PD - 94939A IRG4BC20SDPbF Standard Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C * Extremely low voltage drop 1.4Vtyp. @ 10A * S-Series: Minimizes power dissipation at up to 3 KHz PWM frequency in inverter drives, up to 4 KHz in brushless DC drives. * Very Tight Vce(on) distribution * IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations * Industry standard TO-220AB package * Lead-Free VCES = 600V VCE(on) typ. = 1.4V G @VGE = 15V, IC = 10A E n-channel Benefits * Generation 4 IGBT's offer highest efficiencies available * IGBT's optimized for specific application conditions * HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing * Lower losses than MOSFET's conduction and Diode losses TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 19 10 38 38 7.0 38 20 60 24 -55 to +150 V A V W C 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1 N*m) Thermal Resistance Parameter RJC RJC RCS RJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. --- --- --- --- --- --- --- 0.50 --- 2 (0.07) 2.1 3.5 --- 80 --- Units C/W g (oz) 1 01/20/10 IRG4BC20SDPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 -- V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage -- 0.75 VCE(on) Collector-to-Emitter Saturation Voltage -- 1.40 -- 1.85 -- 1.44 Gate Threshold Voltage 3.0 -- VGE(th) VGE(th)/TJ Temperature Coeff. of Threshold Voltage -- -11 gfe Forward Transconductance 2.0 5.8 Zero Gate Voltage Collector Current -- -- ICES -- -- VFM Diode Forward Voltage Drop -- 1.4 -- 1.3 IGES Gate-to-Emitter Leakage Current -- -- V(BR)CES Max. Units Conditions -- V VGE = 0V, IC = 250A -- V/C VGE = 0V, I C = 1.0mA 1.6 IC = 10A VGE = 15V -- V IC = 19A See Fig. 2, 5 -- IC = 10A, TJ = 150C 6.0 VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 250A -- S VCE = 100V, IC = 10A 250 A VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150C 100 nA VGE = 20V Switching Characteristics @ TJ = 25C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Q rr di(rec)M /dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Diode Peak Reverse Recovery Current -- -- Diode Reverse Recovery Charge -- -- Diode Peak Rate of Fall of Recovery -- During tb -- Typ. 27 4.3 10 62 32 690 480 0.32 2.58 2.90 64 35 980 800 4.33 7.5 550 39 7.1 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 40 IC = 10A See Fig. 8 6.5 nC VCC = 400V 15 VGE = 15V -- TJ = 25C -- ns IC = 10A, VCC = 480V 1040 VGE = 15V, RG = 50 730 Energy losses include "tail" and -- diode reverse recovery. -- mJ See Fig. 9, 10, 11,18 4.5 -- TJ = 150C, See Fig. 10,11, 18 -- ns IC = 10A, VCC = 480V -- VGE = 15V, RG = 50 -- Energy losses include "tail" and -- mJ diode reverse recovery. -- nH Measured 5mm from package -- VGE = 0V -- pF VCC = 30V See Fig. 7 -- = 1.0MHz 55 ns TJ = 25C See Fig. 14 IF = 8.0A 90 TJ = 125C 5.0 A TJ = 25C See Fig. 8.0 TJ = 125C 15 VR = 200V 138 nC TJ = 25C See Fig. 16 di/dt = 200As 360 TJ = 125C -- A/s TJ = 25C See Fig. -- TJ = 125C 17 www.irf.com IRG4BC20SDPbF 16 For both: Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified LOAD CURRENT (A) 12 Power Dissipation = 13 W Square wave: 8 60% of rated voltage I 4 Ideal diodes 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 10 TJ = 150 C TJ = 25 C VGE = 15V 20s PULSE WIDTH 1 0.0 1.0 2.0 3.0 4.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector Current (A) 100 TJ = 150 o C 10 TJ = 25 oC 1 V CC = 50V 5s PULSE WIDTH 5 6 7 8 9 10 11 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC20SDPbF 3.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 20 15 10 5 0 25 50 75 100 125 150 TC , Case Temperature ( C) VGE = 15V 80 us PULSE WIDTH IC = 20 A 2.0 IC = 10 A IC = 5.0 5 AA 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 0.50 0.20 0.10 PDM 0.05 0.1 0.02 0.01 0.01 0.00001 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20SDPbF 1000 VGE , Gate-to-Emitter Voltage (V) 800 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 600 400 Coes 200 Cres 0 1 10 16 12 8 4 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 100 VCC = 480V VGE = 15V TJ = 25 C I C = 10A 2.8 0 10 20 30 40 RGR, Gate Resistance G, Gate Resistance () Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 5 10 15 20 25 30 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 2.9 2.7 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 3.0 VCC = 400V I C = 10A 50 RG = 50 VGE = 15V VCC = 480V IC = 20 A 10 IC = 10 A IC = 5A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20SDPbF Total Switching Losses (mJ) RG TJ 12 VCC VGE 100 = 50 = 150 C = 480V = 15V I C , Collector-to-Emitter Current (A) 14 10 8 6 4 2 0 0 4 8 12 16 10 1 20 VGE = 20V T J = 125 oC SAFE OPERATING AREA 1 I C , Collector Current (A) 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F (A) 100 10 TJ = 150C TJ = 125C TJ = 25C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC20SDPbF 100 100 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C 80 60 I F = 8.0A 40 I IRRM - (A) t rr - (ns) IF = 16A I F = 16A 10 IF = 8.0A I F = 4.0A I F = 4.0A 20 0 100 1 100 1000 di f /dt - (A/s) Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/s) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C di(rec)M/dt - (A/s) Q RR - (nC) 400 300 I F = 16A 200 I F = 8.0A 1000 IF = 4.0A IF = 8.0A I F = 16A 100 IF = 4.0A 0 100 di f /dt - (A/s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 di f /dt - (A/s) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4BC20SDPbF Same type device as D.U.T. 430F 80% of Vce 90% D.U.T. 10% Vge VC 90% td(off) 10% IC 5% Fig. 18a - Test Circuit for Measurement of tf tr ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t d(on) t=5s Eon Eoff Ets= (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 +Vg 10% Vcc Vcc trr id Ic dtdt tx t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC20SDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit RL = VCC ICM D.U.T. L 1000V Vc* 0 - VCC 50V 480F 6000F 100V Pulsed Collector Current Test Circuit Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC20SDPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/