = 5.0 V ± 10%, PAD3V5V = 0 10 150
PVDD = 5.0 V ± 10%, PAD3V5V =
1(4) 10 250
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the
device reference manual).
3. CL includes device and package capacitance (CPKG < 5 pF).
4. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
DocID15131 Rev 9 79/133
SPC560B54x/6x Electrical characteristics
132
4.8 Power management electrical characteristics
4.8.1 Voltage regulator electrical characteristics
The device implement s an internal volt age regulato r to generate the low volt age core supply
VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the
common I/O supply VDD. The following supplies are involved:
HV: High voltage external power sup p ly for voltage regulator module. This must be
provided externally through VDD power pin.
BV: High voltage external power supply for internal ballast module. This must be
provided externally through VDD_BV power pin. Voltage values should be aligned with
VDD.
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is
generated by the internal voltage regulator but provided outside to connect stability
capacitor. It is further split into four main domains to ensure noise isolation between
critical LV modules within the device:
LV_COR: Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated
ballast and shorte d to LV_COR through double bonding.
LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated
ballast and shorte d to LV_COR through double bonding.
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
Figure 9. Voltage regulator capacitance co nnection
C
REG1
(LV_COR/LV_DFLA)
DEVICE
V
SS_LV
V
DD_BV
V
DD_LV
C
DEC1
(Ballast decoup lin g)
V
SS_LV
V
DD_LV
V
DD
V
SS_LV
V
DD_LV
C
REG2
(LV_COR/LV_CFLA)
C
REG3
C
DEC2
DEVICE
V
DD_BV
I
V
DD_LVn
V
REF
V
DD
Voltage Regulator
V
SS
V
SS_LVn
(supply/IO decoupling)(LV_COR/LV_PLL)
Electrical characteristics SPC560B54x/6x
80/133 DocID15131 Rev 9
The internal volt a ge regulato r require s exte rnal cap acit an ce (CREGn) to be conne cted to the
device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on th e board as nea r as possib le to the associated pins. Care should also
be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply
pairs to ensure stable voltage (see Section 4.4: Recommended operating conditions).
Table 26. Voltage regulator electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
CREGn SR Internal voltage regulator external
capacitance 200 500 nF
RREG SR Stability capacitor equivalent serial
resistance Range:
10 kHz to 20 MHz ——0.2W
CDEC1 SR Decoupling capacitance(2) ballast
VDD_BV/VSS_LV pair:
VDD_BV = 4.5 V to 5.5 V 100(3)
470(4) nF
VDD_BV/VSS_LV pair:
VDD_BV = 3 V to 3.6 V 400
CDEC2 SR Decoupling capacitance regulator
supply VDD/VSS pair 10 100 nF
VMREG CC TMain regulator output voltage Before exiting from reset 1.32 V
PAfter trimming 1.16 1.28
IMREG SR Main regulator current provided to
VDD_LV domain ——150 mA
IMREGINT CC DMain regulator module current
consumption IMREG = 200 mA 2mA
IMREG = 0 mA 1
VLPREG CC PLow-power regulator output voltage After trimming 1.16 1.28 V
ILPREG SR Low-power regulator current
provided to VDD_LV domain ——15 mA
ILPREGINT CC DLow-power regulator modul e current
consumption
ILPREG = 15 mA;
TA = 55 °C ——
600 µA
ILPREG = 0 mA;
TA = 55 °C 5—
VULPREG CC PUltra low power regulator output
voltage After trimming 1.16 1.28 V
IULPREG SR Ultra low power regulator current
provided to VDD_LV domain ——5mA
IULPREGINT CC DUltra low power regulator module
current consumption
IULPREG = 5 mA;
TA = 55 °C ——
100 µA
IULPREG = 0 mA;
TA = 55 °C 2—
IDD_BV CC DIn-rush average current on VDD_BV
during power-up(5) ——300(6) mA
DocID15131 Rev 9 81/133
SPC560B54x/6x Electrical characteristics
132
4.8.2 Low voltage detector electrical characteristics
The device implements a power-on reset (POR) module to ensure correct power-up
initialization, as well as five low voltage detectors ( LVDs) to monitor the VDD and the VDD_LV
voltage while device is supplied:
POR monitors VDD during the power-up pha se to ensure device is maint ained in a sa fe
reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR
in device reference manual)
LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer
to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device
reference manual)
LVDHV3B monitors VDD_BV to en sure device reset below minimum functional supply
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in
device reference manual)
LVDHV5 monitors VDD when application uses de vice in the 5.0 V ± 10% range (refer to
RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference
manual)
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical
value is in the range of 470 nF.
3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.
4. External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in
operating range.
5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on
external capacitances to be loaded).
6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
Electrical characteristics SPC560B54x/6x
82/133 DocID15131 Rev 9
Figure 10. Low voltage detector vs reset
4.9 Power consumption
Table 28 provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on th e application.
VDD
VLVDHVxH
RESET
VLVDHVxL
Table 27. Low voltage detector electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VPORUP SR P Supply for functional POR module
TA = 25 °C,
after trimming
1.0 5.5
V
VPORH CC P Power-on reset threshold 1.5 2.6
VLVDHV3H CC T LVDHV3 low voltage detector high threshold 2.95
VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.6 2.9
VLVDHV3BH CC P LVDHV3B low voltage detector high threshold 2.95
VLVDHV3BL CC P LVDHV3B low voltage detector low threshold 2.6 2.9
VLVDHV5H CC T LVDHV5 low voltage detector high threshold 4.5
VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 4.4
VLVDLVCORL CC P LVDLVCOR low voltage detector low th reshold 1.08 1.16
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.08 1.16
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
DocID15131 Rev 9 83/133
SPC560B54x/6x Electrical characteristics
132
Table 28. Power consumption on VDD_BV and VDD_HV
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
IDDMAX(2) CC D RUN mode maximum average
current ——115140
(3) mA
IDDRUN(4) CC
T
RUN mode typical average
current(5)
fCPU = 8 MHz 12
mA
Tf
CPU = 16 MHz 27
Tf
CPU = 32 MHz 43
Pf
CPU = 48 MHz 56 100
Pf
CPU = 64 MHz 70 125
IDDHALT CC CHALT mode current(6) Slow internal RC
oscillator (128 kHz)
running
TA = 25 °C 10 18 mA
PT
A = 125 °C 17 28
IDDSTOP CC
P
STOP mode current(7) Slow internal RC
oscillator (128 kHz)
running
TA = 25 °C 350 900(8) µA
DT
A = 55 °C 750
DT
A = 85 °C 2 7
mADT
A = 105 °C 4 10
PT
A = 125 °C 7 14
IDDSTDBY2 CC
P
STANDBY2 mode current(9) Slow internal RC
oscillator (128 kHz)
running
TA = 25 °C 30 100
µA
DT
A = 55 °C 75
DT
A = 85 °C 180 700
DT
A = 105 °C 315 1000
PT
A = 125 °C 560 1700
IDDSTDBY1 CC
T
STANDBY1 mode current(10) Slow internal RC
oscillator (128 kHz)
running
TA = 25 °C 20 60
µA
DT
A = 55 °C 45
DT
A = 85 °C 100 350
DT
A = 105 °C 165 500
DT
A = 125 °C 280 900
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. IDDMAX is drawn only from the VDD_BV pin. Running consumption does not include I/Os toggling which is highly
dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code
fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by
application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from
RAM most used functions, use low power mode when possible.
3. Higher current may be sunk by device during power-up and standby exit. Please refer to in-rush average current in
Table 26.
4. IDDRUN is drawn only from the VDD_BV pin. RUN current measured with typical application with accesses on both Flash
and RAM.
5. Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in
loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at
max frequency, periodic SW/WDG timer reset enabled.
Electrical characteristics SPC560B54x/6x
84/133 DocID15131 Rev 9
4.10 Flash memory electrical characteristics
4.10.1 Program/erase characteristics
Table 29 shows the program and erase characteristics.
6. Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1,
2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on
PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no
communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion
except two analog watchdogs.
7. Only for the “P” classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPVreg off, ULPVreg/LPVreg on. All
possible peripherals off and clock gated. Flash in power down mode.
8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator
module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures
exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP
specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and
the main regulator will be automatically switched off when the load current is below 6 mA.
9. Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all
possible modules switched off.
10. ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.
Table 29. Program and erase specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ
(1)
Initial
max
(2)
Max
(3)
tdwprogram
C
C
C
Double word (64 bits) program time(4) Code Flash 18 50 500 µs
Data Flash 22
t16Kpperase 16 KB block preprogram and erase time Code Flash 200 500 5000 ms
Dat a Fl a s h 300
t32Kpperase 32 KB block preprogram and erase time Code Flash 300 600 5000 ms
Dat a Fl a s h 400
t128Kpperase 128 KB block preprogram and erase time Code Flash 600 1300 7500 ms
Dat a Fl a s h 800
tesus D Erase Suspend Latency 30 30 µs
tESRT C Erase Suspend Request Rate(5) Code Flash 20 ms
Data Flash 10
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
5. Time between erase suspend resume and the next erase suspend request.
DocID15131 Rev 9 85/133
SPC560B54x/6x Electrical characteristics
132
ECC circuitry provide s cor re ct ion of sing le bit faults and is used to improve fu rther
automotive reliability results. Some units will experience single bit corrections throughout
the life of the product with no impact to product reliability.
4.10.2 Flash power supply DC characteristics
Table 32 shows the power supply DC characteristics on external supply.
Table 30. Flash module life
Symbol C Parameter Conditions Value Unit
Min Typ Max
P/E CC C
Number of program/erase
cycles per block for 16 KB
blocks over the operating
temperature range (TJ)
100000 cycles
P/E CC C
Number of program/erase
cycles per block for 32 KB
blocks over the operating
temperature range (TJ)
10000 100000 cycles
P/E CC C
Number of program/erase
cycles per block for 128 KB
blocks over the operating
temperature range (TJ)
1000 100000 cycles
Retention CC C Minimum data retention at
85 °C average ambient
temperature(1)
Blocks with
0–1000 P/E cycles 20 years
Blocks with
1001–10000 P/E
cycles 10 years
Blocks with
10001–100000 P/E
cycles 5—years
1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature
range.
Table 31. Flash read access timing
Symbol C Parameter Conditions(1) Max Unit
fREAD CC
P
Maximum frequency for Flash reading
2 wait states 64
MHzC 1 wait state 40
C 0 wait states 20
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Electrical characteristics SPC560B54x/6x
86/133 DocID15131 Rev 9
4.10.3 Start-up/Switch-off timings
4.11 Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.11.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that go od EMC
performance is highly dependent on the user application and the software in particular.
Table 32. Flash power supply DC electrical characteristics
Symbol Parameter Conditions(1) Value Unit
Min Typ Max
ICFREAD CC Sum of the current consumption on
VDD_HV and VDD_BV on read access Flash module read
fCPU = 64 MHz Code Flash 33 mA
IDFREAD Data Flash 33
ICFMOD
CC Sum of the current consumption on
VDD_HV and VDD_BV on matrix
modification (program/erase)
Program/Erase
on-going while reading
Flash registers
fCPU = 64 MHz
Code Flash 52
mA
IDFMOD Data Flash 33
ICFLPW CC Sum of the current consumption on
VDD_HV and VDD_BV during Flash low
power mode Code Flash 1.1 mA
IDFLPW Data Flas h 900 µA
ICFPWD CC Sum of the current consumption on
VDD_HV and VDD_BV during Flash
power down mode Code Flash 150 µA
IDFPWD Data Flash 150
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified.
Table 33. Start-up time/Switch-off time
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
tFLARSTEXIT CC T Delay for Flash module to exit reset mode 125
µs
tFLALPEXIT CC T Delay for Flash module to exit low-power mode 0.5
tFLAPDEXIT CC T Delay for Flash module to exit power-down mode 30
tFLALPENTRY CC T Delay for Flash module to enter low-power mode 0.5
tFLAPDENTRY CC T Delay for Flash module to enter power-down mode 1.5
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
DocID15131 Rev 9 87/133
SPC560B54x/6x Electrical characteristics
132
Therefore it is recommended that the user apply EMC software optimizatio n and
prequalification tests in relation with the EMC level requested for the application.
Software recommendations The software flowchart must include the management of
runaway conditions such as:
Corrupted program counter
Unexpecte d re se t
Critical data corruption (c on tr ol regist er s...)
Prequalification trials Most of the common failures (unexpected reset and program
counter corruption) can b e repr odu ced by ma nually forcing a low state on the rese t pin
or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When
unexpected behavior is detected, the software can be hardened to prevent
unrecoverable errors occurring (see applicatio n note Software Techniques For
Improving Microcontroller EMC Performance (AN1015)).
4.11.2 Electromagnetic interference (EMI)
The product i s moni tore d in terms o f emission based on a typical ap plication. This emission
test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI
measurements.
4.11.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
Table 34. EMI radiated emission measurement(1)(2)
Symbol C Parameter Conditions Value Unit
Min Typ Max
SR Scan range 0.15
01000 MHz
fCPU SR Operating frequency 64 MHz
VDD_LV SR LV operating
voltages ——1.28V
SEMI CC T Peak level
VDD = 5 V,
TA = 25 °C,
LQFP144 package
Test conforming to
IEC 61967-2,
fOSC = 8 MHz/fCPU =
64 MHz
No PLL frequency
modulation ——18
dBµ
V
± 2% PLL frequency
modulation ——14
dBµ
V
1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.
2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local
marketing representative.
Electrical characteristics SPC560B54x/6x
88/133 DocID15131 Rev 9
4.11.3.1 Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts(n + 1) supply pin). This test
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note Electrostatic Discharge Sensitivity Measurement (AN1181).
4.11.3.2 Static latch-up (LU)
Two complementary static tests are requir ed on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
4.12 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 11 describes a simple model of
the internal oscillator driver and provides an example of a connection for an oscillator or a
resonator.
Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the
design simulations.
Table 35. ESD absolu t e maximu m ra ti n gs (1)(2)
Symbol Ratings Conditions Class Max value(3) Unit
VESD(HBM) Electrostatic discharge voltage
(Human Body Model) TA = 25 °C
conforming to AEC-Q100-002 H1C 2000
V
VESD(MM) Electrostatic discharge voltage
(Machine Model) TA = 25 °C
conforming to AEC-Q100-003 M2 200
VESD(CDM) Electrostatic discharge voltage
(Charged Device Model) TA = 25 °C
conforming to AEC-Q100-011 C3A 500
750 (corners)
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at
room temperature followed by hot temperature, unless specified otherwise in the device specification.
3. Data based on characterization results, not tested in production
Table 36. Latch-up results
Symbol Parameter Conditions Class
LU Static latch-up class TA = 125 °C
conforming to JESD 78 II level A
DocID15131 Rev 9 89/133
SPC560B54x/6x Electrical characteristics
132
Figure 11. Crystal oscillator and resonator connection scheme
C2
C1
Crystal
XTAL
EXTAL
Resonator
XTAL
EXTAL
DEVICE
DEVICE
DEVICE XTAL
EXTAL
I
R
VDD
2. A series resistor may be required, according to crystal oscillator supplier recommendations.
1. XTAL/EXTAL must not be dire ctly used to drive external circuits
Notes:
Table 37. Crystal description
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)(1)
Shunt
capacitance
between
xtalout
and xtalin
C0(2) (pF)
4 NX8045GB 300 2.68 591.0 21 2.93
8
NX5032GA
300 2.46 160.7 17 3.01
10 150 2.93 86.6 15 2.91
12 120 3.11 56.5 15 2.93
16 120 3.90 25.3 10 3.00
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,
etc.).
Electrical characteristics SPC560B54x/6x
90/133 DocID15131 Rev 9
Figure 12. Fast external crystal oscillator (4 to 16 MHz) timing diagram
VMXOSCOP
TMXOSCSU
VXTAL
VMXOSC
valid internal clock
90%
10%
1/fMXOSC
S_MTRANS bit (ME_GS register)
1
0
Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
fFXOSC S
RFast external crystal
oscillator frequency 4.0 16.0 MHz
gmFXOSC
C
CC
Fast external crystal
oscillator
transconductance
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN =
0
2.2 8.2
mA/
V
C
CP
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN =
0
2.0 7.4
C
CC
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN =
1
2.7 9.7
C
CC
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN =
1
2.5 9.2
VFXOSC C
CTOscillation amplitude at
EXTAL
fOSC = 4 MHz,
OSCILLATOR_MARGIN =
01.3
V
fOSC = 16 MHz,
OSCILLATOR_MARGIN =
11.3
VFXOSCOP C
CCOscillation operating
point 0.95 V
DocID15131 Rev 9 91/133
SPC560B54x/6x Electrical characteristics
132
4.13 Slow external crystal oscillator (32 kHz) electrical
characteristics
The device provides a low power oscillator/resonator driver.
Figure 13. Crystal oscillator and resonator connec tion scheme
IFXOSC(2) C
CTFast external crystal
oscillator consumption ——23mA
tFXOSCSU C
CTFast external crystal
oscillator start-up time
fOSC = 4 MHz,
OSCILLATOR_MARGIN =
0—— 6
ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN =
1——1.8
VIH S
RPInput high level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.65VDD VDD + 0.
4V
VIL S
RPInput low level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.4 0.35VDD V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled
peripherals).
Table 38. Fast external crystal oscillat or (4 to 16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
OSC32K_XTAL
OSC32K_EXTAL
DEVICE
C2
C1
Crystal
OSC32K_XTAL
OSC32K_EXTAL
RP
Resonator
DEVICE
Note: OSC32_XTAL/OSC32_EXTAL must not be directly used to drive external circuits
Electrical characteristics SPC560B54x/6x
92/133 DocID15131 Rev 9
Figure 14. Equivalent circuit of a quartz crystal
C0
C2C1 C2
Rm
C1
Lm
Cm
Crystal
Table 39. Crystal motional characteristics(1)
Symbol Parameter Conditions Value Unit
Min Typ Max
LmMotional inductance 11.796 KH
CmMotional capacitance 2 fF
C1/C2 Load capacitance at OSC32K_XTAL and
OSC32K_EXTAL with respect to ground (2) 18 28 pF
Rm(3) Motional resistance
AC coupled at C0 = 2.85 pF(4) ——65
kW
AC coupled at C0 = 4.9 pF(4) ——50
AC coupled at C0 = 7.0 pF(4) ——35
AC coupled at C0 = 9.0 pF(4) ——30
1. The crystal used is Epson Toyocom MC306.
2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It
includes all the parasitics due to board traces, crystal and package.
3. Maximum ESR (Rm) of the crystal is 50 k
4. C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.
DocID15131 Rev 9 93/133
SPC560B54x/6x Electrical characteristics
132
Figure 15. Slow external crystal oscillator (32 kHz) timing diagram
4.14 FMPLL electrical characteristics
The device provides a frequency modulated phase locked loop (FMPLL) module to
generate a fast system clock from the main oscillator driver.
OSCON bit (OSC_CTL register)
TLPXOSC32KSU
1
VOSC32K_XTAL
VLPXOSC32K
valid internal clock
90%
10%
1/fLPXOSC32K
0
Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
fSXOSC S
RSlow external crystal oscillator
frequency —32
32.76
840 kHz
VSXOSC C
CT Oscillation amplitude 2.1 V
ISXOSCBIAS C
CT Oscillation bias current 2.5 µA
ISXOSC C
CTSlow external crystal oscillator
consumption ——8µA
tSXOSCSU C
CTSlow external crystal oscillator
start-up time ——2
(2) s
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Values are specified for no neighbor
GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.
2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.
Electrical characteristics SPC560B54x/6x
94/133 DocID15131 Rev 9
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock
at the power-up of the device.
Table 41. FMPLL electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
fPLLIN SR F MPLL reference clock(2) —464MHz
PLLIN SR FMPLL reference clock duty
cycle(2) —4060%
fPLLOUT CC P FMPLL output clock frequency 16 64 MHz
fVCO(3) CC PVCO frequency without
frequency modu l a ti on —256512
MHz
PVCO frequency with frequency
modulation 245.76 532.48
fCPU SR System clock frequency 64 MHz
fFREE CC P Free-running frequency 20 150 MHz
tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) 40 100 µs
tSTJIT CC F MPLL short term jitter(4) fsys maximum –4 4 %
tLTJIT CC FMPLL long term jitter fPLLCLK at 64 MHz, 4000 cycles 10 ns
IPLL CC C FMPLL consumption TA = 25 °C 4 mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional
mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
3. Frequency modulation is considered ± 4%.
4. Short term jitter is measured on the clock rising edge at cycle n and n+4.
Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
fFIRC CC P Fast internal RC oscillator high
frequency TA = 25 °C, trimmed 16 MHz
SR 12 20
IFIRCRUN(2) CC T Fast internal RC oscillator high
frequency current in running
mode TA = 25 °C, trimmed 200 µA
IFIRCPWD CC D Fast internal RC oscillator high
frequency current in power
down mode TA = 25 °C 1 0 µA
DocID15131 Rev 9 95/133
SPC560B54x/6x Electrical characteristics
132
4.16 Slow internal RC oscillator (128 kHz) electrical
characteristics
The device provides a 128 kHz low power internal RC oscillator. This can be used as the
reference clock for the RTC module.
IFIRCSTOP CC T Fast internal RC oscillator high
frequency and system clock
current in stop mode TA = 25 °C
sysclk = off 500
µA
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
tFIRCSU CC C Fast internal RC oscillator start-
up time VDD = 5.0 V ± 10% 1.1 2.0 µs
FIRCPRE CC C Fast internal RC oscillator
precision after software
trimming of fFIRC
TA = 25 °C 1— 1%
FIRCTRIM CC C Fast internal RC oscillator
trimming step TA = 25 °C 1.6 %
FIRCVAR CC C
Fast internal RC oscillator
variatio n over temperature and
supply with respect to fFIRC at
TA = 25 °C in high-frequency
configuration
5— 5%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals con sumption when RC oscillator is ON.
Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
Table 43 . Slo w in te rn a l RC oscillator (128 kHz) electrical characteristics
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
fSIRC CC P Slow internal RC oscillator low
frequency TA = 25 °C, trimmed 128 kHz
SR 100 150
ISIRC(2) CC C Slow internal RC oscillato r low
frequency current TA = 25 °C, trimmed 5 µA
tSIRCSU CC P Slow internal RC oscillator start-up
time TA = 25 °C, VDD = 5.0 V ± 10% 8 12 µs
Electrical characteristics SPC560B54x/6x
96/133 DocID15131 Rev 9
4.17 ADC electrical characteristics
4.17.1 Introduction
The device provides two Successive Approximation Register (SAR) analog-to-digital
converters (10-bit and 12-bit).
SIRCPRE CC C Slow internal RC oscillator precision
after sof twar e trimming of fSIRC TA = 25 °C 2— 2%
SIRCTRIM CC C Slow internal RC oscillator trimming
step ——2.7
SIRCVAR CC C
Slow internal RC oscillator varia ti on
in temperature and supply with
respect to fSIRC at T A = 55 °C in high
frequency configuration
High frequency configuration 10 10 %
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals con sumption when RC oscillator is ON.
Table 43. Slow internal RC oscillator ( 128 kHz) electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
DocID15131 Rev 9 97/133
SPC560B54x/6x Electrical characteristics
132
Figure 16. ADC_0 characteristic and error definit ions
4.17.2 Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is
considered.
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedan ce. Placing a capacitor with good high frequen cy characteristics at the inpu t
pin of the device can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin;
furthermore, it sour ces charge du ring the sampling phase , when the anal og signal source is
a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC filter). The RC filtering may be limited according to the value of source
(2)
(1)
(3)
(4)
(5)
Offset Error (EO)
Offset Error (EO)
Gain Error (EG)
1 LSB (ideal)
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential no n-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
1 LSB ideal = VDD_ADC / 1024
Vin(A) (LSBideal)
code out
Electrical characteristics SPC560B54x/6x
98/133 DocID15131 Rev 9
impedance of the transducer or circuit supplying the analog signal to be measured. The filte r
at the input pins must be designed taking into account the dynamic characteristics of the
input signal (bandwidth) and the equivalent input imp edance of the ADC itself.
In fact a current sink contributor is represented by the charge sharin g effects with the
sampling capacitance: being CS and Cp2 substantially two switched capacitances, with a
frequency equal to the conversion ra te of the ADC, it can be seen as a resistive path to
ground. For instance, assuming a conversion rate of 1 MHz, with CS+Cp2 equal to 3 pF, a
resistance of 330 k is obtained (REQ = 1 / (fc × (CS+Cp2)), where fc represents the
conversion rate at the considered channe l). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF,
the external circuit must be designed to respect the Equation 4:
Equation 4
Equation 4 generates a constraint for external network design, in particular on a resistive
path.
Figure 17. Input equivalent circuit (precise channels)
VA
RSRF
+
REQ
---------------------
1
2
---LSB
R
F
C
F
R
S
R
L
R
SW1
C
P2
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW1 Channel Selection Switch Impedance
RADSampling Switch Impedance
CP Pin Capa ci tance (two con tri bu t io n s , C P1 and CP2)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
DocID15131 Rev 9 99/133
SPC560B54x/6x Electrical characteristics
132
Figure 18. Input equivalent circuit (extended channels)
A second aspect in volving the cap acitance network shall be considered. Assu ming the three
capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the
equivalent circuit reported in Figure 17): A charge sharing phenomenon is installed when
the sampling phase is started (A/D switch close).
Figure 19. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:
R
F
C
F
R
S
R
L
R
SW1
C
P3
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW Channel Selection Switch Impedance (two contributions RSW1 and RSW2)
RADSampling Switch Impedance
CP Pin Capacitance (three contributions, CP1, CP2 and CP3)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
C
P2
Extended
R
SW2
Switch
VA
VA1
VA2
t
TS
VCS Voltage Transient on CS
V <0.5 LSB
12
1 < (RSW + RAD) CS << tS
2
= R
L
(C
S
+ C
P1
+ C
P2
)
Electrical characteristics SPC560B54x/6x
100/133 DocID15131 Rev 9
1. A first and quick charge transfer from the internal capacitance C P1 and CP2 to the
sampling capacit ance CS occurs (CS is supposed initially completely discharged):
considering a worst case (since the time constant in reality would be faster) in which
CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and
CS are in series, and the ti me con stant is
Equation 5
Equation 5 can again be simplified considering only CS as an additional worst
condition. In reality, the transient is faster, but the A/D converter circuitry has been
designed to be robust also in the very worst case: the sa mpling time t S is always much
longer than the internal time constant:
Equation 6
The charge of CP1 and CP2 is redi stributed also on CS, determining a new value of the
voltage VA1 on the capacitance according to Equation 7:
Equation 7
2. A second charge transfer involves also CF (that is typically bigger than the on-chip
capacitance) through the resist ance RL: again considering th e worst case in which CP2
and CS were in parallel to CP1 (since the time constant in reality would be faster), the
time constant is:
Equation 8
In this case, the time constant depends on the external circuit: in particular imposing
that the transient is comp leted we ll befor e the e nd of sampling time ts, a constraints on
RL sizing is obtained:
Equation 9 ADC_0 (10-bit)
Equation 10 ADC_1 (12-bit)
Of course, RL shall be sized also according to the current limitation constraints, in
combination with RS (source impedance) and RF (filter resistance). Being CF
definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the
charge transfer transient) will be much higher than VA1. Equation 11 must be respected
(charge balance assuming now CS already charged at VA1):
1RSW RAD
+CSts
«
VA1 CSCP1 CP2
++VACP1 CP2
+=
2RL
CSCP1 CP2
++
8.5 2
8.5 RLCSCP1 CP2
++=ts
10 2
10 RLCSCP1 CP2
++=ts
DocID15131 Rev 9 101/133
SPC560B54x/6x Electrical characteristics
132
Equation 11
The two transient s above are not influenced by the volta ge source that, due to the presence
of the RFCF filter, is not able to provide the extr a charg e to co mpe nsate the voltage drop on
CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with
respect to the sampling time (ts). The filter is typically designed to act as antialiasing.
Figure 20. Spectral representat ion of input signal
Calling f0 the bandwidth of the source signal (and a s a consequence the cut-of f frequency of
the antialiasing filter , fF), according to the Nyquist theorem the conversion rate fC must be at
least 2f0; it means that the constant time of the filter is g reater than or at least equal to twice
the conversion period (tc). Again the conversion period tc is longer than the sam pling time t s,
which is just a portion of it, even when fixed channel continuous conversion mode is
selected (fastest conversion rate at a specific channel): in conclusion it is evident that the
time constant of the filter RFCF is definitively much higher than the sampling time ts, so the
charge level on CS cannot be modified by th e an alog signal source during the tim e in which
the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce
the accuracy er ro r du e to th e vo ltage drop on CS; from the two charge balance equations
above, it is simple to derive Equation 12 between the ideal and real sampled voltage on CS:
Equation 12
From this formula, in the worst case (when VA is maximum, that is for instance 5 V),
assuming to accept a maximum error of half a count, a constraint is evident on CF value:
Equation 13 ADC_0 (10-bit)
VA2 CSCP1 CP2 CF
+++VACF
VA1
+C
P1 CP2
+C
S
+=
f0f
Analog source bandwidth (VA)
f0f
Sampled signal spectrum (fC = Conversion rate)
fC
f
Anti-aliasing filter (fF = RC filter pole)
fF
2 f0<fC (Nyquist)
fF = f0 (Anti-aliasing filtering condition)
tc<2 RFCF (Conversion rate vs. filter pole)
Noise
VA2
VA
------------CP1 CP2
+C
F
+
CP1 CP2
+C
FCS
++
--------------------------------------------------------=
CF2048 CS
Electrical characteristics SPC560B54x/6x
102/133 DocID15131 Rev 9
Equation 14 ADC_1 (12-bit)
4.17.3 ADC electrical characteristics
CF8192 CS
Table 44. ADC input leakage current
Symbol C Parameter Conditions Value Unit
Min Typ Max
ILKG CC
D
Input leakage current
TA = 40 °C
No current injection on adjacent pin
—170
nA
DT
A = 25 °C 1 70
DT
A = 85 °C 3 100
DT
A = 105 °C 8 200
PT
A = 125 °C 45 400
Table 45. ADC_0 conversion chara cteristics (10-bit ADC_0)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VSS_ADC0 SR Voltage on VSS_HV_ADC0
(ADC_0 reference) pin with
respect to ground (VSS)(2) 0.1 0.1 V
VDD_ADC0 SR Voltage on VDD_HV_ADC pin
(ADC reference) with respect to
ground (VSS)—V
DD 0.1 VDD + 0.1 V
VAINx SR Analog input voltage(3) VSS_ADC0
0.1 VDD_ADC0
+ 0.1 V
IADC0pwd SR ADC_0 consumption in power
down mode ——50µA
IADC0run SR ADC_0 consumption in running
mode ——5mA
fADC0 SR ADC_0 analog frequency 6—32 + 4% MHz
ADC0_SYS SR ADC_0 digital clock duty cycle
(ipg_clk) ADCLKSEL = 1(4) 45 55 %
tADC0_PU SR ADC_0 power up delay ——1.5 µs
tADC0_S CC T Sampling time(5)
fADC = 32 MHz,
INPSAMP = 17 0.5 µs
fADC = 6 MHz,
INPSAMP = 255 ——42
tADC0_C CC P Conversion time(6) fADC = 32 MHz,
INPCMP = 2 0.625 µs
CSCC DADC_0 input sampling
capacitance ——
3pF
DocID15131 Rev 9 103/133
SPC560B54x/6x Electrical characteristics
132
CP1 CC DADC_0 input pin capacitance 1 3pF
CP2 CC DADC_0 input pin capacitance 2 ——1pF
CP3 CC DADC_0 input pin capacitance 3 1pF
RSW1 CC DInternal resistance of analog
source ——
3 k
RSW2 CC DInternal resistance of analog
source 2 k
RAD CC DInternal resistance of analog
source ——
2 k
IINJ SR Input current Injection
Current
injection on
one ADC_0
input, different
from the
converted one
VDD =
3.3 V ± 10% 5—5
mA
VDD =
5.0 V ± 10% 5 5
| INL | CC TAbsolute integral nonlinearity No overlo a d 0.5 1.5 LSB
| DNL | CC TAbsolute differential
nonlinearity No overload 0.5 1.0 LSB
| EO | CC TAbsolute of f s et erro r 0.5 LSB
| EG | CC TAbsolute gain er ror ——0.6 LSB
TUEP CC PTotal unadjusted error(7) for
precise channels, input only
pins
Without current injection 20.6 2LSB
TWith current injection 3 3
TUEX CC TTotal unadjusted error(7) for
extended channel Without current injection 3 1 3 LSB
TWith current injection 4 4
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Analog and digital VSS must be common (to be tied together externally).
3. VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0x3FF.
4. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal
divider by 2.
5. During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the end of
the sampling time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values for the
sampling clock tADC0_S depend on programming.
6. This parameter does not include the sampling time tADC0_S, but only the time for determining the digital result and the time
to load the result’s register with the conversion result.
7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 45. ADC_0 conver sion characteristics (10-bit ADC_0) (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
Electrical characteristics SPC560B54x/6x
104/133 DocID15131 Rev 9
Figure 21. ADC_1 characteristic and error definit ions
(2)
(1)
(3)
(4)
(5)
Offset Error (EO)
Offset Error (EO)
Gain Error (EG)
1 LSB (ideal)
4095
4094
4093
4092
4091
4090
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 409040914092409340944095
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential no n-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
1 LSB ideal = VDD_ADC / 4096
Vin(A) (LSBideal)
code out
Table 46. ADC_1 conversion chara cteristics (12-bit ADC_1)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
VSS_ADC1 SR Voltage on VSS_HV_ADC1
(ADC_1 reference) pin with
respect to ground (VSS)(2) —–0.10.1V
VDD_ADC1 SR Voltage on VDD_HV_ADC1
pin (ADC_1 reference) with
respect to ground (VSS)—V
DD – 0.1 VDD + 0.1 V
VAINx SR Analog input voltage(3) VSS_AD C1
– 0.1 VDD_ADC1
+ 0.1 V
DocID15131 Rev 9 105/133
SPC560B54x/6x Electrical characteristics
132
IADC1pwd SR ADC_1 consumption in power
down mode ——50µA
IADC1run SR ADC_1 consumption in
running mode ——6mA
fADC1 SR ADC_1 analog frequency VDD = 3.3 V 3.33 20 + 4% MHz
VDD = 5 V 3.33 32 + 4%
tADC1_PU SR A DC_1 power up delay 1.5 µs
tADC1_S CC T
Sampling time(4)
VDD = 3.3 V fADC1 = 20 MHz,
INPSAMP = 12 600 ns
Sampling time(4)
VDD = 5.0 V fADC1 = 32 MHz,
INPSAMP = 17 500
Sampling time(4)
VDD = 3.3 V fADC1 = 3.33 MHz,
INPSAMP = 255 ——76.2µs
Sampling time(4)
VDD = 5.0 V fADC1 = 3.33 MHz,
INPSAMP = 255 ——76.2
tADC1_C CC P
Conversion time(5)
VDD = 3.3 V fADC1 = 20 MHz,
INPCMP = 0 2.4 µs
Conversion time (5)
VDD = 5.0 V fADC 1 = 32 MHz,
INPCMP = 0 1.5 µs
Conversion time (5)
VDD = 3.3 V fADC 1 = 13.33 MHz,
INPCMP = 0 ——3.6µs
Conversion time(5)
VDD = 5.0 V fADC1 = 13.33 MHz,
INPCMP = 0 ——3.6µs
ADC1_SYS SR ADC_1 digital clock duty cycle ADCLKSEL = 1(6) 45 55 %
CSCC D ADC_1 input samplin g
capacitance ——5pF
CP1 CC D ADC_1 input pin capacitance
1——3pF
CP2 CC D ADC_1 input pin capacitance
2——1pF
CP3 CC D ADC_1 input pin capacitance
3——1.5pF
RSW1 CC D In ternal resistance of analog
source ——1k
RSW2 CC D In ternal resistance of analog
source ——2k
RAD CC D Internal resistance of analog
source ——0.3k
Table 46. ADC_1 conver sion characteristics (12-bit ADC_1) (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
Electrical characteristics SPC560B54x/6x
106/133 DocID15131 Rev 9
IINJ SR Input current Injection
Current
injection on
one ADC_1
input,
different
from the
converted
one
VDD = 3.3 V ±
10% –5 5
mA
VDD = 5.0 V ±
10% –5 5
| INLP | CC T Absolute integral nonlinearity
– Precise channels No overload 1 3 LSB
| INLX | CC T Absolute integral nonlinearity
– Extended channels No overload 1.5 5 LSB
| DNL | CC T Absolute differential
nonlinearity No overload 0.5 1 LSB
| EO | CC T Absolute offset error 2 LSB
| EG | CC T Absolute gain error 2 LSB
TUEP(7) CC P Total unadjusted error for
precise channels, input only
pins
Without current injection –6 6 LSB
T With current injection –8 8
TUEX(7) CC TTotal unadjusted error for
extended chann el Without current injection –10 10 LSB
T With current injection –12 12
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified
2. Analog and digital VSS must be common (to be tied together externally).
3. VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0xFFF.
4. During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end of
the sampling time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the
sampling clock tADC1_S depend on programming.
5. This parameter does not include the sampling time tADC1_S, but only the time for determining the digital result and the time
to load the result’s register with the conversion result.
6. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal
divider by 2.
7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 46. ADC_1 conver sion characteristics (12-bit ADC_1) (continued)
Symbol C Parameter Conditions(1) Value Unit
Min Typ Max
DocID15131 Rev 9 107/133
SPC560B54x/6x Electrical characteristics
132
4.18 On-chip peripherals
4.18.1 Current consumption
Table 47. On-chip peripherals current consumption(1)
Symbol C Parameter Conditions Typical
value(2) Unit
IDD_BV(CAN) CC T CAN (FlexCAN)
supply current on
VDD_BV
Bitrate:
500 Kbyte/s Total (static + dynamic)
consumption:
FlexCAN in loop-back
mode
XTAL at 8 MHz used as
CAN engine clock source
Message sending period is
580 µs
8 * fperiph + 85
µA
Bitrate:
125 Kbyte/s 8 * fperiph + 27
IDD_BV(eMIOS) CC T eMIOS supply current
on VDD_BV
St atic consumption:
eMIOS channel OFF
Global prescaler enabled 29 * fperiph
µA
Dynamic consumption:
It does not change varying the frequency
(0.003 mA) 3
IDD_BV(SCI) CC T SCI (LINFlex) supply
current on VDD_BV
Total (static + dynamic) consumption:
LIN mode
Baudrate: 20 Kbyte/s 5 * fperiph + 31 µA
IDD_BV(SPI) CC T SPI (DSPI) supply
current on VDD_BV
Ballast static consumption (only clocked) 1
µA
Ballast dynamic consumption (continuous
communication):
Baudrate: 2 Mbit/s
Transmission every 8 µs
Frame: 16 bits
16 * fperiph
IDD_BV
(ADC_0/ADC_1) CC T ADC_0/ADC_1 supply
current on VDD_BV VDD = 5.5 V
Ballast static consumption (no
conversion)(3) 41 * fperiph µA
Ballast dynami c consumption
(continuous conversion) (3) 46 * fperiph
IDD_HV_ADC0 CC T ADC_0 supply current
on VDD_HV_ADC0 VDD = 5.5 V
Analog static consumption
(no conversion) 200 µA
Analog dynamic consumption
(continuous conversion) 3mA
IDD_HV_ADC1 CC T ADC_1 supply current
on VDD_HV_ADC1 VDD = 5.5 V
Analog static consumption
(no conversion) 300 * fperiph µA
Analog dynamic consumption
(continuous conversion) 4mA
Electrical characteristics SPC560B54x/6x
108/133 DocID15131 Rev 9
IDD_HV(FLASH) CC T CFlash + DFlash
supply current on
VDD_HV
VDD = 5.5 V 12 mA
IDD_HV(PLL) CC T PLL supply current on
VDD_HV VDD = 5.5 V 30 * fperiph µA
1. Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz.
2. fperiph is an absolute value.
3. During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., (41
+ 46) * fperiph.
Table 47. On-chip peripherals current consumption(1) (continued)
Symbol C Parameter Conditions Typical
value(2) Unit
SPC560B54x/6x Electrical characteristics
DocID15131 Rev 9 109/133
4.18.2 DSPI characteristics
Table 48. DSPI characte ristics(1)
No. Symbol C Parameter DSPI0/DSPI1/DSPI3/DSPI5 DSPI2/DSPI4 Unit
Min Typ Max Min Typ Max
1t
SCK SR
D
SCK cycle time
Master mode
(MTFE = 0) 125 333
ns
DSlave mode
(MTFE = 0) 125 333
DMaster mode
(MTFE = 1) 83 125
DSlave mode
(MTFE = 1) 83 125
—f
DSPI SR D DSPI digital controller frequency fCPU ——f
CPU MHz
tCSC CC D
Internal delay between pad
associated to SCK and pad
associated to CSn in master
mode for CSn1->0
Master mode 130(2) ——15
(3) ns
tASC CC D
Internal delay between pad
associated to SCK and pad
associated to CSn in master
mode for CSn1->1
Master mode 130(3) 130(3) ns
2t
CSCext(4) SR D CS to SCK delay Slave mode 32 32 ns
3t
ASCext(5) SR D After SCK delay Slave mode 1/fDSPI + 5 1/fDSPI + 5 ns
4t
SDC CC D SCK duty cycle Master mode tSCK/2 ——t
SCK/2 ns
SR D Slave mode tSCK/2 —— t
SCK/2 ——
5t
ASR D Slave access time Slave mode 1/fDSPI + 70 1/fDSPI + 130 ns
6t
DI SR D Slave SOUT disable time Slave mode 7 7 ns
7t
PCSC SR D PCSx to PCSS time 0 0 ns
8t
PASC SR D PCSS to PCSx time 0 0 ns
Electrical characteristics SPC560B54x/6x
110/133 DocID15131 Rev 9
9t
SUI SR D Data setup time for inputs Master mode 43 145 ns
Slave mode 5 5
10 tHI SR D Data hold time for inputs Master mode 0 0 ns
Slave mode 2(6) —— 2
(6) ——
11 tSUO(7) CC D Data valid after SCK edge Master mode 32 5 0 ns
Slave mode 52 160
12 tHO(7) CC D Data hold time for outputs Master mode 0 0 ns
Slave mode 8 13
1. Operating conditions: CL = 10 to 50 pF, SlewIN = 3.5 to 15 ns.
2. Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is
asserted. DSPI2 has only SLOW SCK available.
3. Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before
SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.
4. The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS
and internal SCK must be higher than tCSC to ensure positive tCSCext.
5. The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and
internal SCK must be higher than tASC to ensure positive tASCext.
6. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.
7. SCK and SOUT are configured as MEDIUM pad.
Table 48. DSPI characteristics(1) (continued)
No. Symbol C Parameter DSPI0/DSPI1/DSPI3/DSPI5 DSPI2/DSPI4 Unit
Min Typ Max Min Typ Max
DocID15131 Rev 9 111/133
SPC560B54x/6x Electrical characteristics
132
Figure 22. DSPI classic SPI timing — master, CPHA = 0
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output 4
9
12
1
11
10
4
SCK Output
(CPOL = 0)
(CPOL = 1)
3
2
Note: Numbers shown reference Table 47.
Electrical characteristics SPC560B54x/6x
112/133 DocID15131 Rev 9
Figure 23. DSPI classic SPI timing — master, CPHA = 1
Figure 24. DSPI classic SPI timing — slave, CPHA = 0
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL = 0)
(CPOL = 1)
Note: Numb er s sh own referen ce Table 47.
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 47.
DocID15131 Rev 9 113/133
SPC560B54x/6x Electrical characteristics
132
Figure 25. DSPI classic SPI timing — slave, CPHA = 1
Figure 26. DSPI modified transfer format timing — master, CPHA = 0
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 47.
PCSx 3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 47.
Electrical characteristics SPC560B54x/6x
114/133 DocID15131 Rev 9
Figure 27. DSPI modified transfer format timing — master, CPHA = 1
Figure 28. DSPI modified transfer format timing — slave, CPHA = 0
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 47.
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
12
Note: Numbers shown reference Table 47.
DocID15131 Rev 9 115/133
SPC560B54x/6x Electrical characteristics
132
Figure 29. DSPI modified transfer format timing — slave, CPHA = 1
Figure 30. DSPI PCS strobe (PCSS) timing
4.18.3 Nexus characteristics
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 47.
PCSx
78
PCSS
Note: Numbers shown reference Table 47.
Table 49. Nexus characteristics
No. Symbol C Parameter Value Unit
Min Typ Max
1t
TCYC CC D TCK cycle time 64 ns
2t
MCYC CC D MCKO cycle time 32 ns
3t
MDOV CC D MCKO low to MDO data valid 8 n s
4t
MSEOV CC D MCKO low to MSEO_b data valid 8 ns
Electrical characteristics SPC560B54x/6x
116/133 DocID15131 Rev 9
Figure 31. Nexus TDI, TMS, TDO timing
5t
EVTOV CC D MCKO low to EVTO data valid 8 ns
6tNTDIS CC D TDI data setup time 15 ns
tNTMSS CC D TMS data setup time 15 ns
7tNTDIH CC D TDI data hold time 5 n s
tNTMSH CC D TMS data hold time 5 ns
8t
TDOV CC D TCK low to TDO data valid 35 ns
9t
TDOI CC D TCK low to TDO data invalid 6 ns
Table 49. Nexus characteristics (continued)
No. Symbol C Parameter Value Unit
Min Typ Max
10
TCK
TMS, TDI
TDO
11
12
Note: Numbers shown reference Table 49.
DocID15131 Rev 9 117/133
SPC560B54x/6x Electrical characteristics
132
4.18.4 JTAG characteristics
Figure 32. Timing diagram — JTAG boundary scan
Table 50. JTAG characteristics
No. Symbol C Parameter Value Unit
Min Typ Max
1t
JCYC CC D TCK cycle time 64 ns
2t
TDIS CC D TDI setup time 15 ns
3t
TDIH CC D TDI hold time 5 ns
4t
TMSS CC D TMS setup time 15 ns
5t
TMSH CC D TMS hold time 5 n s
6t
TDOV CC D TCK low to TDO valid 33 ns
7t
TDOI CC D TCK low to TDO invalid 6 ns
INPUT DATA VAL ID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
TCK
Note: Numbers shown reference Table 50.
3/5
2/4
7
6
Package characteristics SPC560B54x/6x
118/133 DocID15131 Rev 9
5 Package characteristics
5.1 ECOPACK®
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depe nding on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2 Package mechanical data
5.2.1 LQFP176
Figure 33. LQFP176 package mechanical drawing
DocID15131 Rev 9 119/133
SPC560B54x/6x Package characteristics
132
Table 51. LQF P 17 6 mech a ni ca l da ta(1)
Symbol mm inches(2)
Min Typ Max Min Typ Max
A 1.400 1.600 0.063
A1 0.050 0.150 0.002
A2 1.350 1.450 0.053 0.057
b 0.170 0.270 0.007 0.011
C 0.090 0.200 0.004 0.008
D 23.900 24.100 0.941 0.949
E 23.900 24.100 0.941 0.949
e 0.500 0.020
HD 25.900 26.100 1.020 1.028
HE 25.900 26.100 1.020 1.028
L(3) 0.450 0.750 0.018 0.030
L1 1.000 0.039
ZD 1.250 0.049
ZE 1.250 0.049
q 0 ° 7 ° 0 ° 7 °
Tolerance mm inches
ccc 0.080 0.0031
1. Controlling dimension: millimeter.
2. Values in inches are converted from mm and rounded to 4 decimal digits.
3. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Package characteristics SPC560B54x/6x
120/133 DocID15131 Rev 9
5.2.2 LQFP144
Figure 34. LQFP144 package mechanical drawing
Table 52. LQFP144 mechanical data
Symbol mm inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
DocID15131 Rev 9 121/133
SPC560B54x/6x Package characteristics
132
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 17.500 0.6890
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 17.500 0.6890
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0 ° 3.5 ° 7.0° 3.5 ° 0.0 ° 7.0 °
Tolerance mm inches
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 52. LQFP144 mechanical data (continued)
Symbol mm inches(1)
Min Typ Max Min Typ Max
Package characteristics SPC560B54x/6x
122/133 DocID15131 Rev 9
5.2.3 LQFP100
Figure 35. LQFP100 package mechanical drawing
Table 53. LQFP100 mechanical data
Symbol mm inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
DocID15131 Rev 9 123/133
SPC560B54x/6x Package characteristics
132
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0 ° 3.5 ° 7.0 ° 0.0 ° 3.5 ° 7.0 °
Tolerance mm inches
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 53. LQFP100 mechanical data (continued)
Symbol mm inches(1)
Min Typ Max Min Typ Max
Package characteristics SPC560B54x/6x
124/133 DocID15131 Rev 9
5.2.4 LBGA208
Figure 36. LBGA208 package mechanical drawing
1. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized
markings, or other feature of package body or integral heatslug.
A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
13 579111315
2 4 6 8 10 12 14 16
R
L
K
T
J
N
M
P
A
B
H
G
F
D
C
E
A1 corner index area
(See note 1)
Bottom view
b (208 balls)
M
M
eee
fff CAB
C
Seating
plane
A
D
D1
F
E
E1
Fe
A
A1
A2
A3
A4
D
ddd
e
B
A
C
Table 54. LBGA208 mechanical data
Symbol mm inches(1)
Notes
Min Typ Max Min Typ Max
A 1.70 0.0669 (2)
A1 0.30 0.0118
A2 1.085 0.0427
A3 0.30 0.0118
A4 0.80 0.0315
b 0.50 0.60 0.70 0.0197 0.0236 0.0276 (3)
DocID15131 Rev 9 125/133
SPC560B54x/6x Package characteristics
132
D 16.80 17.00 17.20 0.6614 0.6693 0.6772
D1 15.00 0.5906
E 16.80 17.00 17.20 0.6614 0.6693 0.6772
E1 15.00 0.5906
e 1.00 0.0394
F 1.00 0.0394
ddd 0.20 0.0079
eee 0.25 0.0098 (4)
fff 0.10 0.0039 (5)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. LBGA stands for Low profile Ball Grid Array.
– Low profile: The total profile height (Dim A) is measured from the seating plane to the top of the component
– The maximum total package height is calculated by the following methodology:
A2 (Typ) + A1 (Typ) + (A12 + A32 + A42 tolerance values)
– Low profile: 1.20 mm < A < 1.70 mm
3. The typical ball diameter before mounting is 0.60mm.
4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to
datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone perpendicular to datum C and located on true position as defined by e.
The axis perpendicular to datum C of each bal l must lie within this tolerance zone.
Each tolerance zone in the array is contained entirely in the respective zone eee above.
The axis of each ball must lie simultaneously in both tolerance zones.
Table 54. LB GA 20 8 mec h an i ca l data (contin u ed )
Symbol mm inches(1)
Notes
Min Typ Max Min Typ Max
Ordering information SPC560B54x/6x
126/133 DocID15131 Rev 9
6 Ordering information
Figure 37. Commercial product code structure
1. LBGA208 is available only as development package for Nexus2+.
Memory PackingCore Family
Y = Tray
X = Tape and Reel 90°
4E0 = 48 MHz EEPROM 5V/3V
6E0 = 64 MHz EEPROM 5V/3V
B = 40 to 105°C
C = 40 to 125°C
L3 = LQFP100
L5 = LQFP144
L7 = LQFP176
B2 = LBGA2081
64 = 1536 KB
60 = 1024 KB
54 = 768 KB
B = Body
0 = e200z0h
SPC56 = Power Architecture in
90nm
TemperaturePackage Custom vers.
SPC56 64 Y0B CL3 6E0
Example code:
Product identifier
DocID15131 Rev 9 127/133
SPC560B54x/6x Abbreviations
132
Appendix A Abbreviations
Table 55 lists abbreviations used but not defined elsewhere in this document.
Tabl e 55 . Abbre vi at io n s
Abbreviation Meaning
CMOS Complementary metal oxide semiconductor
CPHA Clock phase
CPOL Clock polarity
CS Peripheral chip sele ct
EVTO Event out
MCKO Message clock out
MDO Message data out
MSEO Message start/end out
MTFE Modified timing format enable
SCK Serial communications clock
SOUT Serial data out
TBD To be defined
TCK Test clock input
TDI Test data input
TDO Test data output
TMS Test mode select
Revision history SPC560B54x/6x
128/133 DocID15131 Rev 9
Revision history
Table 56 summarizes revisions to this document.
Table 56. Revision history
Date Revision Changes
12-Jan-2009 1 Initial release
07-Dec-2009 2
Updated Device Summary-added LBGA208 Part number
Updated Features
Replaced 27 IRQs in place of 23
ADC features
External Ballast resistor support conditions
Updated device summary-added 208 BGA details
Updated block diagram to include WKUP
Updated block diagram to include 5 ch ADC 12 -bit
Updated Block summary table
Updated LQFP 144, 176 and 100 pinouts. Applied new naming convention for ADC
signals as ADCx_P[x] and ADCx_S[x]
Section 1, “General description
Updated SPC560B54/60/64 device comparison table
Updated block diagram-aligned with 512 k
Updated block summary-aligned with 512 k
Section 2, “Package pinouts
Updated 100,144,176,208 packages according to cut2.0 changes
Added Section 3.5.1, “External ballast resistor recommendations
Added NVUSRO [WATCHDOG_EN] field description
Updated Absolute maximum ratings
Updated LQFP thermal characteristics
Updated I/O supply segme nts
Updated Voltage regulator capacitance connection
Updated Low voltage monitor electrical characteristics
Updated Low voltage power domain electrical characteristics
Updated DC electrical characteristics
Updated Program/Erase specifications
Updated Conversion characteristics (10 bit ADC)
Updated FMPLL electrical characteristics
Updated Fast RC oscillator electrical characteristics-aligned with
SPC560B4x/B5x/C4x/C5x
Updated On-chip peripherals current consumption
Updated ADC characteristics and error definitions diagram
Updated ADC conversion characteristics (10 bit and 12 bit)
Added ADC characteristics and error definitions diagram for 12 bit ADC
DocID15131 Rev 9 129/133
SPC560B54x/6x Revision history
132
23-Feb-2010 3
Updated Features
Updated block diagram to connect peripherals to pad I/O
Updated block summary to include ADC 12-bit
Updated 144, 176 and 100 pinouts to adjust format issues
Table 26 Flash module life-retentio n value changed from 1-5 to 5 yrs
Minor editing changes
13-Sep-2010 4
Editorial changes and improvements.
Cover page: removed LBGA208 package silhouette
Updated “Features“ section
Table 2: updated footnote concerning LBGA208
In the block diagram:
Added “5ch 12-bit ADC“ block.
Updated Legend.
Added “Interrupt request with wakeup functionality” as an input to the WKPU block.
Figure 2: removed alternate functions
Figure 3: removed alternate functions
Figure 4: removed alternate functions
Table 3: added contents concerning the following blocks: CMU, eDMA, ECSM,
MC_ME, MC_PCU, NMI, SSCM, SWT and WKPU
Added Section 3.2, Pin muxing
Section 4: Electrical characteristics: removed “Caution” note
Section 4.2: NVUSRO register: removed “NVUSRO[WATCHDOG_EN] field
description“ section
Table 12: VIN: removed min value in “relative to VDD row
Table 13
–TV
DD: contents merged into one row
–V
DD_BV: changed min value in “relative to VDD” row
Section 4.5: Thermal characteristics
Section 4.5.1: External ballast resistor recommendations: added new paragraph
about power supply
Table 15: added R
JB and R
JC rows
Removed “LBGA208 thermal characteristics” table
Table 16: rewrote parameter description of WFI and WNFI
Section 4.6.5: I/O pad current specification
Removed IDYNSEG information
Updated “I/O supply segments” table
Table 23: removed IDYNSEG row
Added Table 24
Table 56. Revision history (continued)
Date Revision Changes
Revision history SPC560B54x/6x
130/133 DocID15131 Rev 9
13-Sep-2010 4
(cont.)
Table 26
Updated all values
Removed IVREGREF and IVREDLVD12 rows
Added the footnote “The duration of the in-rush current depends on the capacitance
placed on LV pins. BV decaps must be sized accordingly. Refer to IMREG value for
minimum amount of current to be provided in cc.” to the IDD_BV specification.
Table 27
Updated VPORH min/max value
Updated VLVDLVCORL min value
Updated Table 28
Table 29
–T
dwprogram: added initial max value
Inserted Teslat row
Table 30: removed the “To be confirmed” footnote
In the “Crystal oscillator and resonator connection scheme” figure, removed RP.
Table 40
Removed gmSXOSC row
–I
SXOSCBIAS: added min/typ/max value
Table 41:
Added fVCO row
Added tSTJIT row
Table 42
–I
FIRCPWD: removed row for TA = 55 °C
Updated TFIRCSU row
Table 45: Added two rows: IADC0pwd and IADC0run
Table 46
Added two rows: IADC1pwd and IADC1run
Updated values of fADC_1 and tADC1_PU
Updated tADC1_C row
Updated Table 47
Updated Table 48
Added Table 55
29-Oct- 2010 5
Removed “Preliminary—Subject to Change Without Notice” marking. This data sheet
contains specifications based on characterization data.
Updated Table 55
Added Table 56
Updated Figure 37
Table 56. Revision history (continued)
Date Revision Changes
DocID15131 Rev 9 131/133
SPC560B54x/6x Revision history
132
12-Sep- 2011 6
Editorial and formatting changes throughout
Replaced instances of “e200z0” with “e200z0h”
Device family comparison table:
added 1 MB code flash LQFP100 version
added 1.5 MB code flash LQFP144 versi on
removed 768 KB code flash LQFP176 version
changed LINFlex count for 144-pin LQF P—was ‘6’; is ‘8’
changed LINFlex count for 176-pin LQF P—was ‘8’; is ‘10’
replaced 105 °C with 125 °C in footnote 2
SPC560B54/6x block diagram: added GPIO and VREG to legend
SPC560B54/6x series block summary: added acronym “JTAGC”; in WKPU function
changed “up to 18 external sources” to “up to 27 external sources”
LQFP144 pin configuration: for pins 37–72, restored the pin labels that existed prior to
27 July 2010
LQFP176 pin configuration: corrected name of pin 4: was EPC[15]; is PC[15]
Added following sections:
Pad configuration during reset phases
Pad configuration during standby mode exit
Volt age supply pins
Pad types
System pins
Functional port pins
Nexus 2+ pins
Section “NVUSRO register”: edited content to separate configuration into electrical
parameters and digital functionality; updated footnote describing default value of ‘1’
in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN]
Added section “NVUSRO[WATCHDOG_EN] field description
Tables “Absolute maximum ratings” and “Recommended operating conditions (3.3 V)”:
replaced “VSS_HV_ADC0, VSS_HV_ADC1” with “VDD_HV_ADC0,
VDD_HV_ADC1” in VDD_ADC parameter description
“Recommended operating conditions (5.0 V)” table: replaced “VSS_HV_ADC0,
VSS_HV_ADC1” with “VDD_HV_ADC0, VDD_HV_ADC1” in VDD_ADC parameter
description; changed 3.6V to 3.0V in footnote 2
Section “External ballast resistor recommendations”: replaced “low voltage monitor”
with “low voltage detector (LVD)”
“I/O input DC electrical charac teristics” table: updated ILKG characteristics
“MEDIUM configuration output buffer electrical characteri stics” table: changed
“IOH = 100 µA” to “IOL = 100 µA” in VOL conditions
I/O weight: updated table (includes replacing instances of bit “SRE” with “SRC”)
“Reset electrical characteristics” table: updated parameter classification for |IWPU|
Updated voltage regulator electrical characteristics
Section “Low voltage detector electrical characteristics”: changed title (was “Voltage
monitor electrical characteristics”); changed “as well as four low voltage dete ctors” to
“as well as five low voltage detectors”; added event status flag names found in RGM
chapter of device reference manual to POR module and LVD descriptions; replaced
instances of “Low voltage monitor” with “Low voltage detector”; updated values for
VLVDLVBKPL and VLVDLVCORL
Updated section “Power consumption”
Table 56. Revision history (continued)
Date Revision Changes
Revision history SPC560B54x/6x
132/133 DocID15131 Rev 9
12-Sep- 2011
(continued) 6
(continued)
Section “Program/erase characteristics”: removed table “FLASH_BIU settings vs.
frequency of operation” and associated introduction
“Program and erase specifications” table: updated symbols
PFCRn settings vs. frequency of operation: replaced “FLASH_BIU” with “PFCRn” in
table title; updated field names and frequencies
“Flash power supply DC electrical characteristics” table: deleted footnote 2
Crystal oscillator and resonator connection scheme: inserted footnote abou t possibly
requiring a series resistor
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated
parameter classification for VFXOSCOP
Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1
Section “ADC electrical characteristics”: updated symbols for offset error and gain error
Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in
Equation 11
ADC input leakage current: updated ILKG characteristics
ADC_0 conversion characteristics table: replaced instances of
“ADCx_conf_sample_input” with “INPSAMP”; replaced instances of
“ADCx_conf_comp” with “INPCMP
ADC_1 characteristic and error definitions: replaced “AVD D” with “VDD_ADC”
ADC_1 conversion characteristics table: replaced instances of
“ADCx_conf_sample_input” with “INPSAMP”; replaced instances of
“ADCx_conf_comp” with “INPCMP”
Updated “On-chip peripherals current consumption” table
Removed order codes tables.
18-Sep-2013 7 Updated Disclaimer.
05-May-2014 8
Table 13: Recommended operating conditions (3.3 V), added minimum value of TVDD
and footnote about it.
Table 14: Recommended operating conditions (5.0 V), added minimum value of TVDD
and footnote about it.
Table 21: Output pin transition times, replaced Ttr with ttr
Table 25: Reset electrical characteristics, replaced Ttr with ttr
Updated Section 4.17.2: Input impedance and ADC accuracy
Table 27: Low voltage detector electrical characteristics, changed VLVDHV3L(min) and
VLVDHV3BL(min) from 2.7 V to 2.6 V.
Table 29: Program and erase specifications, added footnote about tESRT
Table 41: FMPLL electrical characteristics, deleted fo otnote rela tive to maxi mum value
of fCPU
Table 45: ADC_0 conversion characteristics (10-bit ADC_0 ), changed IADC0run value
from 40 mA to 5 mA.
Tab le 48: DSPI characteristics, in the heading row, replaced
DSPI0/DSPI1/DSPI5/DSPI6 with DSPI0/DSPI1/DSPI3/DSPI5.
22-Jan-2016 9
In Table 1: Device summary, added SPC560B64L3 for 1.5 MB code flash devices.
In Table 2: SPC560B54/6x family comparison, added column relating to “LQFP100”
package in SPC560B64 devices.
In Table 28: Power consumption on VDD_BV and VDD_HV:
changed footnote 2 “Running consumption does not include I/Os...” to “IDDMAX is
drawn only from the VDD_BV pin. Running consumption does not inclu de I/Os...”
changed footnote 4 “RUN current measured with...” to “IDDRUN is drawn only from
the VDD_BV pin. RUN current measured with...”
Table 56. Revision history (continued)
Date Revision Changes
DocID15131 Rev 9 133/133
SPC560B54x/6x
133
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelec tronics NV and its subs idiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifi cations, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchaser s products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shal l void any warranty granted by ST for such produ ct.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supers edes and repla ces informat ion previous ly supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved