14-Bit, 80 MSPS, A/D Converter
AD9444
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
FEATURES
80 MSPS guaranteed sampling rate
100 dB two-tone SFDR with 69.3 MHz and 70.3 MHz
73.1 dB SNR with 70 MHz input
97 dBc SFDR with 70 MHz input
Excellent linearity
DNL = ±0.4 LSB typical
INL = ±0.6 LSB typical
1.2 W power dissipation
3.3 V and 5 V supply operation
2.0 V p-p differential full-scale input
LVDS outputs (ANSI-644 compatible)
Data format select
Output clock available
APPLICATIONS
Multicarrier, multimode cellular receivers
Antenna array positioning
Power amplifier linearization
Broadband wireless
Radar, infared imaging
Communications instrumentation
GENERAL DESCRIPTION
The AD9444 is a 14-bit monolithic, sampling analog-to-digital
converter (ADC) with an on-chip, track-and-hold circuit and is
optimized for power, small size, and ease of use. The product
operates at up to an 80 MSPS conversion rate and is optimized
for multicarrier, multimode receivers, such as those found in
cellular infrastructure equipment.
The ADC requires 3.3 V and 5.0 V power supplies and a low
voltage differential input clock for full performance operation.
No external reference or driver components are required for
many applications. Data outputs are LVDS-compatible (ANSI-
644) or CMOS-compatible and include the means to reduce
the overall current needed for short trace distances.
FUNCTIONAL BLOCK DIAGRAM
CMOS
OR
LVDS
OUTPUT
STAGING
CLOCK
AND TIMING
MANAGEMENT
AGND DRGND DRVDD
VREF
CLK+
VIN+
AD9444
VIN–
CLK– DCO
05089-001
AVDD1 AVDD2
DCS MODE
DFS
OUTPUT MODE
T/H
BUFFER 14
PIPELINE
ADC 2
28
2
OR
D13–D0
REF
REFBSENSE REFT
Figure 1.
Optional features allow users to implement various selectable
operating conditions, including data format select and output
data mode.
The AD9444 is available in a 100-lead surface-mount plastic
package (100-lead TQFP/EP) specified over the industrial
temperature range (−40°C to +85°C).
PRODUCT HIGHLIGHTS
1. High performance: Outstanding SFDR performance for mul-
ticarrier, multimode 3G and 4G cellular base station
receivers.
2. Ease of use: On-chip reference and track-and-hold. An
output clock simplifies data capture.
3. Packaged in a Pb-free, 100-lead TQFP/EP.
4. Clock DCS maintains overall ADC performance over a wide
range of clock pulse widths.
5. OR (out-of-range) outputs indicate when the signal is beyond
the selected input range.
AD9444
Rev. 0 | Page 2 of 40
TABLE OF CONTENTS
DC Specifications ............................................................................. 3
AC Specifications.............................................................................. 4
Digital Specifications........................................................................ 5
Switching Specifications .................................................................. 6
Explanation of Test Levels........................................................... 7
Absolute Maximum Ratings............................................................ 8
ESD Caution.................................................................................. 8
Definitions of Specifications........................................................... 9
Pin Configurations and Function Descriptions ......................... 10
Equivalent Circuits......................................................................... 14
Typical Performance Characteristics ........................................... 15
Theory of Operation ...................................................................... 20
Analog Input and Reference Overview ................................... 20
Clock Input Considerations...................................................... 22
Power Considerations................................................................ 23
Digital Outputs ........................................................................... 23
Timing ......................................................................................... 23
Operational Mode Selection..................................................... 23
Evaluation Board ........................................................................ 24
LVDS Evaluation Board Schematics........................................ 25
LVDS Mode Evaluation Board Bill of Materials (BOM) ...... 30
CMOS Evaluation Board Schematics ...................................... 32
CMOS Mode Evaluation Board Bill of Materials (BOM)..... 37
Outline Dimensions....................................................................... 39
Ordering Guide .......................................................................... 39
REVISION HISTORY
10/04—Revision 0: Initial Version
AD9444
Rev. 0 | Page 3 of 40
DC SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed
reference (1.0 V mode), AIN =0.5 dBFS, DCS on, unless otherwise noted.
Table 1.
AD9444BSVZ-80
Parameter Temp Test Level
Min Typ Max
Unit
RESOLUTION Full VI 14 Bits
ACCURACY
No Missing Codes Full VI Guaranteed
Offset Error Full VI 6 ±0.3 6 mV
Gain Error1Full VI −3.0 ±0.4 +3.0 % FSR
Differential Nonlinearity (DNL)2Full VI −0.8 ±0.4 +0.8 LSB
Integral Nonlinearity (INL)2 25°C I −1.3 ±0.6 +1.3 LSB
Full VI −1.7 +1.7 LSB
TEMPERATURE DRIFT
Offset Error Full V 12 µV/°C
Gain Error Full V 0.002 %FS/°C
VOLTAGE REFERENCE
Output Voltage1 Full VI 0.87 1.0 1.13 V
Load Regulation @ 1.0 mA Full V ±2 mV
Reference Input Current (External 1.0 V Reference) Full VI 80 125 µA
INPUT REFERRED NOISE 25°C V 1.0 LSB rms
ANALOG INPUT
Input Span Full V 2 V p-p
Input Common-Mode Voltage Full V 3.5 V
Input Resistance3Full V 1 kΩ
Input Capacitance3 Full V 2.5 pF
POWER SUPPLIES
Supply Voltage
AVDD1 Full IV 3.14 3.3 3.46 V
AVDD2 Full IV 4.75 5.0 5.25 V
DRVDD—LVDS Outputs Full IV 3.0 3.6 V
DRVDD—CMOS Outputs Full IV 3.0 3.3 3.6 V
Supply Current
AVDD1 Full VI 217 240 mA
AVDD22 Full VI 71 80 mA
IDRVDD2—LVDS Outputs Full VI 55 62 mA
IDRVDD2—CMOS Outputs Full V 12 mA
PSRR
Offset Full V 1 mV/V
Gain Full V 0.2 %/V
POWER CONSUMPTION
DC Input—LVDS Outputs Full VI 1.21 1.4 W
DC Input—CMOS Outputs Full V 1.07 W
Sine Wave Input2—LVDS Outputs Full VI 1.25 W
Sine Wave Input2—CMOS Outputs Full V 1.11 W
1 The internal voltage reference is trimmed at final test to minimize the gain error of the AD9444.
2 Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and
approximately 5 pF loading on each output bit for CMOS output mode.
3 Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to for the equivalent analog input
structure.
Figure 6
AD9444
Rev. 0 | Page 4 of 40
AC SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed
reference (1.0 V mode), AIN =0.5 dBFS, DCS on, unless otherwise noted.
Table 2.
AD9444BSVZ-80
Parameter Temp Test Level
Min Typ Max Unit
SIGNAL-TO-NOISE-RATIO (SNR)
fIN = 10 MHz 25°C IV 73.0 74.0 dB
Full IV 72.7 dB
fIN = 35 MHz 25°C I 72.4 73.7 dB
Full IV 72.3 dB
fIN = 70 MHz 25°C IV 72.3 73.1 dB
Full IV 72.0 dB
fIN = 100 MHz 25°C V 72.3 dB
SIGNAL-TO-NOISE-AND DISTORTION (SINAD)
fIN = 10 MHz 25°C IV 73.0 74.0 dB
Full IV 72.7 dB
fIN = 35 MHz 25°C I 72.4 73.7 dB
Full IV 72.2 dB
fIN = 70 MHz 25°C IV 72.2 73.1 dB
Full IV 72.0 dB
fIN = 100 MHz 25°C V 72.3 dB
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 10 MHz 25°C V 12.1 Bits
fIN = 35 MHz 25°C V 12.0 Bits
fIN = 70 MHz 25°C V 11.9 Bits
fIN = 100 MHz 25°C V 11.8 Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fIN = 10 MHz 25°C IV 91 97 dBc
Full IV 87 dBc
fIN = 35 MHz 25°C I 91 97 dBc
Full IV 87 dBc
fIN = 70 MHz 25°C IV 90 97 dBc
Full IV 87 dBc
fIN = 100 MHz 25°C V 96 dBc
WORST HARMONIC, SECOND OR THIRD
fIN = 10 MHz 25°C IV −97 −91 dBc
Full IV −87 dBc
fIN = 35 MHz 25°C I −97 −91 dBc
Full IV −87 dBc
fIN = 70 MHz 25°C IV −97 −90 dBc
Full IV −87 dBc
fIN = 100 MHz 25°C V −96 dBc
WORST SPUR EXCLUDING SECOND OR HARMONICS
fIN = 10 MHz 25°C IV −102 −93 dBc
Full IV −93 dBc
fIN = 35 MHz 25°C I −103 −93 dBc
Full IV −93 dBc
fIN = 70 MHz 25°C IV −102 −93 dBc
Full IV −93 dBc
fIN = 100 MHz 25°C V −99 dBc
TWO-TONE SFDR
fIN = 10.8 MHz @ −7 dBFS, 9.8 MHz @ −7 dBFS 25°C V −102 dBFS
fIN = 70.3 MHz @ −7 dBFS, 69.3 MHz @ −7 dBFS 25°C V −100 dBFS
ANALOG BANDWIDTH Full V 650 MHz
AD9444
Rev. 0 | Page 5 of 40
DIGITAL SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDSBIAS = 3.74 kΩ, unless otherwise noted.
Table 3.
AD9444BSVZ-80
Parameter Temp Test Level
Min Typ Max
Unit
CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE)
High Level Input Voltage Full IV 2.0 V
Low Level Input Voltage Full IV 0.8 V
High Level Input Current Full VI +200 µA
Low Level Input Current Full VI −10 +10 µA
Input Capacitance Full V 2 pF
DIGITAL OUTPUT BITS—CMOS Mode (D0 to D13, OTR)1
DRVDD = 3.3 V
High Level Output Voltage Full IV 3.25 V
Low Level Output Voltage Full IV 0.2 V
DIGITAL OUTPUT BITS LVDS Mode (D0 to D13, OTR)
VOD Differential Output Voltage2Full VI 247 545 mV
VOS Output Offset Voltage Full VI 1.125 1.375 V
CLOCK INPUTS (CLK+, CLK−)
Differential Input Voltage Full IV 0.2 V
Common-Mode Voltage Full VI 1.3 1.5 1.6 V
Differential Input Resistance Full V 8 10 12 kΩ
Differential Input Capacitance Full V 4 pF
1 Output voltage levels measured with 5 pF load on each output.
2 LVDS RTERM = 100 Ω.
AD9444
Rev. 0 | Page 6 of 40
SWITCHING SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted.
Table 4.
AD9444BSVZ-80
Parameter Temp Test Level
Min Typ Max Unit
CLOCK INPUT PARAMETERS
Maximum Conversion Rate Full VI 80 MSPS
Minimum Conversion Rate Full V 10 MSPS
CLK Period Full V 12.5 ns
CLK Pulse Width High1 (tCLKH) Full V 4 ns
CLK Pulse Width Low1 (tCLKL) Full V 4 ns
DATA OUTPUT PARAMETERS
Output Propagation Delay—CMOS (tPD)2 (DX, DCO+) Full IV 3 5.25 8 ns
Output Propagation Delay—LVDS (tPD)3 (DX+, DCO+) Full VI 3 5 7.5 ns
Pipeline Delay (Latency) Full V 12 Cycles
Aperture Delay (tA) Full V ns
Aperture Uncertainty (Jitter, tJ) Full V 0.2 ps rms
1 With duty cycle stabilizer (DCS) enabled.
2 Output propagation delay is measured from clock 50% transition to data 50% transition, with 5 pF load.
3 LVDS RTERM = 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.
N–12 N–11 NN+1
A
IN
CLK+
CLK–
DATA OUT
DCO+
DCO–
N
N+1
N–1
t
CLKH
tCLKL
1/f
S
tPD
12 CLOCK CYCLES
t
CPD
05089-002
Figure 2. LVDS Mode Timing Diagram
AD9444
Rev. 0 | Page 7 of 40
N+1
N+2
N–1
t
CLKL
12 CYCLES
05089-003
N
t
CLKH
t
PD
VIN
CLK+
CLK–
DX
DCO+
DCO–
t
DCOPD
N-12 N-11 N-1 N
Figure 3. CMOS Timing Diagram
EXPLANATION OF TEST LEVELS
Test Level Definitions
I 100% production tested.
II 100% production tested at 25°C and sample tested at specified temperatures.
III Sample tested only.
IV Parameter is guaranteed by design and characterization testing.
V Parameter is a typical value only.
VI 100% production tested at 25°C and guaranteed by design and characterization for industrial temperature range.
AD9444
Rev. 0 | Page 8 of 40
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter
With
Respect to Min Max Unit
ELECTRICAL
AVDD1 AGND −0.3 +4 V
AVDD2 AGND −0.3 +6 V
DRVDD DGND −0.3 +4 V
AGND DGND −0.3 +0.3 V
AVDD1 DRVDD −4 +4 V
AVDD2 DRVDD −4 +6 V
AVDD2 AVDD1 −4 +6 V
D0 to D13 DGND –0.3 DRVDD + 0.3 V
CLK, MODE AGND –0.3 AVDD1 + 0.3 V
VIN+, VIN− AGND –0.3 AVDD2 + 0.3 V
VREF AGND –0.3 AVDD1 + 0.3 V
SENSE AGND –0.3 AVDD1 + 0.3 V
REFT, REFB AGND –0.3 AVDD1 + 0.3 V
ENVIRONMENTAL
Storage Temperature –65 +125 °C
Operating Temperature Range –40 +85 °C
Lead Temperature Range
(Soldering 10 sec)
300 °C
Junction Temperature 150 °C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Thermal Resistance
The heat sink of the AD9444 package must be soldered to
ground.
Table 6.
Package Type θJA θJB θJC Unit
100-Lead TQFP/EP 19.8 8.3 2 °C/W
Typical θJA = 19.8°C/W (heat-sink soldered) for multilayer
board in still air.
Typical θJB = 8.3°C/W (heat-sink soldered) for multilayer board
in still air.
Typical θJC = 2°C/W (junction to exposed heat sink) represents
the thermal resistance through heat-sink path.
Airflow increases heat dissipation effectively reducing θJA. Also,
more metal directly in contact with the package leads, from
metal traces, through holes, ground, and power planes, reduces
the θJA. It is required that the exposed heat sink be soldered to
the ground plane.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the
human body and test equipment and can discharge without detection. Although this product features proprie-
tary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic
discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of
functionality.
AD9444
Rev. 0 | Page 9 of 40
DEFINITIONS OF SPECIFICATIONS
Analog Bandwidth (Full Power Bandwidth)
The analog input frequency at which the spectral power of the
fundamental frequency (as determined by the FFT analysis) is
reduced by 3 dB.
Aperture Delay (tA)
The delay between the 50% point of the rising edge of the clock
and the instant at which the analog input is sampled.
Aperture Uncertainty (Jitter, tJ)
The sample-to-sample variation in aperture delay.
Clock Pulse Width and Duty Cycle
Pulse width high is the minimum amount of time that the
clock pulse should be left in the Logic 1 state to achieve rated
performance. Pulse width low is the minimum time the clock
pulse should be left in the low state. At a given clock rate, these
specifications define an acceptable clock duty cycle.
Differential Nonlinearity (DNL, No Missing Codes)
An ideal ADC exhibits code transitions that are exactly 1 LSB
apart. DNL is the deviation from this ideal value. Guaranteed no
missing codes to 14-bit resolution indicates that all 16384 codes
must be present over all operating ranges.
Effective Number of Bits (ENOB)
The effective number of bits for a sine wave input at a given
input frequency can be calculated directly from its measured
SINAD using the following formula
()
6.02
1.76
=SINAD
ENOB
Gain Error
The first code transition should occur at an analog value ½ LSB
above negative full scale. The last transition should occur at an
analog value 1 ½ LSB below the positive full scale. Gain error is
the deviation of the actual difference between first and last code
transitions and the ideal difference between first and last code
transitions.
Integral Nonlinearity (INL)
The deviation of each individual code from a line drawn from
negative full scale through positive full scale. The point used as
negative full scale occurs ½ LSB before the first code transition.
Positive full scale is defined as a level 1 ½ LSBs beyond the last
code transition. The deviation is measured from the middle of
each particular code to the true straight line.
Maximum Conversion Rate
The clock rate at which parametric testing is performed.
Minimum Conversion Rate
The clock rate at which the SNR of the lowest analog signal
frequency drops by no more than 3 dB below the guaranteed
limit.
Offset Error
The major carry transition should occur for an analog value
½ LSB below VIN+ = VIN−. Offset error is defined as the
deviation of the actual transition from that point.
Out-of-Range Recovery Time
The time it takes for the ADC to reacquire the analog input
after a transition from 10% above positive full scale to 10%
above negative full scale, or from 10% below negative full scale
to 10% below positive full scale.
Output Propagation Delay (tPD)
The delay between the clock rising edge and the time when all
bits are within valid logic levels.
Power-Supply Rejection Ratio
The change in full scale from the value with the supply at the
minimum limit to the value with the supply at its maximum limit.
Signal-to-Noise and Distortion (SINAD)
The ratio of the rms input signal amplitude to the rms value of
the sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc.
Signal-to-Noise Ratio (SNR)
The ratio of the rms input signal amplitude to the rms value of
the sum of all other spectral components below the Nyquist
frequency, excluding the first six harmonics and dc.
Spurious-Free Dynamic Range (SFDR)
The ratio of the rms signal amplitude to the rms value of the
peak spurious spectral component. The peak spurious compo-
nent may or may not be a harmonic. May be reported in dBc
(i.e., degrades as signal level is lowered) or dBFS (always related
back to converter full scale).
Temperature Drift
The temperature drift for offset error and gain error specifies
the maximum change from the initial (25°C) value to the value
at TMIN or TMAX.
Total Harmonic Distortion (THD)
The ratio of the rms input signal amplitude to the rms value of
the sum of the first six harmonic components.
Two-Tone SFDR
The ratio of the rms value of either input tone to the rms value
of the peak spurious component. The peak spurious component
may or may not be an IMD product.
AD9444
Rev. 0 | Page 10 of 40
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
26
27
28
29
30
55
54
53
52
51
TOP VIEW
(Not to Scale)
AD9444
AVDD1
AVDD1
AVDD2
AVDD2
AVDD2
5
4
3
2
7
6
9
8
1
11
10
16
15
14
13
18
17
20
19
22
21
12
24
23
25
32
33
34
35
36
38
39
40
41
42
43
44
45
46
47
48
49
50
31
37
AVDD2
AGND
C1
AVDD1
AVDD1
CLK+
CLK–
AVDD1
AVDD2
AVDD2
AVDD1
AVDD1
(LSB) D0–
D0+
D1–
D1+
DRVDD
DRGND
D2–
D2+
80 D13–
79 D12+
78 D12–
77 D11+
76 D11–
75 DRVDD
74 DRGND
73 D10+
72 D10–
71 D9+
70 D9–
69 D8+
68 D8–
67 DRGND
66 D7+
65 D7–
64 DCO+
63 DCO–
62 DRVDD
61 DRGND
60 D6+
59 D6–
58 D5+
57 D5–
56 D4+
D4–
DRVDD
DRGND
D3+
D3–
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
DCS MODE
AGND
AVDD1
AGND
AGND
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AGND
AVDD1
AGND
OR+
OR–
DRVDD
DRGND
D13+ (MSB)
AVDD1
DNC
DNC
DNC
OUTPUT MODE
DFS
LVDSBIAS
AVDD1
AVDD1
SENSE
VREF
AGND
REFT
REFB
AGND
AVDD1
AVDD1
AVDD1
AVDD2
AGND
VIN+
VIN–
AGND
AVDD1
AVDD1
05089-004
DNC = DO NOT CONNECT
Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode
AD9444
Rev. 0 | Page 11 of 40
Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode
Pin No. Mnemonic Description
1, 8 to 9,
16 to 18,
24 to 27,
34 to 35, 38,
41 to 42, 87,
89 to 95, 98
AVDD1 3.3 V (±5%) Analog Supply.
2 to 4 DNC Do Not Connect. These pins
should float.
5 OUTPUT
MODE
CMOS Compatible Output Logic
Mode Control Pin. OUTPUT MODE
= 0 for CMOS mode, and OUTPUT
MODE = 1 (AVDD1) for LVDS
outputs.
6 DFS
Data Format Select Pin. CMOS
control pin that determines the
format of the output data. DFS =
high (AVDD1) for twos comple-
ment, DFS = low (ground) for
offset binary format.
7 LVDSBIAS
Set Pin for LVDS Output Current.
Place 3.7 kΩ resistor terminated to
DRGND.
10 SENSE
Reference Mode Selection.
Connect to AGND for internal 1 V
reference, and connect to AVDD2
for external reference.
11 VREF
1.0 V Reference I/O—Function
Dependent on SENSE. Decouple
to ground with 0.1 µF and 10 µF
capacitors.
12, 15, 20,
23, 32, 86,
88, 96 to 97,
99, Exposed
Heat Sink
AGND Analog Ground. The exposed
heat sink on the bottom of the
package must be connected to
AGND.
13 REFT
Differential Reference Output.
Decoupled to ground with 0.1 µF
capacitor and to REFB (Pin 14) with
0.1 µF and 10 µF capacitors.
14 REFB
Differential Reference Output.
Decoupled to ground with a 0.1 µF
capacitor and to REFT (Pin 13) with
0.1 µF and 10 µF capacitors.
19, 28 to 31,
39 to 40
AVDD2 5.0 V Analog Supply (±5%).
21 VIN+ Analog Input—True.
22 VIN− Analog Input—Complement.
33 C1
Internal Bypass Node. Connect a
0.1 µF capacitor from this pin
to AGND.
36 CLK+ Clock Input—True.
37 CLK− Clock Input—Complement.
43 D0− (LSB)
D0 Complement Output Bit
(LVDS Levels).
Pin No. Mnemonic Description
44 D0+ D0 True Output Bit.
45 D1− D1 Complement Output Bit.
46 D1+ D1 True Output Bit.
47, 54, 62,
75, 83
DRVDD 3.3 V Digital Output Supply
(3.0 V to 3.6 V).
48, 53, 61,
67, 74, 82
DRGND Digital Ground.
49 D2− D2 Complement Output Bit.
50 D2+ D2 True Output Bit.
51 D3− D3 Complement Output Bit.
52 D3+ D3 True Output Bit.
55 D4− D4 Complement Output Bit.
56 D4+ D4 True Output Bit.
57 D5− D5 Complement Output Bit.
58 D5+ D5 True Output Bit.
59 D6− D6 Complement Output Bit.
60 D6+ D6 True Output Bit.
63 DCO− Data Clock Output—Complement.
64 DCO+ Data Clock Output—True.
65 D7− D7 Complement Output Bit.
66 D7+ D7 True Output Bit.
68 D8− D8 Complement Output Bit.
69 D8+ D8 True Output Bit.
70 D9− D9 Complement Output Bit.
71 D9+ D9 True Output Bit.
72 D10− D10 Complement Output Bit.
73 D10+ D10 True Output Bit.
76 D11− D11 Complement Output Bit.
77 D11+ D11 True Output Bit.
78 D12− D12 Complement Output Bit.
79 D12+ D12 True Output Bit.
80 D13− D13 Complement Output.
81 D13+ (MSB) D13 True Output Bit.
84 OR−
Out-of-Range Complement
Output Bit.
85 OR+ Out-of-Range True Output Bit.
100 DCS MODE
Clock Duty Cycle Stabilizer (DCS)
Control Pin, CMOS-Compatible.
DCS = low (AGND) to enable DCS
(recommended). DCS = high
(AVDD1) to disable DCS.
AD9444
Rev. 0 | Page 12 of 40
26
27
28
29
30
55
54
53
52
51
TOP VIEW
(Not to Scale)
AD9444
AVDD1
AVDD1
AVDD2
AVDD2
AVDD2
5
4
3
2
7
6
9
8
1
11
10
16
15
14
13
18
17
20
19
22
21
12
24
23
25
32
33
34
35
36
38
39
40
41
42
43
44
45
46
47
48
49
50
31
37
AVDD2
AGND
C1
AVDD1
AVDD1
CLK+
CLK–
AVDD1
AVDD2
AVDD2
AVDD1
AVDD1
DNC
DNC
DNC
DNC
DRVDD
DRGND
DNC
DNC
80
79
78
77
76
75 DRVDD
74 DRGND
73 D6
72 D5
71 D4
70 D3
69 D2
68 D1
67 DRGND
66 D0 (LSB)
65 DNC
64 DCO+
63 DCO–
62 DRVDD
61 DRGND
60 DNC
59 DNC
58 DNC
57 DNC
56 DNC
DNC
DRVDD
DRGND
DNC
DNC
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
AVDD1
DNC
DNC
DNC
OUTPUT MODE
DFS
DNC
AVDD1
AVDD1
SENSE
VREF
AGND
REFT
REFB
AGND
AVDD1
AVDD1
AVDD1
AVDD2
AGND
VIN+
VIN–
AGND
AVDD1
AVDD1
05089-005
DNC = DO NOT CONNECT
DCS MODE
AGND
AVDD1
AGND
AGND
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AGND
AVDD1
AGND
OR
D13 (MSB)
DRVDD
DRGND
D12
D11
D10
D9
D8
D7
Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode
AD9444
Rev. 0 | Page 13 of 40
Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode
Pin No. Mnemonic Description
1, 8 to 9, 16 to 18,
24 to 27, 34 to 35,
38, 41 to 42, 87,
89 to 95, 98
AVDD1 3.3 V (±5%) Analog Supply.
2 to 4, 7,
43 to 46, 49 to 52,
55 to 60, 65
DNC Do Not Connect. These
pins should float.
5 OUTPUT
MODE
CMOS Compatible Output
Logic Mode Control Pin.
OUTPUT MODE = 0 for CMOS
mode, and OUTPUT MODE =
1 (AVDD1) for LVDS outputs.
6 DFS
Data Format Select Pin.
CMOS control pin that de-
termines the format of the
output data. DFS = high
(AVDD1) for twos comple-
ment, DFS = low (ground) for
offset binary format.
10 SENSE
Reference Mode Selection.
Connect to AGND for internal
1 V reference, and connect to
AVDD2 for external reference.
11 VREF
1.0 V Reference I/O—
Function Dependent on
SENSE. Decouple to ground
with 0.1 µF and 10 µF
capacitors.
12, 15, 20, 23,
32, 86, 88, 96 to
97, 99, Exposed
Heat Sink
AGND Analog Ground. The exposed
heat sink on the bottom of
the package must be
connected to AGND.
13 REFT
Differential Reference Out-
put. Decoupled to ground
with 0.1 µF capacitor and to
REFB (Pin 14) with 0.1 µF and
10 µF capacitors.
14 REFB
Differential Reference Out-
put. Decoupled to ground
with a 0.1 µF capacitor and to
REFT (Pin 13) with 0.1 µF and
10 µF capacitors.
19, 28 to 31,
39 to 40
AVDD2 5.0 V Analog Supply (±5%).
21 VIN+ Analog Input—True.
22 VIN− Analog Input—Complement.
Pin No. Mnemonic Description
33 C1
Internal Bypass Node.
Connect a 0.1 µF capacitor
from this pin to AGND.
36 CLK+ Clock Input—True.
37 CLK− Clock Input—Complement.
47, 54, 62,
75, 83
DRVDD 3.3 V Digital Output
Supply (2.5V to 3.6 V).
48, 53, 61,
67, 74, 82
DRGND Digital Ground.
63 DCO−
Data Clock Output—
Complement (CMOS Levels).
64 DCO+
Data Clock Output—
True.
66 D0 (LSB) D0 Output Bit (LSB)
(CMOS Levels).
68 D1 D1 Output Bit.
69 D2 D2 Output Bit.
70 D3 D3 Output Bit.
71 D4 D4 Output Bit.
72 D5 D5 Output Bit.
73 D6 D6 Output Bit.
76 D7 D7 Output Bit.
77 D8 D8 Output Bit.
78 D9 D9 Output Bit.
79 D10 D10 Output Bit.
80 D11 D11 Output Bit.
81 D12 D12 Output Bit.
84 D13 (MSB) D13 Output Bit.
85 OR Out-of-Range Output.
100 DCS MODE
Clock Duty Cycle Stabilizer
(DCS) Control Pin, CMOS-
Compatible. DCS = low
(AGND) to enable DCS
(recommended). DCS =
high (AVDD1) to disable DCS.
AD9444
Rev. 0 | Page 14 of 40
EQUIVALENT CIRCUITS
X1
AVDD2
3.5V
1k
1k
AVDD2
VIN+
VIN–
SHA
AVDD2
05089-006
2.5pF
2.5pF
Figure 6. Equivalent Analog Input Circuit
05089-007
1.2V
DRVDD DRVDD
K
3.74k
I
LVDSOUT
LVDSBIAS
Figure 7. Equivalent LVDS BIAS Circuit
DRVDD
DX– DX+
V
V
V
V
05089-008
Figure 8. Equivalent LVDS Digital Output Circuit
DX
DRVDD
05089-009
Figure 9. Equivalent CMOS Digital Output Circuit
DCS MODE,
OUTPUT MODE,
DFS
VDD
30k
05089-010
Figure 10. Equivalent Digital Input Circuit,
DFS, DCS MODE, OUTPUT MODE
CLK+
12k
10k
150
150
12k
10k
AVDD2
CLK–
05089-011
Figure 11. Equivalent Sample Clock Input Circuit
AD9444
Rev. 0 | Page 15 of 40
TYPICAL PERFORMANCE CHARACTERISTICS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, sample rate = 80 MSPS, LVDS mode, DCS enabled, TA = 25°C, 2 V p-p differential
input, AIN = −0.5 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted.
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-012
80MSPS
10.1MHz @ –0.5dBFS
SNR: 73.9dB
ENOB: 12.0BITS
SFDR: 97dBc
0
Figure 12. 64K Point Single-Tone FFT/80 MSPS/10.1 MHz
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-013
80MSPS
30.3MHz @ –0.5dBFS
SNR: 74.0dB
ENOB: 12.1BITS
SFDR: 95dBc
0
Figure 13. 64K Point Single-Tone FFT/80 MSPS/30.3 MHz
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-014
80MSPS
70.3MHz @ –0.5dBFS
SNR: 73.3dB
ENOB: 11.9BITS
SFDR: 100dBc
0
Figure 14. 64K Point Single-Tone FFT/80 MSPS/70 MHz
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-015
80MSPS
100.3MHz @ –0.5dBFS
SNR: 72.3dB
ENOB: 11.8BITS
SFDR: 96dBc
0
Figure 15. 64K Point Single-Tone FFT/80 MSPS/100 MHz
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-016
080MSPS
125MHz @ –0.5dBFS
SNR: 71.2dB
ENOB: 11.6BITS
SFDR: 91dBc
Figure 16. 64K Point Single-Tone FFT/80 MSPS/125 MHz
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-017
80MSPS
151MHz @ –0.5dBFS
SNR: 71.1dB
ENOB: 11.5BITS
SFDR: 87dBc
0
Figure 17. 64K Point Single-Tone FFT/80 MSPS/151 MHz
AD9444
Rev. 0 | Page 16 of 40
65
66
67
68
69
70
71
72
73
74
75
0 20 40 60 80 100 120 140 160 180 200
ANALOG INPUT FREQUENCY (MHz)
(dB)
05089-018
SNR dB @ +85°C
SNR dB @ –40°C
SNR dB @ +25°C
Figure 18. SNR vs. Analog Input Frequency, 80 MSPS/LVDS Mode
05089-019
70
75
80
85
90
95
105
0 20 40 60 80 100 120 140 160 180 200
ANALOG INPUT FREQUENCY (MHz)
(dB)
SFDR dBc @ +85°C SFDR dBc @ +25°C
100
SFDR dBc @ –40°C
Figure 19. SFDR vs. Analog Input Frequency, 80 MSPS/LVDS Mode
10
20
30
40
50
60
70
80
90
100
110
120
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0
ANALOG INPUT AMPLITUDE (dBc)
(dB)
05089-020
THIRD –dBFS SECOND –dBFS
SFDR –dBFS
THIRD –dBc
SECOND –dBc
SFDR –dBFS
Figure 20. Single-Tone SFDR/Second/Third vs.
Analog Input Level, 80 MSPS, AIN = 30.3 MHz
05089-021
65
66
67
68
69
70
71
72
73
74
75
0 20 40 60 80 100 120 140 160 180 200
ANALOG INPUT FREQUENCY (MHz)
(dB)
SNR dB @ +85°C
SNR dB @ –40°C
SNR dB @ +25°C
Figure 21. SNR vs. Analog Input Frequency, 80 MSPS/CMOS Mode
05089-022
0 20 40 60 80 100 120 140 160 180 200
ANALOG INPUT FREQUENCY (MHz)
SFDR dBc @ +25°C
SFDR dBc @ –40°C
SFDR dBc @ +85°C
70
75
80
85
90
95
100
105
(dB)
Figure 22. SFDR vs. Analog Input Frequency, 80 MSPS/CMOS Mode
05089-023
10
20
30
40
50
60
70
80
90
100
110
120
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0
ANALOG INPUT AMPLITUDE (dBc)
(dB)
THIRD –dBFS
SECOND –dBFS
SFDR –dBFS
THIRD –dBc
SECOND –dBc
SFDR –dBFS
Figure 23. Single-Tone SFDR/Second/Third vs.
Analog Input Level 80 MSPS, AIN = 70.30 MHz
AD9444
Rev. 0 | Page 17 of 40
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-024
0SFDR: 102dBFS
Figure 24. 32K Point Two-Tone FFT 80 MSPS/9.8 MHz/10.8 MHz
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-025
0
–110
–90
–70
–50
–30
–10 SFDR: –100dBFS
Figure 25. 32K Point Two-Tone FFT 80 MSPS/69.3 MHz/70.3 MHz
70
75
80
85
90
95
100
20 30 40 50 60 70 80 90 100 110
SAMPLE RATE (MSPS)
SFDR (dB)
05089-026
Figure 26. SFDR vs. Sample Rate, VIN = 10.3 MHz @ −0.5 dBFS
–120
–100
–80
–60
–40
–20
IMD (dBFS)
05089-027
0
–110
–90
–70
–50
–30
–10
–110 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0
ANALOG INPUT LEVEL (dBFS)
WORST THIRD-ORDER IMD (dBFS)
SFDR (dBFS)
WORST THIRD-ORDER IMD (dBc)
90dBFS REFERENCE LINE
SFDR (dBc)
Figure 27. Two-Tone SFDR vs. Analog Input Level, AIN = 9.8 MHz/10.8 MHz
–120
–100
–80
–60
–40
–20
SFDR AND IMD3 (dB)
05089-028
0
–110
–90
–70
–50
–30
–10
–110 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0
ANALOG INPUT LEVEL (dBFS)
WORST THIRD-ORDER IMD (dBFS)
SFDR (dBFS)
WORST THIRD-ORDER IMD (dBc)
90dBFS REFERENCE LINE
SFDR (dBc)
Figure 28. Two-Tone SFDR vs. Analog Input Level, AIN = 69.3 MHz/70.3 MHz
70
75
80
85
90
95
100
10 20 30 40 50 60 70 80 90 100 110
SAMPLE RATE (MSPS)
SFDR (dB)
05089-029
Figure 29. SFDR vs. Sample Rate, VIN = 70.3 MHz @ −0.5 dBFS
AD9444
Rev. 0 | Page 18 of 40
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
0 7.68 15.36 23.04 30.72
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089-030
61.44MSPS
TOTAL INPUT SIGNAL
POWER: –30dBFS
Figure 30. 64K FFT, 61.44 MSPS, 4 @ WCDMA, IF = 46.08 MHz
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
0 5 10 15 20 25 30 35 40
FREQUENCY (MHz)
AMPLITUDE (dBFS)
05089–031
NPR: 63.1dB
Figure 31. NPR, 80 MSPS/18 MHz Notch
05089-032
70
75
80
85
90
95
100
105
20 30 40 50 60 70 80
CLOCK DUTY CYCLE (%)
dB
SFDR - DCS OFF (dBFS)
SFDR - DCS ON (dBFS)
SNR - DCS OFF (dB)
SNR - DCS ON (dB)
Figure 32. Single-Tone SNR/SFDR vs. Clock Duty Cycle,
FSAMPLE = 80 MSPS, 10.3 MHz @ −0.5 dBFS
05089-033
0
2000
4000
6000
8000
10000
12000
8179 8180 8181 8182 8183 8184 8185 8186 8187
B
IN
FREQUENCY
Figure 33. Ground Input Histogram
80 MSPS, VIN+ = VIN−, 32K Samples
05089-034
50
70
90
110
130
150
170
190
210
230
250
20 30 40 50 60 70 80 90 100 110 120 130
SAMPLE RATE (MSPS)
CURRENT (mA)
AVDD1 (3.3V)
AVDD2 (5.0V)
DRVDD (3.3V)
Figure 34. ISUPPLY vs. Sample Rate, AIN = 10.3 MHz @ −0.5 dBFS
60
65
70
75
80
85
90
95
100
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
V
IN
COMMON-MODE (V)
(dB)
05089-035
SFDR (dBc)
SNR (dB)
Figure 35. Single-Tone SNR/SFDR vs.
VIN Common-Mode Voltage 80 MSPS/10.3 MHz
AD9444
Rev. 0 | Page 19 of 40
05089-036
0.951
0.952
0.953
0.954
0.955
0.956
0.957
0.958
0.959
0.960
0.961
–20 0 20 40 60 80
TEMPERATURE (°C)
REFERENCE VOLTAGE (V)
–40
Figure 36. VREF vs. Temperature
–1.00
–0.75
–0.50
–0.25
0
0.25
0.50
0.75
1.00
0 2048 4096 6144 8192 10240 12288 14336 16384
OUTPUT CODE
DNL ERROR (LSB)
05089-037
Figure 37. DNL Error vs. Output Code, 80 MSPS, AIN = 15 MHz
05089-038
–20 0 20 40 60 80
TEMPERATURE (°C)
–40
–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
GAIN (%FS)
Figure 38. Gain vs. Temperature
–1.00
–0.75
–0.50
–0.25
0
0.25
0.50
0.75
1.00
0 2048 4096 6144 8192 10240 12288 14336 16384
OUTPUT CODE
INL ERROR (LSB)
05089-039
Figure 39. INL Error vs. Output Code, 80 MSPS, AIN = 15 MHz
AD9444
Rev. 0 | Page 20 of 40
THEORY OF OPERATION
The AD9444 architecture is optimized for high speed and ease
of use. The analog inputs drive an integrated, high bandwidth,
track-and-hold circuit that samples the signal prior to quantiza-
tion by the 14-bit pipeline ADC core. The device includes an
on-board reference and input logic that accepts TTL, CMOS, or
LVPECL levels. The digital output logic levels are user selectable
as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the
OUTPUT MODE pin.
ANALOG INPUT AND REFERENCE OVERVIEW
A stable and accurate 0.5 V voltage reference is built into the
AD9444. The input range can be adjusted by varying the refer-
ence voltage applied to the AD9444, using either the internal
reference or an externally applied reference voltage. The input
span of the ADC tracks reference voltage changes linearly. The
various reference modes are described in the next few sections.
Internal Reference Connection
A comparator within the AD9444 detects the potential at the
SENSE pin and configures the reference into four possible
states, which are summarized in Table 9. If SENSE is grounded,
the reference amplifier switch is connected to the internal resis-
tor divider (see Figure 40), setting VREF to ~1 V. Connecting
the SENSE pin to VREF switches the reference amplifier output
to the SENSE pin, completing the loop and providing a ~0.5 V
reference output. If a resistor divider is connected, as shown in
Figure 41, the switch again sets to the SENSE pin. This puts the
reference amplifier in a noninverting mode with the VREF
output defined as
+×= R1
R2
VREF 10.5
In all reference configurations, REFT and REFB drive the A/D
conversion core and establish its input span. The input range of
the ADC always equals twice the voltage at the reference pin for
either an internal or an external reference.
Internal Reference Trim
The internal reference voltage is trimmed during the produc-
tion test to adjust the gain (analog input voltage range) of the
AD9444. Therefore, there is little advantage to the user supply-
ing an external voltage reference to the AD9444. The gain trim
is performed with the AD9444’s input range set to 2 V p-p
nominal (SENSE connected to AGND). Because of this trim,
and because the 2 V p-p analog input range provides maximum
ac performance, there is little benefit to using analog input
ranges < 2 V p-p. Users are cautioned that the differential
nonlinearity of the ADC varies with the reference voltage.
Configurations that use < 2 V p-p may exhibit missing codes
and, therefore, degraded noise and distortion performance.
10µF+0.1µF
VREF
SENSE
0.5V
AD9444
VIN–
VIN+
REFT
0.1µF
0.1µF 10µF
0.1µF
REFB
SELECT
LOGIC
ADC
CORE +
05089-043
Figure 40. Internal Reference Configuration
05089-042
10µF+0.1µF
VREF
SENSE
R2
R1 0.5V
AD9444
VIN–
VIN+
REFT
0.1µF
0.1µF 10µF
0.1µF
REFB
SELECT
LOGIC
ADC
CORE +
Figure 41. Programmable Reference Configuration
AD9444
Rev. 0 | Page 21 of 40
Table 9. Reference Configuration Summary
Selected Mode SENSE Voltage Resulting VREF (V) Resulting Differential Span (V p-p)
External Reference AVDD N/A 2 × External Reference
Internal Fixed Reference VREF 0.5 1.0
Programmable Reference 0.2 V to VREF
+× R1
R2
10.5 (See Figure 41) 2 × VREF
Internal Fixed Reference AGND to 0.2 V 1.0 2.0
External Reference Operation
The AD9444’s internal reference is trimmed to enhance the gain
accuracy of the ADC. An external reference may be more stable
over temperature, but the gain of the ADC is not likely to be
improved. Figure 36 shows the typical drift characteristics of the
internal reference in both 1 V and 0.5 V modes.
When the SENSE pin is tied to AVDD, the internal reference is
disabled, allowing the use of an external reference. An internal
reference buffer loads the external reference with an equivalent
7 kΩ load. The internal buffer still generates the positive and
negative full-scale references, REFT and REFB, for the ADC
core. The input span is always twice the value of the reference
voltage; therefore, the external reference must be limited to a
maximum of 1 V.
Analog Inputs
As with most new high speed, high dynamic range ADCs, the
analog input to the AD9444 is differential. Differential inputs
improve on-chip performance as signals are processed through
attenuation and gain stages. Most of the improvement is a result
of differential analog stages having high rejection of even-order
harmonics. There are also benefits at the PCB level. First,
differential inputs have high common-mode rejection of stray
signals, such as ground and power noise. Second, they provide
good rejection of common-mode signals, such as local oscillator
feedthrough. The specified noise and distortion of the AD9444
cannot be realized with a single-ended analog input, so such
configurations are discouraged. Contact ADI for recommenda-
tions of other 14-bit ADCs that support single-ended analog
input configurations.
With the 1 V reference (nominal value, see the Internal Refer-
ence Trim section), the differential input range of the AD9444’s
analog input is nominally 2 V p-p or 1 V p-p on each input
(VIN+ or VIN−).
3.5V
VIN+
VIN–
1Vp-p
DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s
05089-045
Figure 42. Differential Analog Input Range for VREF = 1 V
The AD9444 analog input voltage range is offset from ground
by 3.5 V. Each analog input connects through a 1 kΩ resistor to
the 3.5 V bias voltage and to the input of a differential buffer.
The internal bias network on the input properly biases the
buffer for maximum linearity and range (see the Equivalent
Circuits section). Therefore, the analog source driving the
AD9444 should be ac-coupled to the input pins. The recom-
mended method for driving the analog input of the AD9444 is
to use an RF transformer to convert single-ended signals to
differential (see Figure 44). Series resistors between the output
of the transformer and the AD9444 analog inputs help isolate
the analog input source from switching transients caused by the
internal sample-and-hold circuit. The series resistors, along with
the 1 kΩ resisters connected to the internal 3.5 V bias, must be
considered in impedance matching the transformers input. For
example, if RT were set to 51 Ω and RS were set to 33 Ω, along
with a 1:1 impedance ratio transformer, the input would match
a 50 Ω source with a full-scale drive of 10.0 dBm. The 50 Ω
impedance matching can also be incorporated on the secondary
side of the transformer, as shown in the evaluation board sche-
matic (see Figure 47 and Figure 59).
05089-046
0.1
µF
R
T
AD9444
AIN
AIN
R
S
R
S
ADT1–1WT
ANALOG
INPUT
SIGNAL
Figure 43. Transformer-Coupled Analog Input Circuit
AD9444
Rev. 0 | Page 22 of 40
CLOCK INPUT CONSIDERATIONS
Any high speed ADC is extremely sensitive to the quality of the
sampling clock provided by the user. A track-and-hold circuit is
essentially a mixer, and any noise, distortion, or timing jitter on
the clock is combined with the desired signal at the A/D output.
For that reason, considerable care was taken in the design of the
clock inputs of the AD9444, and the user is advised to give
careful thought to the clock source.
Typical high speed ADCs use both clock edges to generate a
variety of internal timing signals and, as a result, may be
sensitive to the clock duty cycle. Commonly a 5% tolerance is
required on the clock duty cycle to maintain dynamic perform-
ance characteristics. The AD9444 contains a clock duty cycle
stabilizer (DCS) that retimes the nonsampling edge, providing
an internal clock signal with a nominal 50% duty cycle. As
shown in Figure 32, noise and distortion performance are nearly
flat for a 30% to 70% duty cycle with the DCS enabled. The DCS
circuit locks to the rising edge of CLK+ and optimizes timing
internally. This allows for a wide range of input duty cycles at
the input without degrading performance. Jitter in the rising
edge of the input is still of paramount concern and is not re-
duced by the internal stabilization circuit. The duty cycle con-
trol loop does not function for clock rates less than 30 MHz
nominally. The loop has a time constant associated with it that
needs to be considered in applications where the clock rate can
change dynamically, which requires a wait time of 1.5 µs to 5 µs
after a dynamic clock frequency increase (or decrease) before
the DCS loop is relocked to the input signal. During the time
period the loop is not locked, the DCS loop is bypassed, and the
internal device timing is dependant on the duty cycle of the
input clock signal. In such an application, it may appropriate to
disable the duty cycle stabilizer. In all other applications,
enabling the DCS circuit is recommended to maximize ac
performance.
The DCS circuit is controlled by the DCS MODE pin; a CMOS
logic low (AGND) on DCS MODE enables the duty cycle stabi-
lizer, and logic high (AVDD1 = 3.3 V) disables the controller.
The AD9444 input sample clock signal must be a high quality,
extremely low phase noise source to prevent degradation of
performance. Maintaining 14-bit accuracy places a premium on
the encode clock phase noise. SNR performance can easily
degrade by 3 dB to 4 dB with 70 MHz analog input signals
when using a high jitter clock source. (See AN-501, Aperture
Uncertainty and ADC System Performance, for complete
details.) For optimum performance, the AD9444 must be
clocked differentially. The sample clock inputs are internally
biased to ~2.2 V, and the input signal is usually ac-coupled into
the CLK+ and CLK− pins via a transformer or capacitors.
Figure 44 shows one preferred method for clocking the AD9444.
The clock source (low jitter) is converted from single-ended-to-
differential using an RF transformer. The back-to-back Schottky
diodes across the transformer secondary limit clock excursions
into the AD9444 to approximately 0.8 V p-p differential. This
helps prevent the large voltage swings of the clock from feeding
through to other portions of the AD9444 and limits the noise
presented to the sample clock inputs.
If a low jitter clock is available, another option is to ac couple a
differential ECL/PECL signal to the encode input pins, as shown
in Figure 46.
05089-047
0.1
µF
AD9444
CLK+
CLK–
HSMS2812
DIODES
CLOCK
SOURCE ADT1–1WT
Figure 44. Crystal Clock Oscillator, Differential Encode
05089-048
0.1
µF
AD9444
ENCODE
ENCODE
0.1µF
VT
VT
ECL/
PECL
Figure 45. Differential ECL for Encode
Jitter Considerations
High speed, high resolution ADCs are sensitive to the quality
of the clock input. The degradation in SNR at a given input
frequency (fINPUT) and rms amplitude due only to aperture jitter
(tJ) can be calculated using the following equation.
SNR = 20 log[2πfINPUT × tJ]
In the equation, the rms aperture jitter represents the root-mean
square of all jitter sources, which includes the clock input,
analog input signal, and ADC aperture jitter specification. IF
undersampling applications are particularly sensitive to jitter,
see Figure 46.
The clock input should be treated as an analog signal in cases
where aperture jitter may affect the dynamic range of the
AD9444. Power supplies for clock drivers should be separated
from the ADC output driver supplies to avoid modulating the
clock signal with digital noise. Low jitter, crystal-controlled
oscillators make the best clock sources. If the clock is generated
from another type of source (by gating, dividing, or other meth-
ods), it should be retimed by the original clock at the last step.
AD9444
Rev. 0 | Page 23 of 40
INPUT FREQUENCY (MHz)
SNR (dBc)
1
40
75
70
65
60
55
50
45
100010010
05089-049
0.2ps
0.5ps
1.0ps
1.5ps
2.0ps
2.5ps
3.0ps
Figure 46. SNR vs. Input Frequency and Jitter
POWER CONSIDERATIONS
Care should be taken when selecting a power source. The use of
linear dc supplies is highly recommended. Switching supplies
tend to have radiated components that may be received by the
AD9444. Each of the power supply pins should be decoupled as
closely to the package as possible using 0.1 µF chip capacitors.
The AD9444 has separate digital and analog power supply
pins. The analog supplies are denoted AVDD1 (3.3 V) and
AVDD2 (5 V) and the digital supply pins are denoted DRVDD.
Although the AVDD1 and DRVDD supplies may be tied
together, best performance is achieved when the supplies are
separate. This is because the fast digital output swings can
couple switching current back into the analog supplies. Note
that both AVDD1 and AVDD2 must be held within 5% of the
specified voltage.
The DRVDD supply of the AD9444 is a dedicated supply for the
digital outputs, in either LVDS or CMOS output modes. When
in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS
mode, the DRVDD supply may be connected from 2.5 V to
3.6 V to be compatible with the receiving logic.
DIGITAL OUTPUTS
LVDS Mode
The off-chip drivers on the chip can be configured to provide
LVDS-compatible output levels via Pin 5 (OUTPUT MODE).
LVDS outputs are available when OUTPUT MODE is CMOS
logic high (or AVDD1 for convenience) and a 3.74 kΩ RSET
resistor is placed at Pin 7 (LVDSBIAS) to ground. Dynamic
performance, including both SFDR and SNR, is maximized
when the AD9444 is used in LVDS mode, and designers are
encouraged to take advantage of this mode. The AD9444 out-
puts include complimentary LVDS outputs for each data bit
(DX+/DX−), the overrange output (OR+/OR−), and the output
data clock output (DCO+/DCO−). The RSET resistor current is
ratioed on-chip, setting the output current at each output equal
to a nominal 3.5 mA (11 × ). A 100 Ω differential termina-
tion resistor placed at the LVDS receiver inputs results in a
nominal 350 mV swing at the receiver. LVDS mode facilitates
interfacing with LVDS receivers in custom ASICs and FPGAs
that have LVDS capability for superior switching performance
in noisy environments. Single point-to-point net topologies are
recommended with a 100 Ω termination resistor as close to the
receiver as possible. It is recommended to keep the trace length
less than 1 inch to 2 inches and to keep differential output trace
lengths as equal as possible.
SET
R
I
CMOS Mode
In applications that can tolerate a slight degradation in dynamic
performance, the AD9444 output drivers can be configured to
interface with 2.5 V or 3.3 V logic families by matching DRVDD
to the digital supply of the interfaced logic. CMOS outputs are
available when OUTPUT MODE is CMOS logic low (or AGND
for convenience). In this mode, the output data bits are single-
ended CMOS, DX, as is the overrange output, OR. The output
clock is provided as a differential CMOS signal, DCO+/DCO−.
Lower supply voltages are recommended to avoid coupling
switching transients back to the sensitive analog sections of the
ADC. The capacitive load to the CMOS outputs should be
minimized, and each output should be connected to a single
gate through a series resistor (220 Ω) to minimize switching
transients caused by the capacitive loading.
TIMING
The AD9444 provides latched data outputs with a pipeline delay
of 12 clock cycles. Data outputs are available one propagation
delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and
Figure 3 for detailed timing diagrams.
OPERATIONAL MODE SELECTION
Data Format Select
The data format select (DFS) pin of the AD9444 determines
the coding format of the output data. This pin is 3.3 V CMOS
compatible, with logic high (or AVDD1, 3.3 V) selecting twos
complement, and DFS logic low (AGND) selecting offset binary
format. Table 10 summarizes the output coding.
Output Mode Select
The OUPUT MODE pin controls the logic compatibility,
as well as the pinout of the digital outputs. This pin is a CMOS
compatible input. With OUTPUT MODE = 0 (AGND), the
AD9444 outputs are CMOS-compatible and the pin assignment
for the device is defined in Table 8. With OUTPUT MODE = 1
(AVDD1, 3.3 V), the AD9444 outputs are LVDS-compatible and
the pin assignment for the device is defined in Table 7.
Duty Cycle Stabilizer
The DCS circuit is controlled by the DCS MODE pin; a CMOS
logic low (AGND) on DCS MODE enables the DCS, and logic
high (AVDD1, 3.3 V) disables the controller.
AD9444
Rev. 0 | Page 24 of 40
Table 10. Digital Output Coding
Code
VIN+ − VIN−
Input Span = 2 V p-p (V)
VIN+ − VIN−
Input Span = 1 V p-p (V)
Digital Output
Offset Binary (D9••••••D0)
Digital Output
Twos Complement (D9••••••D0)
16383 1.000 0.500 11 1111 1111 1111 01 1111 1111 1111
8192 0 0 10 0000 0000 0000 00 0000 0000 0000
8191 −0.000122 −0.000061 01 1111 1111 1111 11 1111 1111 1111
0 −1.00 −0.5000 00 0000 0000 0000 10 0000 0000 0000
EVALUATION BOARD
Evaluation boards are offered to configure the AD9444 in
either CMOS or LVDS mode. Each represents a recommended
configuration for using the device over a wide range of sample
rates and analog input frequencies. These evaluation boards
provide all the support circuitry required to operate the ADC in
its various modes and configurations. Complete schematics and
layout plots follow and demonstrate the proper routing and
grounding techniques that should be applied at the system level.
It is critical that signal sources with very low phase noise
(< 1 ps rms jitter) be used to realize the ultimate performance
of the converter. Proper filtering of the input signal, to remove
harmonics and lower the integrated noise at the input, is also
necessary to achieve the specified noise performance.
The evaluation boards are shipped with an ac to 6 V dc power
supply. The evaluation boards include low dropout regulators to
generate the various dc supplies required by the AD9444 and its
support circuitry. Separate power supplies are provided to iso-
late the DUT from the support circuitry. Each input configura-
tion can be selected by proper connection of various jumpers
(see Figure 47 to Figure 50 and Figure 59 to Figure 61).
Both the LVDS and CMOS versions of the evaluation board are
compatible with the high speed ADC FIFO evaluation kit (part
number HSC-ADC-EVALA-SC). The kit includes a high speed
data capture board that provides a hardware solution for captur-
ing up to 32Ksamples of high speed ADC output data in a FIFO
memory chip (user upgradeable to 256K samples). Software is
provided to enable the user to download the captured data to a
PC via the USB port. This software also includes a behavioral
model of the AD9444 and many other high speed ADCs.
Behavioral modeling of the AD9444 is also available at
www.analog.com/ADIsimADC. The ADIsimADC software
supports virtual ADC evaluation using ADI proprietary
behavioral modeling technology. This allows rapid comparison
between the AD9444 and other high speed ADCs, with or
without hardware evaluation boards.
The AD9444 LVDS evaluation board includes an on-board,
LVDS-to-CMOS translator, but the user may choose to remove
the translator and terminations to access the LVDS outputs
directly.
The CMOS evaluation board includes a buffer for the output
data and the DCO output clock of the AD9444.
AD9444
Rev. 0 | Page 25 of 40
LVDS EVALUATION BOARD SCHEMATICS
C40
0.1µF
100
OPTIONAL
15
20
23
97
96
86
12
21
22
16
95
24
25
26
27
34
92
93
94
28
29
30
31
40
39
19
41
42
35
38
90
91
87
18
9
64
63
43
44
72
73
76
77
78
79
80
81 45
46
49
50
51
52
55
56
57
58
59
60
65
66
68
69
70
71
6
88
84
85
48
53
61
67
74
82
47
54
62
75
83
32
33
100
89 36
37
101
98
7
14
13
10
99
11
17
2
3
4
5
8
1
VCC
GND R9
1k
R12
R15
VCC
GND
R3
3.8k
5
4
3
2
6
7
8
P5
DRBN
DRN
E24
EXTREF
D2_CN
D2_TN
D3_CN
D3_TN
D4_CN
D4_TN
D5_CN
D5_TN
D6_CN
D6_TN
D7_CN
D7_T/D0_YN
D8_C/D1_YN
D8_T/D2_YN
D9_C/D3_YN
D9_T/D4_YN
D10_C/D5_YN
D10_T/D6_YN
GND C39
10µF
GND
DOR_T/DOR_YN
E41
E25
E27
E26
VCC GND
E38
E40
H4
MTHOLE6
E39
GND
GND
C3
0.1µFC9
0.1µF
C86
0.1µF
R1
3.8k
GND
ENCB
ENC
DRVDD
DRVDD
DRVDD
DRVDD
DRVDD
GND
GND
GND
GND
GND
GND
DOR_C/D13_YN
D1_TN
D1_CND13_T/D12_YN
D13_C/D11_YN
D12_T/D10_YN
D12_C/D9_YN
D11_T/D8_YN
D11_C/D7_YN
D0_TN
D0_CN
VCC
VCC
VCC
VCC
VCC
VCC
VCC
5V
5V
5V
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
GND
GND
GND
GND
GND
GND
C13
20pF
33
R35
R28
33
R13
xx
C91
0.1µF
GND
E20
EXTREF
GND
VDL
GND
DRVDD
GND
VCC
5V
GND
GND
VCC
GND
GND
GND
EPAD
AD9444
U1
PIN DEFINITIONS
LVDS/CMOS
R4
36
1
H3
MTHOLE6
H1
MTHOLE6
H2
MTHOLE6
AVDD1
DNC
DNC
DNC
OUTPUT MODE
DFS
LVDSBIAS/DNC
AVDD1
AVDD1
SENSE
VREF
AGND
REFT
REFB
AGND
AVDD1
AVDD1
AVDD1
AVDD2
AGND
VIN+
VIN–
AGND
AVDD1
AVDD1
VCC
VCC
VCC
VCC
VCC
VCC
VCC
GND
GND
1k
1k
GND R14
1k
E1
E2
E3
GND
VCC
C12
0.1µF
C5
0.1µF
J4
GND
R5
xx
GND
T5
ADT1-1WT
1
5
3
6
2
4
NC
TINB
GND
ANALOG
L1 E15 R6
36
R2
3.8k
C51
10µF
C2
0.1µF
C24
0.1µF
GND
GND
05089-050
ADT1-1WT
PRI SEC
NC
ENC
ENCB
R39
XX
GND
GND
J5
50
R7
C26
0.1µF
C36
0.1µF
XTALINPUT
12
3
56
T3
1
32
CR2
C42
0.1µF
GND
50
R8 XTALINPUTB
GND
4
GND
J1
DRVDD
DRGND
D10+
D10–
D9+
D9–
D8+
D8–
DRGND
D7+
D7–
DCO+
DCO–
DRVDD
DRGND
D6+
D6–
D5+
D5–
D4+
D4–
DRVDD
DRGND
D3+
D3–
D13–
D12+
D12–
D11+
D11–
DCS MOD
AGND
AVDD1
AGND
AGND
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AGND
AVDD1
AGND
OR+
OR–
DRVDD
DRGND
D13+ (MSB)
AVDD1
AVDD1
AVDD2
AVDD2
AVDD2
AVDD2
AGND
C1
AVDD1
AVDD1
CLK+
CLK–
AVDD1
AVDD2
AVDD2
AVDD1
AVDD1
(LSB) D0–
D0+
D1–
D1+
DRVDD
DRGND
D2–
D2+
OUTVCC
VEE ~OUT
OUTPUT
OUTPUTB
VCC
GND
NC
E/D
JN00158
+
FOR VECTRON XTAL
FOR VF XTAL
GND
XTALINPUTB
XTALINPUT
E52
C92
0.1µF
C44
10µF
E47
R38
XX
R27
XX
R37
XX
R20
XX
R17
XX
R19
XX
R18
XX
4
5
6
3
2
1
U2
8
14
7
U6
ECLOSC
R36
XX
R40
XX
C93
0.1µF
E46
VXTAL
GND
GND
GND
XTALOUTB
XTALOUT
XTALOUT
XTALOUTB
5V
VCC
GND
GND
GND VXTAL
VXTAL
VXTAL
VXTAL
VXTAL
1
ENCODE
GND
+
GND TOUT
TOUTB
OPTIONAL ENCODE CIRCUITS ENCODE
Figure 47. LVDS Mode Evaluation Board Schematic
AD9444
Rev. 0 | Page 26 of 40
IN
OUT OUT1
3.3V
C1
10µF
C57
10µF
3
42
1
ADP3338
U4
GND
GND
VDL
VDL
GND
VIN
GND
+
+
IN
OUT OUT1
3.3V
C34
10µF
C88
10µF
3
42
1
ADP3338
U3
GND
GND
DRVDD
DRVDD
GND
VIN
GND
+
+
IN
OUT OUT1
3.3V
C6
10µF
C87
10µF
3
42
1
ADP3338
U15
GND
GND
VCC
VCC
GND
VIN
GND
+
+
IN
OUT OUT1
5V
C4
10µF
C89
10µF
3
42
1
ADP3338
U14
GND
GND
5V
5V
GND
VIN
GND
+
+
PJ-102A
C33
10µF
1
3
2
P4
GND
GND
VIN
+
1
3
2
05089-051
POWER OPTIONS
Figure 48. LVDS Mode Evaluation Board Schematic (Continued)
05089-052
+C64
10µFC75
0.1µF
VCC
GND
+C65
10µFC47
0.1µFC23
0.1µFC22
0.1µFC21
0.1µFC20
0.1µF
DRVDD
GND
EXTREF
GND
+
C46
0.1µF
C61
0.1µF
C60
0.1µF
C50
0.1µF
C48
0.1µF
C27
0.1µF
C28
0.1µF
C30
0.1µF
C32
0.1µF
C35
0.1µF
C43
0.1µF
C90
XX
VCC
GND
C18
XX
C19
XX
C29
XX
C38
XX
C37
XX
C31
XX
C15
XX
C16
XX
C17
XX
C14
XX
C11
XX
C10
XX
C69
XX C70
XX C45
XX C49
XX C59
XX
DRVDD
GND
+C56
10µFC85
0.1µFC53
0.1µFC52
0.1µFC58
0.1µF
5V
GND
C71
XX C72
XX C73
XX C62
XX
5V
GND
C55
10µF
P19
GND
Figure 49. LVDS Mode Evaluation Board Schematic (Continued)
AD9444
Rev. 0 | Page 27 of 40
P1
P3
P5
P7
P9
P11
P13
P15
P17
P19
P21
P23
P25
P27
P29
P31
P33
P35
P37
P39
P2
P4
P6
P8
P10
P12
P14
P16
P18
P20
P22
P24
P26
P28
P30
P32
P34
P36
P38
P40
P1
P3
P5
P7
P9
P11
P13
P15
P17
P19
P21
P23
P25
P27
P29
P31
P33
P35
P37
P39
P2
P4
P6
P8
P10
P12
P14
P16
P18
P20
P22
P24
P26
P28
P30
P32
P34
P36
P38
P40
P3
C40MS
GND
PWR
74VCX86
+
RSO16ISO
220
R8
R7
R6
R5
R4
R3
R1
R2
RSO16ISO
220
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ4
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ5
7
14
11
8
6
3
U10
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
P6
C40MS
D13O
D11O
D9O
D7O
D6O
D5O
D2O
D1O
D0O
D3O
D4O
D8O
D10O
D12O
ORO
D11_C/D7_YN
D10_C/D5_YN
D9_C/D3_YN
D8_C/D1_YN
D7_CN
DRBN
D6_CN
D5_CN
D0_CN D0_TN
D1_TN
D2_TN
D3_TN
D4_TN
D5_TN
D6_TN
DRN
D7_T/D0_YN
D8_T/D2_YN
D9_T/D4_YN
D10_T/D6_YN
D11_T/D8_YN
D12_T/D10_YN
D13_T/D12_YN
DRO
D0O
D1O
D3O
D4O
D5O
D6O
D2O
DOR_C/D13_YN DOR_T/DOR_YN
D13_C/D11_YN
D12_C/D9_YN
D1_CN
D2_CN
D3_CN
D4_CN
GND
GND
GND GND
GND
GND
GND GND
GND
GND
D7O
D8O
D9O
D10O
D11O
D12O
D13O
ORO
E34
E43
E32
VDL
GND
GND5
VCC6
VCC5
GND4
END
D4Y
D3Y
D2Y
D1Y
ENC
C4Y
C3Y
C2Y
C1Y
GND3
VCC4
VCC3
GND2
B4Y
B3Y
B2Y
B1Y
ENB
A4Y
A3Y
A2Y
A1Y
ENA
GND1
VCC2
VCC1
GND
D4B
D4A
D3B
D3A
D2B
D2A
D1B
D1A
C4B
C4A
C3B
C3A
C2B
C2A
C1B
C1A
B4B
B4A
B3B
B3A
B2B
B2A
B1B
B1A
A4B
A4A
A3B
A3A
A2B
A2A
A1B
A1A
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
U7
SN75LVDS386
DOR_C/D13_YN
D13_C/D11_YN
D12_C/D9_YN
D11_C/D7_YN
D10_C/D5_YN
D9_C/D3_YN
D8_C/D1_YN
D3_CN
DOR_T/DOR_YN
D13_T/D12_YN
D12_T/D10_YN
D11_T/D8_YN
D10_T/D6_YN
D9_T/D4_YN
D8_T/D2_YN
D7_T/D0_YN
D7_CN
DRN
DRBN
D6_TN
D6_CN
D5_CN
D5_TN
D4_TN
D4_CN
D3_TN
D2_TN
D2_CN
D1_TN
D1_CN
D0_TN
D0_CN
DRP
VDL
VDL
GND
GND
GND
VDL
VDL
GND
VDL
VDL
GND
VDL
VDL
VDL
VDL
GND
R8
R7
R6
R5
R4
R3
R1
R2
4Y
3Y
2Y
1Y
1
2
4
5
9
10
12
13
1A
1B
2A
2B
3A
3B
4A
4B
C76
10µFC97
0.1µFC82
0.1µFC80
0.1µF81
0.1µF
VDL
GND
GND
00
R53
XORN
GND
00
R52
GND
VDL
DRO
05089-053
Figure 50. LVDS Mode Evaluation Board Schematic (Continued)
AD9444
Rev. 0 | Page 28 of 40
05089-057
Figure 51. LVDS Mode Evaluation Board Layout, Primary Side
05089-058
Figure 52. LVDS Mode Evaluation Board Layout, Secondary Side
05089-059
Figure 53. LVDS Mode Evaluation Board Layout, Ground Plane 1
05089-060
Figure 54. LVDS Mode Evaluation Board Layout, Ground Plane 2
05089-061
Figure 55. LVDS Mode Evaluation Board Layout, Power Plane 1
05089-062
Figure 56. LVDS Mode Evaluation Board Layout, Power Plane 2
AD9444
Rev. 0 | Page 29 of 40
05089-063
Figure 57. LVDS Mode Evaluation Board Layout, Primary Silkscreen
05089-064
Figure 58. LVDS Mode Evaluation Board Layout, Secondary Silkscreen
AD9444
Rev. 0 | Page 30 of 40
LVDS MODE EVALUATION BOARD BILL OF MATERIALS (BOM)
Table 11.
Item Qty. REFDES Description Manufacturer MFG_PART_NO
1 1 AD9444PCB PCB, AD9444 LVDS Engineering Evaluation Board PCSM AD9444LVDSCUSTREVC
2 16
C1, C4, C6,
C33, C34,
C39, C44,
C55 to C57,
C64, C65,
C76, C87 to
C89
Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10% KEMET T491C106K016AS
3 38
C2, C3, C5,
C9, C12, C20
to C24, C26
to C28, C30,
C32, C35,
C40, C42,
C43, C46 to
C48, C50,
C52, C53,
C58, C60,
C61, C75,
C80 to C82,
C85, C86,
C91 to C93,
C97
Capacitors, 0.1 µF 10 V Ceramic X5R 0402 Panasonic ECJ-0EB1A104K
4 1 C51 Capacitor, Ceramic 10 µF 6.3 V X5R 0805 KEMET C0805C106K9PACTU
5 1 CR2 Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA Panasonic MA716-(TX)
6 17
E1 to E3, E24,
to E27, E32,
E34, E38,
E39, E40,
E41, E43,
E46, E47, E52
40-Pin Breakable Header 3M 2340-611TN
7 2 J1, J4 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201
8 1 L1 10 nH Inductor Coilcraft 0603CJ-10NXGBU
9 1 P3 Header, 40-Pin, Male, 40-Pin Right Angle Samtec TSW-120-08-T-D-RA
10 1 P4 Power Jack Swithcraft RAPC722
11 1 R3 Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2GEJ362X
12 2 R4, R6 Resistor, 36 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ360X
13 1 R8 Resistor, 49.9 Ω 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF49R9X
14 4 R9, R12, R14,
R15
Resistor, 1.00 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF1001X
15 2 R28, R35 Resistor, 33 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ330X
16 3 R39, R52,
R53
Resistor, 0 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GE0R00X
17 2 RZ4, RZ5 22 Ω Resistor Array, 16 Term CTS Corp. 742163220JTR
18 2 T3, T5 Transformer, ADT1-1WT, CD542, ADT1-1WT Mini-Circuits ADT1-1WT
19 1 U1 14-Bit, 80 MSPS ADC ADI AD9444BSVZ-80
20 3 U3, U4, U15 3.3 V Voltage Regulator ADI ADP3338-3.3 V
21 1 U14 5 V Voltage Regulator ADI ADP3338-5.0 V
22 1 U6 Clock Oscillator, 80 MHz CTS Reeves MX045-80
23 1 U7 LVDS-to-CMOS Translator with 100 Term Texas Instruments SN75LVDT386DGG
24 1 U10 2 Input XOR Gate Fairchild 74VCX86M
25 4 U6 Pin Sockets, Closed End AMP 5-330808-3
AD9444
Rev. 0 | Page 31 of 40
Item Qty. REFDES Description Manufacturer MFG_PART_NO
26 24
C10, C11,
C13, to C19,
C29, C31,
C36 to C38,
C45, C49,
C59, C62,
C69, C70 to
C73, C901
Capacitors, Select 10 V Ceramic X5R 0402 Panasonic
27 1 J51 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201
28 2 P5, P61 Power Connectors Weiland
29 1 R1, R2, R5,
R7, R131
Resistors, Select 1/16 W 1% 0402 SMD Panasonic
30 1 R17 to R20,
R27, R36 to
R38, R401
Resistors, Select 1/16 W 1% 0402 SMD Panasonic
31 5 U21 XO Select Vectron
1 Parts not placed.
AD9444
Rev. 0 | Page 32 of 40
CMOS EVALUATION BOARD SCHEMATICS
C40
0.1µF
100
OPTIONAL
15
20
23
97
96
86
12
21
22
16
95
24
25
26
27
34
92
93
94
28
29
30
31
40
39
19
41
42
35
38
90
91
87
18
9
64
63
43
44
72
73
76
77
78
79
80
81 45
46
49
50
51
52
55
56
57
58
59
60
65
66
68
69
70
71
6
88
84
85
48
53
61
67
74
82
47
54
62
75
83
32
33
100
89 36
37
101
98
7
14
13
10
99
11
17
2
3
4
5
8
1
VCC
GND R12
1k
R9
1k
R21
VCC
GND
R3
3.8k
COUTB
COUT
E24
EXTREF
D7T/D0Y
D8C/D1Y
D8T/D2Y
D9C/D3Y
D9T/D4Y
D10C/D5YN
D10T/D6YN
GND C39
10µF
GND
DORT/DORY
E41 E25
E27
E26
VCC
E38
E40
H4
MTHOLE6
E39
GND
GND
C3
0.1µFC9
0.1µF
R1
3.8k
GND
ENCB
ENC
DRVDD
DRVDD
DRVDD
DRVDD
GND
GND
GND
GND
GND
GND
DORC/D13Y
D13T/D12YN
D13C/D11YN
D12T/D10YN
D12C/D9YN
D11T/D8YN
D11C/D7YN
VCC
VCC
VCC
VCC
VCC
VCC
VCC
5V
5V
5V
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
GND
GND
GND
GND
GND
GND
C13
20pF
33
R35
R28
33
R13
xx
C91
0.1µF
GND
E20 EXTREF
GND
VCC
GND
GND
GND
EPAD
AD9444
U1
PIN DEFINITIONS
LVDS/CMOS
R4
36
H3
MTHOLE6
H1
MTHOLE6
H2
MTHOLE6
VCC
VCC
VCC
VCC
VCC
VCC
VCC
GND
GND
1k
GND R15
1k
E1
E2
E3
GND
VCC
C12
0.1µF
C5
0.1µF
J4
GND
R5
xx
GND
T5
ADT1-1WT
1
5
3
6
2
4
NC
TINB
GND
ANALOG
L110NH E15 R6
36
R2
3.8k
C51
10µF
C78
0.1µF
C2
0.1µF
GND
GND
05089-054
DRVDD
CT
EXTERNAL
REFERENCE
INPUT
ADT1-1WT
PRI SEC
NC
ENC
ENCB
R39
XX
GND
GND
J5
50
R7
C26
0.1µF
C36
0.1µF
XTALINPUT
12
3
56
T3
1
32
CR2
C42
0.1µF
GND
50
R8
XTALINPUTB
GND
4
GND
J1
OUTVCC
VEE ~OUT
OUTPUT
OUTPUTB
VCC
GND
NC
E/D
JN00158
+
FOR VECTRON XTAL
FOR VF XTAL
GND
XTALINPUTB
XTALINPUT
E52
C92
0.1µF
C44
10µF
E47
R38
XX
R27
XX
R37
XX
R20
XX
R17
XX
R19
XX
R18
XX
4
5
6
3
2
1
U2
8
14
7
U6
ECLOSC
R36
XX
R40
XX
C93
0.1µF
E46
VXTAL
GND
GND
GND
XTALOUTB
XTALOUT
XTALOUT
XTALOUTB
5V
VCC
GND
GND
GND VXTAL
VXTAL
VXTAL
VXTAL
VXTAL
1
DRVDD
DRGND
D6
D5
D4
D3
D2
D1
DRGND
D0 (LSB)
DNC
DCO+
DCO–
DRVDD
DRGND
DNC
DNC
DNC
DNC
DNC
DNC
DRVDD
DRGND
DNC
DNC
AVDD1
AVDD1
AVDD2
AVDD2
AVDD2
AVDD2
AGND
C1
AVDD1
AVDD1
CLK+
CLK–
AVDD1
AVDD2
AVDD2
AVDD1
AVDD1
DNC
DNC
DNC
DNC
DRVDD
DRGND
DNC
DNC
AVDD1
DNC
DNC
DNC
OUTPUT MODE
DFS
LVDSBIAS
AVDD1
AVDD1
SENSE
VREF
AGND
REFT
REFB
AGND
AVDD1
AVDD1
AVDD1
AVDD2
AGND
VIN+
VIN–
AGND
AVDD1
AVDD1
C96
0.1µF
5
4
3
2
6
7
8
P5
GND
VDL
GND
DRVDD
GND
VCC
5V
GND
1
+
GND TOUT
TOUTB
PRI SEC
OPTIONAL ENCODE CIRCUITS
ENCODE
GND
DCS MODE
AGND
AVDD1
AGND
AGND
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AGND
DRVDD
AGND
OR
(MSB) D13
DRVDD
DRGND
D12
D11
D10
D9
D8
D7
Figure 59. CMOS Mode Evaluation Board Schematic
AD9444
Rev. 0 | Page 33 of 40
IN
OUT OUT1
3.3V
C1
10µF
C57
10µF
3
42
1
ADP3338
U8
GND
GND
VDL
VDL
GND
VIN
GND
+
+
IN
OUT OUT1
3.3V
C34
10µF
C88
10µF
3
42
1
ADP3338
U3
GND
GND
DRVDD
DRVDD
GND
VIN
GND
+
+
IN
OUT OUT1
3.3V
C6
10µF
C87
10µF
3
42
1
ADP3338
U15
GND
GND
VCC
VCC
GND
VIN
GND
+
+
IN
OUT OUT1
5V
C4
10µF
C89
10µF
3
42
1
ADP3338
U14
GND
GND
5V
5V
GND
VIN
GND
+
+
PJ-102A
C33
10µF
1
3
2
P4
GND
GND
VIN
+
1
3
2
05089-055
Figure 60. CMOS Mode Evaluation Board Schematic (Continued)
AD9444
Rev. 0 | Page 34 of 40
P1
P3
P5
P7
P9
P11
P13
P15
P17
P19
P21
P23
P25
P27
P29
P31
P33
P35
P37
P39
P2
P4
P6
P8
P10
P12
P14
P16
P18
P20
P22
P24
P26
P28
P30
P32
P34
P36
P38
P40
P3
C40MS
GND
PWR
U4
74VCX86
+
RSO16ISO
220
R8
R7
R6
R5
R4
R3
R1
R2
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ4
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ5
7
14
11
8
6
3
U10
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
D13M
D11M
D9M
D7M
D6M
D5M
D2M
D1M
D0M
D3M
D4M
D8M
D10M
D12M
ORM
DRM
D0M
D1M
D3M
D4M
D5M
D6M
D2M
GND GND
GND
GND
D7M
D8M
D9M
D10M
D11M
D12M
D13M
ORM
E30
E32
E31
VDL
GND
U5
SN74LVCH16373A
R8
R7
R6
R5
R4
R3
R1
R2
4Y
3Y
2Y
1Y
1
2
4
5
9
10
12
13
1A
1B
2A
2B
3A
3B
4A
4B
C66
10µFC25
0.1µFC41
0.1µFC24
0.1µF
VDL
GND
GND
00
R16
XORZIN
GATE2
00
R42
GND
VDL
DRM
05089-056
RSO16ISO
220
R8
R7
R6
R5
R4
R3
R1
R2
RSO16ISO
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ4
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ1
R8
R7
R6
R5
R4
R3
R1
R2
220RZ2
D7T/D0Y
D8C/D1Y
D8T/D2Y
D9C/D3Y
D9T/D4Y
D10C/D5Y
D10T/D6Y
D11C/D7Y
D11T/D8Y
D12C/D9Y
D12T/D10Y
D13C/D11Y
D13T/D12Y
DORC/D13Y
DORT/DORY
XOR2IN
47
46
44
43
41
40
38
37
36
35
33
32
30
29
27
26
45
39
34
28
48
25
42
31
2
3
5
6
8
9
11
12
13
14
16
17
19
20
22
23
4
10
15
21
7
18
1
24
1D1
1D2
1D3
1D4
1D5
1D6
1D7
1D8
1Q1
1Q2
1Q3
1Q4
1Q5
1Q6
1Q7
1Q8
2D1
2D2
2D3
2D4
2D5
2D6
2D7
2D8
2Q1
2Q2
2Q3
2Q4
2Q5
2Q6
2Q7
2Q8
GND
LE1
LE2
VCC
OE1
OE2
VCC
VCC
VCC
GND
GND
GND GND
GND
GND
GND
Q = OUTPUT
D = INPUT
GND
VDL
GND
GND
GND
XOR2IN
VDL
GND
GND
VDL
GND
GND
VDL
GND
GND
RSO16ISO
220RZ5
00
R14 DRM
00
R41
GATE
C68
0.1µFC67
0.1µF63
0.01µF
E45
E49
E42
VDL
GND
00
R50
NOT PLACED
COUTB
COUT
Figure 61. CMOS Mode Evaluation Board Schematic (Continued)
AD9444
Rev. 0 | Page 35 of 40
05089-065
Figure 62. CMOS Mode Evaluation Board Layout, Primary Side
05089-066
Figure 63. CMOS Mode Evaluation Board Layout, Secondary Side
05089-067
Figure 64. CMOS Mode Evaluation Board Layout, Ground Plane 1
05089-068
Figure 65. CMOS Mode Evaluation Board Layout, Ground Plane 2
05089-069
Figure 66. CMOS Mode Evaluation Board Layout, Power Plane 1
05089-070
Figure 67. CMOS Mode Evaluation Board Layout, Power Plane 2
AD9444
Rev. 0 | Page 36 of 40
05089-071
Figure 68. CMOS Mode Evaluation Board Layout, Primary Silkscreen
05089-072
Figure 69. CMOS Mode Evaluation Board Layout, Secondary Silkscreen
AD9444
Rev. 0 | Page 37 of 40
CMOS MODE EVALUATION BOARD BILL OF MATERIALS (BOM)
Table 12.
Item Qty. REFDES Description Manufacturer MFG_PART_NO
1 1 AD9444PCB PCB, AD9444 LVDS Evaluation Board PCSM AD9444LVDSCUSTREVC
2 16
C1, C4, C6, C33, C34,
C39, C44, C55 to
C57, C64 to C66,
C87 to C89
Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10% KEMET T491C106K016AS
3 32
C2, C3, C5, C9, C12,
C20 to C23, C26 to
C28, C30, C32, C35,
C40, C42, C43, C46 to
C48, C50, C52, C53,
C58, C60, C61, C75,
C78, C85, C91, C92
Capacitors, 0.1 µF 10 V Ceramic X5R 0402 Panasonic ECJ-0EB1A104K
4 5
C24, C25, C41, C67,
C68
Capacitors, 0.1 µF 16 V Ceramic X7R 0603 Panasonic ECJ-1VB1C104K
5 1 C51 Capacitor, Ceramic 10 µF 6.3 V X5R 0805 KEMET C0805C106K9PACTU
6 1 CR2 Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA Panasonic MA716-(TX)
7 20
E1 to E3, E24 to E27,
E30 to E32, E38 to
E42, E45 to E47,
E49, E52
40-Pin Breakable Header 3M 2340-611TN
8 2 J1, J4 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201
9 1 L1 10 nH O402 Inductor Coilcraft 0402CS-10NX_B_
10 1 P3 Header, 40-Pin, Male, 40-Pin Right Angle Samtec TSW-120-08-T-D-RA
11 1 P4 Power Jack Swithcraft RAPC722
12 1 R3 Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2GEJ362X
13 2 R4, R6 Resistors, 36 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ360X
14 1 R8 Resistor, 49.9 Ω 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF49R9X
15 4 R9, R12, R15, R21 Resistors, 1.00 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF1001X
16 2 R14, R50 Resistors, 0 Ω 1/10 W 5% 0603 SMD Panasonic ERJ-3GEY0R00V
17 2 R28, R35 Resistors, 33 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ330X
18 1 R39 Resistor, 0 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GE0R00X
19 4 RZ1 to RZ3, RZ6 220 Ω Resistor Array, 16 Term CTS Corp. 742163221JTR
20 2 T3, T5 Transformer, ADT1-1WT, CD542, ADT1-1WT Mini-Circuits ADT1-1WT
21 1 U1 14-Bit, 80 MSPS ADC ADI AD9444BSVZ-80
22 4 U3, U8, U15 3.3 V Voltage Regulator ADI ADP3338-3.3 V
23 1 U14 5 V Voltage Regulator ADI ADP3338-5.0 V
24 1 U5 16-Bit Flip Flop Fairchild 74LVTH162374
25 4 U6 Pin Sockets, Closed End AMP 5-330808-3
AD9444
Rev. 0 | Page 38 of 40
Item Qty. REFDES Description Manufacturer MFG_PART_NO
26 26
C10, C11, C13, C14 to
C19, C29, C31, C36 to
C37, C38, C45, C49,
C59, C62,C69, C70 to
C73, C90, C93, C961
Capacitors, Select 10 V Ceramic X5R 0402 Panasonic
27 1 J51 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201
28 15
R1,R2,R5,R7, R13,
R17 to R20, R27,
R36 to R401
Resistors, Select 1/16 W 1% 0402 SMD Panasonic
29 3 R16, R41, R421 Resistors, Select 1/16 W 5% 0603 SMD Panasonic
30 1 C631 Capacitor, Select 10 V Ceramic X5R 0603 Panasonic
31 1 U41 XOR 74VCX86D Fairchild 74VCX86D
32 2 P5, P61 Power Connectors Weiland
1 Parts not placed.
AD9444
Rev. 0 | Page 39 of 40
OUTLINE DIMENSIONS
COMPLIANT TO JEDEC STANDARDS MS-026AED-HD
NOTES
1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.
2
. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION O
F
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF
THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNA
L
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIV
E
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.
3. THE EXPOSED HEAT SINK SOLDERED TO THE GROUND PLANE IS REQUIRED FOR THE 100-LEAD TQFP/EP.
1
2526 50
76100 75
51
14.00 SQ
16.00 SQ
0.27
0.22
0.17
0.50 BSC
1.05
1.00
0.95
0.15
0.05
0.75
0.60
0.45
SEATING
PLANE
1.20
MAX
1
25
2650
76 100
75
51
6.50
NOM
3.5°
COPLANARITY
0.08
0.20
0.09
TOP VIEW
(PINS DOWN)
BOTTOM VIEW
(PINS UP)
CONDUCTIVE
HEAT SINK
Figure 70. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-100-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model Temperature Range Package Description Package Outline
AD9444BSVZ-801–40°C to +85°C 100-Lead TQFP_EP SV-100-1
AD9444-CMOS/PCB CMOS Mode Evaluation Board
AD9444-LVDS/PCB LVDS Mode Evaluation Board
1 Z = Pb-free part.
AD9444
Rev. 0 | Page 40 of 40
NOTES
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05089–0–10/04(0)