6N137

Features

- 1. Super high speed response $(t_{PHL}, t_{PLH}: TYP. 45ns at R_L=350\Omega)$
- 2. Isolation voltage between input and output Viso(rms): 2.5kV
- 3. Instantaneous common mode rejection voltage CM_H : TYP. 500V/µs
- 4. LSTTL and TTL compatible output
- 5. Recognized by UL, file No. E64380

Applications

- 1. High speed interfaces for computer peripherals, microcomputer systems
- 2. High speed line receivers
- 3. Noise reduction
- 4. Interfaces for data transmission equipment

Super High Speed Response ***OPIC Photocoupler**

"OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

Absolute Maximum Ratings

	ne maximum Ratings			(Ta=25°C)
	Parameter	Symbol	Rating	Unit
	^{*1} Forward current	IF	20	mA
Input	* ² Peak forward current	I_{FM}	40	mA
	Reverse voltage	VR	5	V
	* ³ Supply voltage	V _{CC}	7	V
	^{*4} Enable voltage	CE	5.5	V
Output	Output voltage	Vo	7	V
	Output current	Io	50	mA
	Output collector power dissipation	Pc	85	mW
*5 Isolation voltage		V _{iso} (rms)	2.5	kV
Operating temperature		Topr	0 to +70	°C
Storage temperature		T _{stg}	-55 to +125	°C
	*6 Soldering temperature	T _{sol}	260	°C

*1 Ta=0 to 70°C

*2 Pulse width≤1ms

- *3 For 1 minute MAX.
- *4 Not exceed 500mV or more than supply voltage (V_{CC})

*5 AC for 1 minute, 40 to 60% RH

*6 2mm or more away from the lead base for 10 seconds

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/ Notice Internet

Apply the specific voltage between all the input electrode pins connected together and all the output electrode pins connected together.

Electro-optical Characteristics

(Ta=0 to +70°C unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Logic (1) output current	Іон	$V_{CC}=5.5V, V_0=5.5V, I_F=250 \mu A, V_E=2.0V$	-	2	250	μA
Logic (0) output voltage	Vol	V _{CC} =5.5V, I _F =5mA, V _{EH} =2.0V, I _{OL} (Sinking)=13mA	-	0.4	0.6	V
Logic (1) enable current	I _{EH}	$V_{CC}=5.5V, V_{E}=2.0V$	-	-0.8	-	mA
Logic (0) enable current	I _{EL}	$V_{CC}=5.5V, V_{E}=0.5V$	-	-1.2	-2.0	mA
Logic (1) supply current	ICCH	V _{CC} =5.5V, I _F =0mA, V _E =0.5V	-	7	15	mA
Logic (0) supply current	I _{CCL}	$V_{CC}=5.5V$, $I_{F}=10mA$, $V_{E}=0.5V$	-	13	18	mA
*7Leak current	I _{I-O}	45%RH, Ta=25°C, t=5s, V _{I-0} =3.0kV DC	-	-	1.0	μA
*7Isolation resistance (input-output)	R _{I-O}	V _{I-O} =500V, Ta=25°C	-	1×10 ¹²	-	Ω
^{*7} Capacitance (input-output)	C _{I-O}	f=1MHz, Ta=25°C	-	0.6	-	pF
^{*8} Input forward voltage	VF	I _F =10mA, Ta=25°C	-	1.6	1.75	V
Input reverse voltage	BVR	$I_R=10\mu A$, $Ta=25^{\circ}C$	5	_	_	V
Input capacitance	CIN	$V_{F}=0, f=1MHz$	-	60	-	pF

*7 Measured as 2-pin element. Connect pins 2 and 3 connect pins 5,6,7 and 8.

*8 At I_F=10mA, V_F decreases at the rate of 1.6mV/°C if the temperature goes up.

Switching Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*9 Propagation delay time Output $(0) \rightarrow (1)$	t _{PLH}	Ta=25°C, RL=350Ω, CL=15pF, IF=7.5mA	-	45	75	ns
*9 Propagation delay time Output $(1) \rightarrow (0)$	t PHL	Ta=25°C, RL=350Ω, CL=15pF, IF=7.5mA	-	45	75	ns
Output rise-fall time (10 to 90%)	t _r , t _f	R _L =350Ω, C _L =15pF, I _F =7.5mA	-	20, 30	-	ns
^{*10} Enable propagation delay time $(1) \rightarrow (0)$	telh	RL=350Ω, CL=15pF, IF=7.5mA, VEH=3.0V, VEL=0.5V	-	40	-	ns
*10 Enable propagation delay time $(0) \rightarrow (1)$	t _{EHL}	RL=350Ω, CL=15pF, IF=7.5mA, VEH=3.0V, VEL=0.5V	-	15	-	ns
*11 Instantaneous common mode rejection voltage "Output (1)"	CM _H	V_{CM} =10V, R _L =350 Ω , V ₀ (min.)=2V, I _F =0mA	-	500	-	$V/\mu s$
*11 Instantaneous common mode rejection voltage "Output (0) "	CML	V_{CM} =10V, R L=350 Ω , V ₀ (max.)=0.8V, I F=5mA	-	-500	-	$V/\mu s$

*9 Refer to the Fig. 1.

*10 Refer to the Fig. 2.

*11 CM_H represents a common mode voltage variation that can hold the output above (1) level (V_0 >2.0V).

 CM_L represents a common mode voltage variation that can hold the output above (0) level (V₀<0.8V)

Recommended Operating Conditions

Parameter	Symbol	MIN.	MAX.	Unit
Low level input current	I _{FL}	0	250	μΑ
High level input current	I _{FH}	7.0	15	mA
High level enable voltage	VEH	2.0	Vcc	V
Low level enable voltage	V _{EL}	0	0.8	V
Supply voltage	Vcc	4.5	5.5	V
Fanout (TTL load)	N	-	8	_
Operating temperature	Topr	0	70	°C

1. No necessary external pull-up resistor to hold enable input at high level.

2. Connect a ceramic by-pass capacitor (0.01 to 0.1μ F) between V_{CC} and GND at the position within 1cm from pin.

Circuit Block Diagram

Truth Table

Input	Enable	Output		
Н	Н	L		
L	Н	Н		
Н	L	Н		
L	L	Н		
L:Logic (0) H:Logic (1)				

Note) Typical values are all at $V_{CC}=5V$, $T_a=25^{\circ}C$

Fig.1 Test Circuit for Propagation Delay Time

350mV(I_F=7.5mA)

Fig. 7 Low Level Output Voltage vs. Ambient Temperature

Fig. 8-b Output Voltage vs. Forward Current (Ambient Temp. Characteristics)

Fig. 10 Propagation Delay Time vs. Ambient Temperature

Fig. 11 Rise Time, Fall Time vs. Ambient Temperature

Precaution for Use

(1) Handle this product the same as with other integrated circuits against static electricity.

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- •Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics

(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- •Contact and consult with a SHARP representative if there are any questions about the contents of this publication.