3875081 GE SOLID STATE OL DE ff5875041 0014264 0 LE T 37-1 t. 7. Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 File Number 1565 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 7.0A and 8.0A, 60V-100V ros(On) = 0.30 Q and 0.400 Features: SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance Majority carrier device The IRF120, IRF121, IRF122 and (RF123 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings N-CHANNEL ENHANCEMENT MODE oD 6 $ 9208-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE GATE DRAIN 92Cs- 3760! JEDEC TO-204AA (FLANGE ) Parameter IRF120 IRF121 IRF122 IRF123 Units Vos Drain - Source Valtage @ 100 60 100 60 v VocR Drain - Gate Vaitage (RGs = 20K) @O 100 60 100 60 v Ip@te= 25C C Drain Current B.0 Bo 7.0 7.0 A Ip @Tc = 100C Ce Drain Current 5.0 50 40 4.0 A fom Pulsed Drain Current @ 32 32 28 28 A Ves Gate - Source Voltage +20 v Pp @Tc = 25C Max. Power Dissipatic 40 *SeeFig 14) Ww Linear Derating Factor 0.92 (See Fig 14) wer 1M inductive Current, Clamped (See Fig t5and 16)L = 100pH A 32 L 32 268 I 28 Tg eee etre ange 8610 160 ce Lead Temperature 300 (0 063 m. {1.6mm from case for 10s} c 207en O1 DE aazsoa1 0016265 1 T - 9875081 GE SOLID STATE = sit t2OS = OTSA Standard Power MOSFETs IRF120, |RF121, IRFi 22, IRF123 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. | Units Test Conditions 8Vpss_Orain- Source Breakdown Voltage Reise 100 _ _ Vv Vgs = ov jRFI20 = . iRF123 60 - ~ Vv tp = 250,A Vasiiny Gate Threshold Voltage ALL 20 - | 40 v Vps = Vas. Ip = 250xA 'gsg _ Gate-Source Leakage Forward ALL ~ = 100 nA Ves = 20V 'gsg _ Gate-Source Leakage Reverse ALL - -_|-100 nA Veg = -20V Ipgg __2eto Gate Voltage Drain Current Au = | 250 HA Vos = Max. Raung, Vgg = OV t _[ -_| 1000 [pa Vps = Max. Rating x 0.8, Vag = OV, To = 125C Ipion) On-State Drain Current @ IRF120 | 56 _ _ A IRF121 : Vins >|, R, Veg = 10V OS? 'D(on) * "oSton) max. GS inFi22 [5 | _ A (RF 123 : Rosten) Stato Drain Source On-State ine 20 ~ Jo2zloz!| a aFIa2 Vgg = 10V, Ip = 4.04 . . 1RF123 - 0.30 | 0.40 a Sts Forward transconductance @ ALL 1.5 1 29] $ {ap Vos > Iotan) *Rosion) max.:'p = 4.04 Cisg __ Input Capacitance ALL ~__ [450 [600 | nF Vag @ OV, Vpg = 25V, 1 1.0 MH Coss _ Output Capacitance ALL - 200 | 400 pF See Fig. 10 Crss Reverse Transtar Capacitance ALL - 50 | 100 oF tdjon) _Turn-On Delay Time ALL - 20 40 ns Vpp = 9-6 BVngg. Ip = 4.04, 2, = 500 t Rise Time ALL - 35 70 ns Sen Fig. 17 tafotfy Tern-Off Delay Time ALL - 50 100 ns (MOSFET switching times are essentially tf Fall Time ALL _ 35 70 ns independent of oparating temperature.) Totat Gate Charge _ Veg = 10V.!p = 10a, Vos = 0.8 Max. Ratng. 9 (Gate-Source Plus Gate-Drain} ALL 10 16 nc See Fig. 16 for test circuit. (Gate charge is essentially Q . Gate-Source Charge ALL _ 6.0 _ ne independent of operating temperature.} in ("| - fa - Qqg Gate Drain ("Millar) Charge ALL 0 nc lp faternal Drain Inductance ALL > 5.0 ~ aH Measured between Modified MOSFET the contact screw on symbol showing the header that 1s closer to intemal davice source and gate pins inductances. aad center of die. o ls Intemna! Source Inductance ALL - 12,5 - aH Measured from the o source pin, 6 mm (0.25 in.} from header G us and source banding pad. s Thermal Resistance Finsc Junction-to-Case ALL = [3.12 [scar Fincs Case-to-Sink ALL = 0.1 = c/w surface flat, smooth, and greased. Rinsa Junctron-to-Ambient ALL - = 30 Cae Free Ar Operation Source-Drain Diode Ratings and Characteristics tg Contswwous Source Currant IRF120 _ _ 8.0 A Modified MOSFET symbot {Body Diode) IAF121 * showing the integral IRF122 Tevaree P-N junction rectifier. D inpiza | ~ | - | 7] A tsa Pulse Source Current (RF120 | (Body Diodal@ (RE121 ~{[*#@] 4 s IAF122 . wri2a | ~ | ~ | 278 4 A Ven Diode Forward Voitege ie | - 7 - | 28 do Te = 26C, tg = 8.08, Vg = OV ue (RE22 ; . infiza | ~ - | 23 v Te & 25C, Ig = 7.0A, Vgg = OV tyr Reversa Recovary Time ALL - 280] ns Ty = 150C, ip = 8.04, di-/dt = 100A/us Opn __ Reverse Recovered Charge ALL ~ [ref - #C Ty = 180C, Ip = 8.0A, digfdt = 100AIps ton Forward Turn on Time ALL lntinsic tum-on time is Turn on speed is substantially controlled by Lg + Up Oty = 25C to 180C. @Putse Test: Pulse width < 300ps, Duty Cycles 2%. @ Repetitive Rating: Pulse width fimited J by max. junction temparature. Sao Transient Thermal [mpadance Curve (Fig. 5). 208 _OL ve P)3s7s5081 On1azbe 3 TU 3875081 GE SOLID STATE. S=~ 'pion} Ip, DAAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) te 20 x @ $0 2 Vos, ORAIN TO-SOUACE VOLTAGE (VOLTS) Vs, GATE-TO SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics i) OPERATION IN 9 AREA IS LIMITED. 8Y Rostoa) 20 o a & 2 10 2 = 2 z zs be e @ 3 = 2 5 S 3 3 3 3 10 z & a 3 2 T= 2590 = OSTr75. 150C MAX -312C/W 02 SINGLE PULSE 01 0 t 2 3 4 5 10 5 0 620 Vps. ORAIN TO SOURCE VOLTAGE (VOLTS} Vos. ORAIN TO SOURCE VOLTAGE {VOLTS} Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area ~ 2 o in 2 wt 1, DUTY FACTOR, D= zt o 2 aR THERMAL IMPEDANCE (PER UNIT) 2 PER UNIT BASE * Ringe 3 12 DEG. CAV. 3 Toa - Te = Pons Znuel. 002 oar ws) 2 5 wpe 2 5 wi 2 5 wt 2 5 wl 2 5 ap 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Zensclt/Ryhye, NORMALIZED EFFECTIVE TRANSIENT Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 1 209$675081 G E SOLID STATEOL DEB sa7so81 oo1aec? 5 Wf oT 39-/! Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 Qy, THANSCONDUCTANCE (SIEMENS) Yos> * Roston) max, TEST Qo 4 & Pd we tp. GRAIN CURRENT [AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 128 o o a O85 BV pgs, DAAIN-TD SOURCE BREAKDOWN VOLTAGE (NORMALIZED) O75 Al 0 o 4g 80 20 Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature " 1 Mai Cs * Cge + Cy. gs SHORTED Cres * Cy CpG Coss Cds * Gorey = Cds * Ogg I C, CAPACITANCE (pF) @ w 20 Vos, ORAIN TO SOURCE VOLTAGE {VOLTS} . 10 ~ Typical Capacitance Vs. Drain-to-Source Voltage Fi 210. 3, ~ (pg. REVERSE DRAIN CURRENT (AMPERES} ye 0 1 2 3 4 sg, SCURCE-FO ORAIN VOLTAGE {VOLTS} Fig. 7 Typical Source-Drain Diode Forward Voltage o - o Rps(onp. GRAIN-TO-SOUACE ON RESISTANCE {NORMALIZED} a a2 40 0 40 a 120 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Vg, GATE-T0 SOURCE VOLTAGE (VOLTS) ig= FOR TEST CIRCUIT SEE aT] o 4 yd 16 2 8 Q,, TOTAL GATE CHARGE {aC} Fig. 11 Typicat Gate Charge Vs. Gate-to-Source Voltageo> De fss7s0a1 oorseca 7 9 3875081 GE SOLID STATE _ oie 18268 DIT SI-/[ Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 Vg * 20V Apgton: ORAIN-TOSOURCE ON RESISTANCE (OHMS) bp, ORAIN CURRENT (AMPERES) PULSE 204s INITIAL Ty = 25C. (HEATING EFFECT OF 20 us is 0 10 20 30 a0 5 50 4% 100 125 150 Ip, ORAIN CURRENT (AMPERES) Te. CASE TEMPERATURE (C} Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature or 5 Pp, POWER DISSIPATION (WATTS) 3 0 2 oe wn 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY t, TO OBTAIN REQUIRED PEAK 4, , 058Vps5 Ve + 035BVg55 Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms Vas - - CURRENT USOLATED . Tee -~ 7. REGULATOR SUPPLY} ADUSTRE Of TO OBTAIN i SAME TYPE - SPECIFIED In 3 Ay nv = - OY, 7 - BATTERY PULSE GENERATOR DUT. rc "7 Ke i { O TD SCOPE tle 00's: { HIGH FREQUEKCY LL SHUNT 4 - 1.5 mA Fig. 17 Switching Time Test Circuit Comm = (0 CURRENT = CURRENT SKURT SHUNT Fig. 18 Gate Charge Test Circuit 211