IADJ
EN
CSN
LM3409/HV
UVLO
D1
L1
CIN
VIN
ILED
VCC
COFF
GND Q1
CSP
CF
ROFF
PGATE
COFF
RUV2
RUV1
DAP
VIN
VO
RSNS
1
2
3
4
5 6
7
8
9
10
Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
Reference
Design
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
LM3409, -Q1, LM3409HV, -Q1 P-FET Buck Controller for High-Power LED Drivers
1
1 Features
1 LM3409-Q1 and LM3409HV-Q1 are Automotive
Grade Products: AEC-Q100 Grade 1 Qualified
2-, 1-A Peak MOSFET Gate Drive
VIN Range: 6 V to 42 V (LM3409, LM3409-Q1)
VIN Range: 6 V to 75 V (LM3409HV, LM3409HV-
Q1)
Differential, High-Side Current Sense
Cycle-by-Cycle Current Limit
No Control Loop Compensation Required
10,000:1 PWM Dimming Range
250:1 Analog Dimming Range
Supports All-Ceramic Output Capacitors and
Capacitor-less Outputs
Low-Power Shutdown and Thermal Shutdown
Thermally Enhanced 10-Pin, HVSSOP Package
2 Applications
LED Driver
Constant Current Source
Automotive Lighting
General Illumination
3 Description
The LM3409, LM3409-Q1, LM3409HV, and
LM3409HV-Q1 are P-channel MOSFET (PFET)
controllers for step-down (buck) current regulators.
They offer wide input voltage range, high-side
differential current sense with low adjustable
threshold voltage and fast output enable/disable
function and a thermally enhanced 10-pin, HVSSOP
package. These features combine to make the
LM3409 family of devices ideal for use as constant
current sources for driving LEDs where forward
currents up to 5 A are easily achievable.
The LM3409 devices use constant off-time (COFT)
control to regulate an accurate constant current
without the need for external control loop
compensation. Analog and PWM dimming are easy to
implement and result in a highly linear dimming range
with excellent achievable contrast ratios.
Programmable UVLO, low-power shutdown, and
thermal shutdown complete the feature set.
Device Information(1)
PART NUMBER PACKAGE BODY SIZE (NOM)
LM3409 HVSSOP (10) 3.00 mm × 3.00 mm
PDIP (14) 19.177 mm × 6.35 mm
LM3409-Q1 HVSSOP (10) 3.00 mm × 3.00 mmLM3409HV
LM3409HV-Q1
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Typical Application Schematic
2
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Table of Contents
1 Features.................................................................. 1
2 Applications ........................................................... 1
3 Description............................................................. 1
4 Revision History..................................................... 2
5 Device Comparison Table..................................... 3
6 Pin Configuration and Functions......................... 3
7 Specifications......................................................... 4
7.1 Absolute Maximum Ratings ...................................... 4
7.2 ESD Ratings.............................................................. 4
7.3 Recommended Operating Conditions....................... 4
7.4 Thermal Information.................................................. 5
7.5 Electrical Characteristics........................................... 6
7.6 Typical Characteristics.............................................. 7
8 Detailed Description............................................ 10
8.1 Overview................................................................. 10
8.2 Functional Block Diagram....................................... 10
8.3 Feature Description................................................. 11
8.4 Device Functional Modes........................................ 18
9 Application and Implementation ........................ 19
9.1 Application Information............................................ 19
9.2 Typical Applications ................................................ 23
10 Power Supply Recommendations ..................... 37
11 Layout................................................................... 37
11.1 Layout Guidelines ................................................. 37
11.2 Layout Example .................................................... 37
12 Device and Documentation Support................. 38
12.1 Device Support...................................................... 38
12.2 Related Links ........................................................ 38
12.3 Community Resources.......................................... 38
12.4 Trademarks........................................................... 38
12.5 Electrostatic Discharge Caution............................ 38
12.6 Glossary................................................................ 38
13 Mechanical, Packaging, and Orderable
Information........................................................... 38
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision K (July 2014) to Revision L Page
Corrected package family reference in Features section....................................................................................................... 1
Corrected package family reference in Device Information table........................................................................................... 1
Added Device Comparison table............................................................................................................................................ 3
Corrected typographical error in package name reference in Pin Configuration and Functions section............................... 3
Corrected typographical error in Absolute Maximum Ratings table....................................................................................... 4
Corrected typographical error in package name reference in ESD Ratings table ................................................................. 4
Corrected package family reference in Thermal Information table......................................................................................... 5
Changes from Revision J (May 2013) to Revision K Page
Added ESD Ratings table, Feature Description section, Device Functional Modes,Application and Implementation
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section.................................................................................................. 1
Changes from Revision I (May 2013) to Revision J Page
Changed layout of National Data Sheet to TI format ............................................................................................................ 1
UVLO
1
VCC
2
VIN
3
4
12
EN 11
IADJ
10
CSP
5
13
14
COFF CSN
NC
NC
6GND 9
8
PGATE
7NC NC
UVLO
1
CSP
2
VIN
3
4
8
COFF 7
EN
6
CSN
5
9
10
GND PGATE
DAP
VCC
IADJ
3
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
5 Device Comparison Table
ORDERABLE
NUMBER MAXIMUM INPUT
VOLTAGE (V) AEC-Q100 GRADE 1
QUALIFIED
LM3409 42 N
LM3409-Q1 Y
LM3409HV 75 N
LM3409HV-Q1 Y
6 Pin Configuration and Functions
DGQ Package
10-Pin HVSSOP
Top View NFF Package
14-Pin PDIP
Top View
Pin Functions
PIN DESCRIPTION
NAME PDIP HVSSOP
UVLO 1 1 Input undervoltage lockout. Connect to a resistor divider from VIN and GND. Turn-on threshold is
1.24 V and hysteresis for turnoff is provided by a 22 µA current source.
IADJ 3 2 Analog LED current adjust. Apply a voltage from 0 to 1.24 V, connect a resistor to GND, or leave
open to set the current sense threshold voltage.
EN 4 3 Logic level enable and PWM dimming. Apply a voltage >1.74 V to enable device, a PWM signal to
dim, or a voltage < 0.5 V for low-power shutdown.
COFF 5 4 Off-time programming. Connect resistor from VO, capacitor to GND to set off-time.
GND 6 5 Connect to system ground.
PGATE 9 6 Gate drive. Connect to gate of external P-channel MOSFET.
CSN 10 7 Negative current sense. Connect to negative side of sense resistor.
CSP 11 8 Positive current sense. Connect to positive side of sense resistor (also to VIN).
VCC 12 9 VIN referenced linear regulator output. Connect at least a 1-µF ceramic capacitor to VIN. The
regulator provides power for the P-channel MOSFET drive.
VIN 14 10 Input voltage. Connect to the input voltage.
Thermal pad Connect to GND pin. Place 4 to 6 vias from thermal pad to GND plane.
4
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and
specifications.
7 Specifications
7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VIN, EN, UVLO to GND
LM3409,
LM3409-Q1 –0.3 45 V
LM3409HV,
LM3409HV-Q1 –0.3 76
VIN to VCC, PGATE –0.3 7 V
VIN to PGATE for 100 ns –2.8 9.5 V
VIN to CSP, CSN –0.3 0.3 V
COFF to GND –0.3 4 V
COFF Current continuous ±1 mA
IADJ Current continuous ±5 mA
Junction temperature 150 °C
Soldering information Lead temperature (Soldering, 10 s) 260 °C
Infrared and convection reflow (15 s) 260 °C
Storage temperature, Tstg –65 125 °C
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(3) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
(4) The human body model is a 100 pF capacitor discharged through a 1.5-kresistor into each pin.
7.2 ESD Ratings VALUE UNIT
LM3409 IN DGQ AND NFF PACKAGES
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±1000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all
pins(2) ±1000
LM3409-Q1 IN DGQ AND NFF PACKAGES
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(3)(4) ±2000 V
Charged device model (CDM), per AEC Q100-011 ±1000
7.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT
VIN
LM3409,
LM3409-Q1 6 42 V
LM3409HV,
LM3409HV-Q1 6 75
Junction temperature range, TJ40 125 °C
5
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
7.4 Thermal Information
THERMAL METRIC(1)
LM3409,
LM3409-Q1,
LM3409HV,
LM3409HV-Q1
LM3409
UNIT
DGQ
(HVSSOP) NFF
(PDIP)
10 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 54.4 49 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 53.7 36.3 °C/W
RθJB Junction-to-board thermal resistance 33.8 28.9 °C/W
ψJT Junction-to-top characterization parameter 3.9 21.1 °C/W
ψJB Junction-to-board characterization parameter 33.5 28.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.5 N/A °C/W
6
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
(1) Typical values represent most likely parametric norms at the conditions specified and are not ensured.
(2) Minimum and maximum limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through
correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Texas Instrument's Average Outgoing Quality
Level (AOQL).
(3) The current sense threshold limits are calculated by averaging the results from the two polarities of the high-side differential amplifier.
7.5 Electrical Characteristics
VIN = 24 V unless otherwise indicated. Typicals and limits appearing in plain type apply for TA= TJ= 25°C (1). Data sheet
minimum and maximum specification limits are specified by design, test, or statistical analysis.
PARAMETER TEST CONDITIONS MIN(2) TYP(1) MAX(2) UNIT
PEAK CURRENT COMPARATOR
VCST VCSP VCSN average peak
current threshold(3) VADJ = 1 V 188 198 208 mV
VADJ = VADJ-OC 231 246 261
AADJ VADJ to VCSP VCSN threshold
gain 0.1 < VADJ < 1.2 V
VADJ = VADJ-OC 0.2 V/V
VADJ-OC IADJ pin open circuit voltage 1.189 1.243 1.297 V
IADJ IADJ pin current 3.8 5 6.4 µA
tDEL CSN pin falling delay CSN fall - PGATE rise 38 ns
SYSTEM CURRENTS
IIN Operating input current Not switching 2 mA
ISD Shutdown input current EN = 0 V 110 µA
PFET DRIVER
RPGATE Driver output resistance Sourcing 50 mA 2
Sinking 50 mA 2
VCC REGULATOR
VCC VIN pin voltage - VCC pin voltage VIN > 9 V
0 < ICC < 20 mA 5.5 6 6.5 V
VCC-UVLO VCC undervoltage lockout
threshold VCC increasing 3.73 V
VCC-HYS VCC UVLO hysteresis VCC decreasing 283 mV
ICC-LIM VCC regulator current limit 30 45 mA
OFF-TIMER AND ON-TIMER
VOFT Off-time threshold 1.122 1.243 1.364 V
tD-OFF COFF threshold to PGATE falling
delay 25 ns
tON-MIN Minimum ON-time 115 211 ns
tOFF-MAX Maximum OFF-time 300 µs
UNDERVOLTAGE LOCKOUT
IUVLO UVLO pin current VUVLO = 1 V 10 nA
VUVLO-R Rising UVLO threshold 1.175 1.243 1.311 V
IUVLO-HYS UVLO hysteresis current 22 µA
ENABLE
IEN EN pin current 10 nA
VEN-TH EN pin threshold VEN rising 1.74 V
VEN falling .5
VEN-HYS EN pin hysteresis 420 mV
tEN-R EN pin rising delay EN rise - PGATE fall 42 ns
tEN-F EN pin falling delay EN fall - PGATE rise 21 ns
TEMPERATURE (°C)
VOFT (V)
1.26
1.25
1.24
1.23
1.22
-50 -14 22 58 94 130
TEMPERATURE (°C)
tON-MIN (ns)
180
160
140
120
100
80
60
-50 -14 22 58 94 130
TEMPERATURE (°C)
VADJ (V)
1.260
1.255
1.250
1.245
1.240
1.235
1.230
-50 -14 22 58 94 130
TEMPERATURE (°C)
IADJ (#A)
-5.05
-5.10
-5.15
-5.20
-5.25
-5.30
-5.35
-50 -14 22 58 94 130
TEMPERATURE (°C)
VCST (mV)
250
248
246
244
242
-50 -14 22 58 94 130
TEMPERATURE (°C)
VCC (V)
6.125
6.100
6.075
6.050
6.025
-50 -14 22 58 94 130
7
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
7.6 Typical Characteristics
TA= 25 °C, VIN = 24 V, and characteristics are identical for LM3409 and LM3409HV unless otherwise specified.
Figure 1. VCST vs Junction Temperature Figure 2. VCC vs Junction Temperature
Figure 3. VADJ vs Junction Temperature Figure 4. IADJ vs Junction Temperature
Figure 5. VOFT vs Junction Temperature Figure 6. tON-MIN vs Junction Temperature
VADJ (V)
ILED (A)
2.3
1.8
1.4
0.9
0.5
0.0
0.0 0.3 0.5 0.8 1.0 1.3
INPUT VOLTAGE (V)
ILED (A)
2.40
2.35
2.30
2.25
2.20
2.15
2.10
20 24 28 32 36 40 44
INPUT VOLTAGE (V)
ILED (A)
2.5
2.4
2.3
2.2
2.1
2.0
20 32 44 56 68 80
INPUT VOLTAGE (V)
EFFICIENCY (%)
100
95
90
85
80
75
700 10 20 30 40 50
INPUT VOLTAGE (V)
EFFICIENCY (%)
100
95
90
85
80
75
700 20 40 60 80
8
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Typical Characteristics (continued)
TA= 25 °C, VIN = 24 V, and characteristics are identical for LM3409 and LM3409HV unless otherwise specified.
Figure 7. LM3409 Efficiency vs Input Voltage VO= 17 V (5
LEDs); ILED = 2 A
Figure 8. LM3409HV Efficiency vs Input Voltage VO= 17 V (5
LEDs); ILED = 2 A
Figure 9. LM3409 LED Current vs Input Voltage VO= 17 V (5
LEDs) Figure 10. LM3409HV LED Current vs Input Voltage VO= 17
V (5 LEDs)
Figure 11. Normalized Switching Frequency vs Input
Voltage Figure 12. Amplitude Dimming Using IADJ Pin VO= 17 V (5
LEDs); VIN = 24 V
ILED (A)
VEN (V)
7
6
5
4
3
2
1
0
-1
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0.0
-0.4
ILED
2 és/DIV
3.5 és
VEN
ILED (A)
VPWM2 (V)
7
6
5
4
3
2
1
0
-1
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0.0
-0.4
ILED
200 ns/DIV
VPWM2
ILED (A)
VEN (V)
14
12
10
8
6
4
2
0
-2
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
ILED
10 és/DIV
VEN
ILED (A)
VPWM2 (V)
14
12
10
8
6
4
2
0
-2
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
ILED
2 és/DIV
VPWM2
DUTY CYCLE (%)
ILED (A)
2.3
1.8
1.4
0.9
0.5
0.00 20 40 60 80 100
1kHz
20kHz
DUTY CYCLE (%)
ILED (A)
2.3
1.8
1.4
0.9
0.5
0.00 20 40 60 80 100
50 kHz
100 kHz
9
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
Typical Characteristics (continued)
TA= 25 °C, VIN = 24 V, and characteristics are identical for LM3409 and LM3409HV unless otherwise specified.
Figure 13. Internal EN Pin PWM Dimming VO= 17 V (5
LEDs); VIN = 24 V Figure 14. External Parallel FET PWM Dimming VO= 17 V (5
LEDs); VIN = 24 V
NOTE: The waveforms were acquired using the standard evaluation
board from AN-1953 (SNVA390).
Figure 15. 20 kHz 50% EN Pin PWM Dimming VO= 42 V (12
LEDs); VIN = 48 V
NOTE: The waveforms were acquired using the standard evaluation
board from AN-1953 (SNVA390).
Figure 16. 100 kHz 50% External FET PWM Dimming VO= 42
V (12 LEDs); VIN = 48 V
NOTE: The waveforms were acquired using the standard evaluation
board from AN-1953 (SNVA390).
Figure 17. 20 kHz 50% EN Pin PWM Dimming (Rising Edge)
VO= 42 V (12 LEDs); VIN = 48 V
The waveforms were acquired using the standard evaluation board
from AN-1953 (SNVA390).
Figure 18. 100 kHz 50% External FET PWM Dimming (Rising
Edge) VO= 42 V (12 LEDs); VIN = 48 V
VCC
VIN
PGATE
IADJ
EN
COFF
GND
THERMAL
SHUTDOWN
OFF TIMER
Complete
Start
LOGIC +
-
CSP
+
-
UVLO
VIN
CSN
VCC
REGULATOR
VCC
VCC
UVLO
1.24 V
5 µA
5R
R
R
1.24 V
22 µA
COFF
+
-
10
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
8 Detailed Description
8.1 Overview
The LM3409/09HV are P-channel MOSFET (PFET) controllers for step-down (buck) current regulators which are
ideal for driving LED loads. They have wide input voltage range allowing for regulation of a variety of LED loads.
The high-side differential current sense, with low adjustable threshold voltage, provides an excellent method for
regulating output current while maintaining high system efficiency.
The LM3409/09HV uses a Controlled Off-Time (COFT) architecture that allows the converter to be operated in
both continuous conduction mode (CCM) and discontinuous conduction mode (DCM) with no external control
loop compensation, while providing an inherent cycle-by-cycle current limit. The adjustable current sense
threshold provides the capability to amplitude (analog) dim the LED current over the full range and the fast output
enable/disable function allows for high frequency PWM dimming using no external components.
When designing, the maximum attainable LED current is not internally limited because the LM3409/09HV is a
controller. Instead it is a function of the system operating point, component choices, and switching frequency
allowing the LM3409/09HV to easily provide constant currents up to 5A. This simple controller contains all the
features necessary to implement a high-efficiency versatile LED driver.
8.2 Functional Block Diagram
t
iL (t)
üiL-
PP
IL-MAX
IL-MIN
IL
0
TS
tON = DTStOFF = (1-D)TS
D = IN
VxO
V
11
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
8.3 Feature Description
8.3.1 Buck Current Regulators
The buck regulator is unique among non-isolated topologies due to the direct connection of the inductor to the
load during the entire switching cycle. An inductor will control the rate of change of current that flows through it,
therefore a direct connection to the load is excellent for current regulation. A buck current regulator, using the
LM3409/09HV, is shown in the Application and Implementation section. During the time that the PFET (Q1) is
turned on (tON), the input voltage charges up the inductor (L1). When Q1 is turned off (tOFF), the re-circulating
diode (D1) becomes forward biased and L1 discharges. During both intervals, the current is supplied to the load
keeping the LEDs forward biased. Figure 19 shows the inductor current (iL(t)) waveform for a buck converter
operating in CCM.
The average inductor current (IL) is equal to the average output LED current (ILED), therefore if ILis tightly
controlled, ILED will be well regulated. As the system changes input voltage or output voltage, duty cycle (D) is
varied to regulate ILand ultimately ILED. For any buck regulator, D is simply the conversion ratio divided by the
efficiency (η):
(1)
Figure 19. Ideal CCM Buck Converter Inductor Current iL(t)
8.3.2 Controlled Off-Time (COFT) Architecture
The COFT architecture is used by the LM3409/09HV to control ILED. It is a combination of peak current detection
and a one-shot off-timer that varies with output voltage. D is indirectly controlled by changes in both tOFF and tON,
which vary depending on the operating point. This creates a variable switching frequency over the entire
operating range. This type of hysteretic control eliminates the need for control loop compensation necessary in
many switching regulators, simplifying the design process and providing fast transient response.
8.3.2.1 Adjustable Peak Current Control
At the beginning of a switching period, PFET Q1 is turned on and inductor current increases. Once peak current
is detected, Q1 is turned off, the diode D1 forward biases, and inductor current decreases. Figure 20 shows how
peak current detection is accomplished using the differential voltage signal created as current flows through the
current setting resistor (RSNS). The voltage across RSNS (VSNS) is compared to the adjustable current sense
threshold (VCST) and Q1 is turned off when VSNS exceeds VCST, providing that tON is greater than the minimum
possible tON (typically 115ns).
CST 5
V=ADJ
V5
5
=EXT
RA1 x
=#
EXT
RAx#
=5
R=
x248 mV
5
1.24V ==
VADJ
R5x
VADJ
VCST
CSP
5 V
1.24 V
5 µA
5R
R
R
+
-
-
+
IT
ENDS
VIN
+
-
CSN
IADJ
+
-
GND
Optional
PGATE
LED+
LED-
RSNS
+- VSNS
D1
L1
Q1
VADJ REXT
IL
VCST
tON
LM3409/09HV
12
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Feature Description (continued)
Figure 20. Peak Current Control Circuit
There are three different methods to set the current sense threshold (VCST) using the multi-function IADJ pin:
1. IADJ pin left open: 5 µA internal current source biases the Zener diode and clamps the IADJ pin voltage
(VADJ) at 1.24 V causing the maximum threshold voltage:
(2)
2. External voltage (VADJ) of 0 V to 1.24 V: Apply to the IADJ pin to adjust VCST from 0V to 248mV. If the VADJ
voltage is adjustable, analog dimming can be achieved.
3. External resistor (REXT) placed from IADJ pin to ground: 5 µA current source sets the VADJ voltage and
corresponding threshold voltage:
(3)
8.3.2.2 Controlled Off-Time
Once Q1 is turned off, it remains off for a constant time (tOFF) which is preset by an external resistor (ROFF), an
external capacitor (COFF), and the output voltage (VO) as shown in Figure 21. Because ILED is tightly regulated,
VOwill remain nearly constant over widely varying input voltage and temperature yielding a nearly constant tOFF.
OFF
OFF OFF
t
R C
COFF O
OFF OFF
dv (t) V e
dt R C
æ ö
-ç ÷
´
è ø
=´
vCOFF(t)
t
VO
0
ROFF x COFF
dvCOFF
dt
1.24
tOFF
-1 1.24V
O
V
x-
=OFFOFF (COFF + 20 pF)Rt xln ¸
¸
¹
·
¨
¨
©
§
VO
ROFF
COFF
+
-
COFF
1.24 V
tOFF
Control
Logic
to
PGATE
Drive -
+
vCOFF
LM3409/09HV
13
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
Feature Description (continued)
Figure 21. Off-Time Control Circuit
At the start of tOFF, the voltage across COFF (vCOFF(t)) is zero and the capacitor begins charging according to the
time constant provided by ROFF and COFF. When vCOFF(t) reaches the off-time threshold (VOFT = 1.24 V), then the
off-time is terminated and vCOFF(t) is reset to zero. tOFF is calculated as follows:
(4)
In reality, there is typically 20 pF parasitic capacitance at the off-timer pin in parallel with COFF, which is
accounted for in the calculation of tOFF. Also, it should be noted that the tOFF equation has a preceding negative
sign because the result of the logarithm should be negative for a properly designed circuit. The resulting tOFF is a
positive value as long as VO> 1.24 V. If VO< 1.24 V, the off-timer cannot reach VOFT and an internally limited
maximum off-time (typically 300 µs) will occur.
Figure 22. Exponential Charging Function vCOFF(t)
Although the tOFF equation is non-linear, tOFF is actually very linear in most applications. Ignoring the 20-pF
parasitic capacitance at the COFF pin, vCOFF(t) is plotted in Figure 22. The time derivative of vCOFF(t) can be
calculated to find a linear approximation to the tOFF equation:
(5)
When tOFF << ROFF x COFF (equivalent to when VO>> 1.24V), the slope of the function is essentially linear and
tOFF can be approximated as a current source charging COFF:
MAXLLLED 2
III -
== --
=OFFO tV x
ADJ
V
SNS
R5x
PPL
i'-L12x
-SNS
MAXTMAXL R
II == -=SNS
R5xADJ
V
CST
V
vSNS (t)
VCST
t
0tON tOFF
|OFFOFF CR24.1 xx L1
PPL
i'-
iPPL =
'-L1
OFFO (COFF + 20 pF)RV xx- 1ln -x ¸
¸
¹
·
¨
¨
©
§
O
VV24.1
OFF
t|
O
OFFOFF
VCRV24.1 xx
14
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Feature Description (continued)
(6)
Using the actual tOFF equation, the inductor current ripple (ΔiL-PP) of a buck current regulator operating in CCM is:
(7)
Using the tOFF approximation, the equation is reduced to:
(8)
NOTE
ΔiL-PP is independent of both VIN and VOwhen in CCM.
The ΔiL-PP approximation only depends on ROFF, COFF, and L1, therefore the ripple is essentially constant over
the operating range as long as VO>> 1.24V (when the tOFF approximation is valid). An exception to the tOFF
approximation occurs if the IADJ pin is used to analog dim. As the LED/inductor current decreases, the converter
will eventually enter DCM and the ripple will decrease with the peak current threshold. The approximation shows
how the LM3409/09HV achieves constant ripple over a wide operating range, however tOFF should be calculated
using the actual equation first presented.
8.3.3 Average LED Current
For a buck converter, the average LED current is simply the average inductor current.
Figure 23. Sense Voltage vSNS(t)
Using the COFT architecture, the peak transistor current (IT-MAX) is sensed as shown in Figure 23, which is equal
to the peak inductor current (IL-MAX) given by the following equation:
(9)
Because IL-MAX is set using peak current control and ΔiL-PP is set using the controlled off-timer, ILand
correspondingly ILED can be calculated as follows:
(10)
SW 1
f=1
=
OFF
t+
¸
¸
¹
·
¨
¨
©
§1MAXL LI x
-
OIN VV -
OFFON tt +
SW
f= =
1IN
V
¨
¨
©
§
xK
-¸
¸
¹
·
O
V
OFF
t
D1-
OFF
t
MINPPL
i>
'-- mV24
SNS
R
iL(t)
t
0tOFF
0
IL-MAX-H
IL-MAX-L
IL-MAX
tOFF
15
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
Feature Description (continued)
The threshold voltage VCST seen by the high-side sense comparator is affected by the comparator’s input offset
voltage, which causes an error in the calculation of IL-MAX and ultimately ILED. To mitigate this problem, the
polarity of the comparator inputs is swapped every cycle, which causes the actual IL-MAX to alternate between two
peak values (IL-MAXH and IL-MAXL), equidistant from the theoretical IL-MAX as shown in Figure 24. ILED remains
accurate through this averaging.
Figure 24. Inductor Current iL(t) Showing IL-MAX Offset
8.3.4 Inductor Current Ripple
Because the LM3409/09HV swaps the polarity of the differential current sense comparator every cycle, a
minimum inductor current ripple (ΔiL-PP) is necessary to maintain accurate ILED regulation. Referring to Figure 24,
the first tON is terminated at the higher of the two polarity-swapped thresholds (corresponding to IL-MAXH). During
the following tOFF, iLdecreases until the second tON begins. If tOFF is too short, then as the second tON begins, iL
will still be above the lower peak current threshold (corresponding to IL-MAXL) and a minimum tON pulse will follow.
This will result in degraded ILED regulation. The minimum inductor current ripple (ΔiL-PP-MIN) should adhere to the
following equation to ensure accurate ILED regulation:
(11)
8.3.5 Switching Frequency
The switching frequency is dependent upon the actual operating point (VIN and VO). VOwill remain relatively
constant for a given application, therefore the switching frequency will vary with VIN (frequency increases as VIN
increases). The target switching frequency (fSW) at the nominal operating point is selected based on the tradeoffs
between efficiency (better at low frequency) and solution size/cost (smaller at high frequency). The off-time of the
LM3409/09HV can be programmed for switching frequencies up to 5 MHz (theoretical limit imposed by minimum
tON). In practice, switching frequencies higher than 1MHz may be difficult to obtain due to gate drive limitations,
high input voltage, and thermal considerations.
At CCM operating points, fSW is defined as:
(12)
At DCM operating points, fSW is defined as:
(13)
LEDDIMLEDDIM IDI x
=
-
tOFF
iLED (t)
ILED-MAX
t
IDIM-LED
0
DDIM x TDIM
TDIM
ILED
>IN
VO
V
16
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Feature Description (continued)
In the CCM equation, it is apparent that the efficiency (η) factors into the switching frequency calculation.
Efficiency is hard to estimate and, because switching frequency varies with input voltage, accuracy in setting the
nominal switching frequency is not critical. Therefore, a general rule of thumb for the LM3409/09HV is to assume
an efficiency between 85% and 100%. When approximating efficiency to target a nominal switching frequency,
the following condition must be met:
(14)
Figure 25. LED Current iLED(t) During EN Pin PWM Dimming
8.3.6 PWM Dimming Using the EN Pin
The enable pin (EN) is a TTL compatible input for PWM dimming of the LED. A logic low (below 0.5V) at EN will
disable the internal driver and shut off the current flow to the LED array. While the EN pin is in a logic low state
the support circuitry (driver, bandgap, VCC regulator) remains active to minimize the time needed to turn the LED
array back on when the EN pin sees a logic high (above 1.74 V).
Figure 25 shows the LED current (iLED(t)) during PWM dimming where duty cycle (DDIM) is the percentage of the
dimming period (TDIM) that the PFET is switching. For the remainder of TDIM, the PFET is disabled. The resulting
dimmed average LED current (IDIM-LED) is:
(15)
The LED current rise and fall times (which are limited by the slew rate of the inductor as well as the delay from
activation of the EN pin to the response of the external PFET) limit the achievable TDIM and DDIM. In general,
dimming frequency should be at least one order of magnitude lower than the steady state switching frequency to
prevent aliasing. However, for good linear response across the entire dimming range, the dimming frequency
may need to be even lower.
8.3.7 High Voltage Negative BIAS Regulator
The LM3409/09HV contains an internal linear regulator where the steady state VCC pin voltage is typically 6.2 V
below the voltage at the VIN pin. The VCC pin should be bypassed to the VIN pin with at least 1µF of ceramic
capacitance connected as close as possible to the IC.
ROFF2 = ROFF1 × VDD
ILED × RDS (on )
VDD
ILED Dim
FET
ROFF2
COFF
COFF
PWM
Gate
Driver
VDD
LM3409/09HV
ROFF1
tOFF
iLED (t)
ILED-MAX
t
IDIM-LED
0
DDIM x TDIM
TDIM
ILED
17
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
Feature Description (continued)
8.3.8 External Parallel FET PWM Dimming
Figure 26. Ideal LED Current iLED(t) During Parallel FET Dimming
Any buck topology LED driver is a good candidate for parallel FET dimming because high slew rates are
achievable, due to the fact that no output capacitance is required. This allows for much higher dimming
frequencies than are achievable using the EN pin. When using external parallel FET dimming, a situation can
arise where maximum off-time occurs due to a shorted output. To mitigate this situation, a secondary voltage
(VDD) should be used as shown in Figure 27.
Figure 27. External Parallel FET Dimming Circuit
A small diode is connected in series with the off time resistor calculated for nominal operation from the output,
ROFF1. Then connect a small diode from the secondary voltage along with another resistor, ROFF2. The secondary
voltage can be any voltage as long as it is greater than 2V. The value of ROFF2 can be calculated using
Equation 16.
(16)
The ideal LED current waveform iLED(t) during parallel FET PWM dimming is very similar to the EN pin PWM
dimming shown previously. The LED current does not rise and fall infinitely fast as shown in Figure 26 however
with this method, only the speed of the parallel Dim FET ultimately limits the dimming frequency and dimming
duty cycle. This allows for much faster PWM dimming than can be attained with the EN pin.
18
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
8.4 Device Functional Modes
8.4.1 Low-Power Shutdown
The LM3409/09HV can be placed into a low-power shutdown (typically 110 µA) by grounding the EN terminal
(any voltage below 0.5 V) until VCC drops below the VCC UVLO threshold (typically 3.73 V). During normal
operation this terminal should be tied to a voltage above 1.74 V and below absolute maximum input voltage
rating.
8.4.2 Thermal Shutdown
Internal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction
temperature is exceeded. The threshold for thermal shutdown is 160°C with 15°C of hysteresis (both values
typical). During thermal shutdown the PFET and driver are disabled.
RV 2UVHYS x
=A22P
VONTURN =
-V24.1 ( )RR 2UV1UV +x R1UV
VIN
RUV2
RUV1
ON/OFF
+
-
UVLO
1.24 V
22 µA
LM3409/09HV
19
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
9.1.1 Input Undervoltage Lockout (UVLO)
Undervoltage lockout is set with a resistor divider from VIN to GND and is compared against a 1.24V threshold as
shown in Figure 28. Once the input voltage is above the preset UVLO rising threshold (and assuming the part is
enabled), the internal circuitry becomes active and a 22µA current source at the UVLO pin is turned on. This
extra current provides hysteresis to create a lower UVLO falling threshold. The resistor divider is chosen to set
both the UVLO rising and falling thresholds.
Figure 28. UVLO Circuit
The turn-on threshold (VTURN-ON) is defined as follows:
(17)
The hysteresis (VHYS) is defined as follows:
(18)
9.1.2 Operation Near Dropout
Because the power MOSFET is a PFET, the LM3409/09HV can be operated into dropout which occurs when the
input voltage is approximately equal to output voltage. Once the input voltage drops below the nominal output
voltage, the switch remains constantly on (D=1) causing the output voltage to decrease with the input voltage. In
normal operation, the average LED current is regulated to the peak current threshold minus half of the ripple. As
the converter goes into dropout, the LED current is exactly at the peak current threshold because it is no longer
switching. This causes the LED current to increase by half of the set ripple current as it makes the transition into
dropout. Therefore, the inductor current ripple should be kept as small as possible (while remaining above the
previously established minimum) and output capacitance should be added to help maintain good line regulation
when approaching dropout.
=
C
Z1
OSW Cf2 xxSx
=
PPLED
i'-D
r
1+ C
Z
PPL
i'-
20
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Application Information (continued)
9.1.3 LED Ripple Current
Selection of the ripple current through the LED array is analogous to the selection of output ripple voltage in a
standard voltage regulator. Where the output voltage ripple in a voltage regulator is commonly ±1% to ±5% of the
DC output voltage, LED manufacturers generally recommend values for ΔiLED-PP ranging from ±5% to ±20% of
ILED. For a nominal system operating point, a larger ΔiLED-PP specification can reduce the necessary inductor size
and/or allow for smaller output capacitors (or no output capacitors at all) which helps to minimize the total
solution size and cost. On the other hand, a smaller ΔiLED-PP specification would require more output inductance,
a higher switching frequency, or additional output capacitance.
9.1.4 Buck Converters without Output Capacitors
Because current is being regulated, not voltage, a buck current regulator is free of load current transients,
therefore output capacitance is not needed to supply the load and maintain output voltage. This is very helpful
when high frequency PWM dimming the LED load. When no output capacitor is used, the same design equations
that govern ΔiL-PP also apply to ΔiLED-PP.
9.1.5 Buck Converters With Output Capacitors
A capacitor placed in parallel with the LED load can be used to reduce ΔiLED-PP while keeping the same average
current through both the inductor and the LED array. With an output capacitor, the inductance can be lowered,
making the magnetics smaller and less expensive. Alternatively, the circuit can be run at lower frequency with the
same inductor value, improving the efficiency and increasing the maximum allowable average output voltage. A
parallel output capacitor is also useful in applications where the inductor or input voltage tolerance is poor.
Adding a capacitor that reduces ΔiLED-PP to well below the target provides headroom for changes in inductance or
VIN that might otherwise push the maximum ΔiLED-PP too high.
Figure 29. Calculating Dynamic Resistance rD
Output capacitance (CO) is determined knowing the desired ΔiLED-PP and the LED dynamic resistance (rD). rDcan
be calculated as the slope of the LED’s exponential DC characteristic at the nominal operating point as shown in
Figure 29. Simply dividing the forward voltage by the forward current at the nominal operating point will give an
incorrect value that is 5x to 10x too high. Total dynamic resistance for a string of n LEDs connected in series can
be calculated as the rDof one device multiplied by n. The following equations can then be used to estimate ΔiLED-
PP when using a parallel capacitor:
(19)
(20)
DSON
2
RMSTT RIP x
=-
ILED x
=1D 2
x
+
x¸
¸
¸
¹
·
¸
¸
¹
·
¨
¨
©
§
¨
¨
¨
©
§
12
1iL-PP
'
ILED
IRMST-
LEDT II D x
=
SWLED fI xx
=OFFON tt x
RMSIN
I- LED
Ix
=D x (1 - D)
MAXIN
v-
'
=
MININ
C-=MAXIN
v-
'
LED
I x SW
f1
¨
¨
©
§
OFF
t- ¸
¸
¹
·
ONLED tI x
21
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
Application Information (continued)
In general, ZCshould be at least half of rDto effectively reduce the ripple. Ceramic capacitors are the best choice
for the output capacitors due to their high ripple current rating, low ESR, low cost, and small size compared to
other types. When selecting a ceramic capacitor, special attention must be paid to the operating conditions of the
application. Ceramic capacitors can lose one-half or more of their capacitance at their rated DC voltage bias and
also lose capacitance with extremes in temperature. Make sure to check any recommended de-ratings and also
verify if there is any significant change in capacitance at the operating voltage and temperature.
9.1.6 Output Overvoltage Protection
Because the LM3409/09HV controls a buck current regulator, there is no inherent need to provide output
overvoltage protection. If the LED load is opened, the output voltage will only rise as high as the input voltage
plus any ringing due to the parasitic inductance and capacitance present at the output node. If a ceramic output
capacitor is used in the application, it should have a minimum rating equal to the input voltage. Ringing seen at
the output node should not damage most ceramic capacitors, due to their high ripple current rating.
9.1.7 Input Capacitors
Input capacitors are selected using requirements for minimum capacitance and RMS ripple current. The PFET
current during tON is approximately ILED, therefore the input capacitors discharge the difference between ILED and
the average input current (IIN) during tON. During tOFF, the input voltage source charges up the input capacitors
with IIN. The minimum input capacitance (CIN-MIN) is selected using the maximum input voltage ripple (ΔvIN-MAX)
which can be tolerated. ΔvIN-MAX is equal to the change in voltage across CIN during tON when it supplies the load
current. A good starting point for selection of CIN is to use ΔvIN-MAX of 2% to 10% of VIN. CIN-MIN can be selected
as follows:
(21)
An input capacitance at least 75% greater than the calculated CIN-MIN value is recommended. To determine the
RMS input current rating (IIN-RMS) the following approximation can be used:
(22)
Because this approximation assumes there is no inductor ripple current, the value should be increased by 10-
30% depending on the amount of ripple that is expected. Ceramic capacitors are the best choice for input
capacitors for the same reasons mentioned in the Buck Converters With Output Capacitors section. Careful
selection of the capacitor requires checking capacitance ratings at the nominal operating voltage and
temperature.
9.1.8 P-Channel MOSFET (PFET)
The LM3409/09HV requires an external PFET (Q1) as the main power MOSFET for the switching regulator. Q1
should have a voltage rating at least 15% higher than the maximum input voltage to ensure safe operation during
the ringing of the switch node. In practice all switching converters have some ringing at the switch node due to
the diode parasitic capacitance and the lead inductance. The PFET should also have a current rating at least
10% higher than the average transistor current (IT):
(23)
The power rating is verified by calculating the power loss (PT) using the RMS transistor current (IT-RMS) and the
PFET on-resistance (RDS-ON):
(24)
(25)
DDD VIP x
=
D
I (1- D) x
=LED
I
22
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Application Information (continued)
It is important to consider the gate charge of Q1. As the input voltage increases from a nominal voltage to its
maximum input voltage, the COFT architecture will naturally increase the switching frequency. The dominant
switching losses are determined by input voltage, switching frequency, and PFET total gate charge (Qg). The
LM3409/09HV must provide and remove charge Qgfrom the input capacitance of Q1 to turn it on and off. This
occurs more often at higher switching frequencies which requires more current from the internal regulator,
thereby increasing internal power dissipation and eventually causing the LM3409/09HV to thermally cycle. For a
given range of operating points the only effective way to reduce these switching losses is to minimize Qg.
A good rule of thumb is to limit Qg< 30nC (if the switching frequency remains below 300kHz for the entire
operating range then a larger Qgcan be considered). If a PFET with small RDS-ON and a high voltage rating is
required, there may be no choice but to use a PFET with Qg> 30nC.
When using a PFET with Qg> 30nC, the bypass capacitor (CF) should not be connected to the VIN pin. This will
ensure that peak current detection through RSNS is not affected by the charging of the PFET input capacitance
during switching, which can cause false triggering of the peak detection comparator. Instead, CFshould be
connected from the VCC pin to the CSN pin which will cause a small DC offset in VCST and ultimately ILED,
however it avoids the problematic false triggering.
In general, the PFET should be chosen to meet the Qgspecification whenever possible, while minimizing RDS-ON.
This will minimize power losses while ensuring the part functions correctly over the full operating range.
9.1.9 Re-Circulating Diode
A re-circulating diode (D1) is required to carry the inductor current during tOFF. The most efficient choice for D1 is
a Schottky diode due to low forward voltage drop and near-zero reverse recovery time. Similar to Q1, D1 must
have a voltage rating at least 15% higher than the maximum input voltage to ensure safe operation during the
ringing of the switch node and a current rating at least 10% higher than the average diode current (ID):
(26)
The power rating is verified by calculating the power loss through the diode. This is accomplished by checking
the typical diode forward voltage (VD) from the I-V curve on the product data sheet and calculating as follows:
(27)
In general, higher current diodes have a lower VDand come in better performing packages minimizing both
power losses and temperature rise.
IADJ
EN
CSN
LM3409HV
UVLO
D1
L1
VIN = 48 V
ILED = 2 A
VCC
COFF
GND Q1
CSP
CF
ROFF
PGATE
COFF
RUV2
RUV1
DAP
VIN
VO = 35 V
RSNS
1
2
3
4
5 6
7
8
9
10
PWM
CIN1 CIN2
23
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
9.2 Typical Applications
9.2.1 EN PIN PWM Dimming Application for 10 LEDs
Figure 30. EN PIN PWM Dimming Application for 10 LEDs Schematic
9.2.1.1 Design Requirements
fSW = 525 kHz
VIN = 48 V; VIN-MAX = 75 V
VO= 35 V
ILED =2A
ΔiLED-PP =ΔiL-PP =1A
ΔvIN-PP = 1.44 V
VTURN-ON = 10 V; VHYS = 1.1 V
η= 0.95
9.2.1.2 Detailed Design Procedure
Table 1. Design 1 Bill of Materials
QTY PART ID PART VALUE MANUFACTURER PART NUMBER
1 LM3409HV/LM3409QHV Buck controller TI LM3409HVMY/LM3409QHVMY
2 CIN1, CIN2 2 µF X7R 10% 100 V MURATA GRM43ER72A225KA01L
1 CF1 µF X7R 10% 16 V TDK C1608X7R1C105K
1 COFF 470 pF X7R 10% 50 V TDK C1608X7R1H471K
1 Q1 PMOS 100 V 3.8 A ZETEX ZXMP10A18KTC
1 D1 Schottky 100 V 3 A VISHAY SS3H10-E3/57T
1 L1 15 µH 20% 4.2 A TDK SLF12565T-150M4R2
L1=H15P
= = H15P1.027A
=
440nsV35 x
L1
tV OFFO x
iPPL
'-
=H4.15 P
=
L1=iPPL
'-
tV OFFO xns440V35 xA1
=pF470COFF
:
=k9.24ROFF
tOFF
fSW = = ns440 =kHz528
1-¸
¹
·
¨
©
§V4895.0 xV35
¸
¸
¹
·
¨
¨
©
§VO
VIN
xK
1-
1lnk9.24pF490tOFF -x:x
-
=¨
¨
©
§ns440
=
¸
¸
¹
·
V24.1 V35
(COFF + 20 pF)tOFF -
=x ROFF x 1
1ln - ¸
¸
¹
·
¨
¨
©
§
VO
V24.
=
ROFF
-- 1¸
¸
¹
·
¨
¨
©
§VO
xKVIN
=
ROFF :
=k1.25
x lnpF490 xkHz525 ¨
©
§-
1V35 ¸
¹
·
V24.1
-- 1
¨
©
§¸
¹
·
V35
x V4895.0
-
xx 1lnf(COFF + 20 pF) SW ¸
¸
¹
·
¨
¨
©
§VO
V24.1
24
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
Typical Applications (continued)
Table 1. Design 1 Bill of Materials (continued)
QTY PART ID PART VALUE MANUFACTURER PART NUMBER
1 ROFF 24.9 k1% VISHAY CRCW060324K9FKEA
1 RUV1 6.98 k1% VISHAY CRCW06036K98FKEA
1 RUV2 49.9 k1% VISHAY CRCW060349K9FKEA
1 RSNS 0.1 1% 1W VISHAY WSL2512R1000FEA
9.2.1.2.1 Nominal Switching Frequency
Assume COFF = 470 pF and η= 0.95. Solve for ROFF:
(28)
The closest 1% tolerance resistor is 24.9 k; therefore, the actual tOFF and target fSW are:
(29)
(30)
The chosen components from step 1 are:
(31)
9.2.1.2.2 Inductor Ripple Current
Solve for L1:
(32)
The closest standard inductor value is 15 µH therefore the actual ΔiL-PP is:
(33)
The chosen component from step 2 is:
(34)
=A51.1
=
A97.1V35 x 95.0V48 x
IDI LEDT =
x
=VIN Kx
IV LEDO x
V75VV MAXINMAXT == --
F2.2CC 2IN1IN P
==
IRMSIN- kHz528A97.1 xx
=mA831
=
ns440s45.1 xP
tt OFFON xfII SWLEDRMSIN xx
=
-
2C MININ =
x
=-F96.3 PCIN
CMININ =
-= = F98.1 P
V44.1
A97.1 x s45.1 P
vPPIN
'-
tI ONLED x
1
tON =1
tOFF =
- - ns440 =s45.1 P
kHz528
fSW
=
RSNS :1.0
ILED =2
1.027A
-A97.1
=
099.05 :xV24.1
ILED =R5 SNS
x-2
iPPL
'-
VADJ
=
RSNS VADJ
x-
I5 MAXL = = :099.0
V24.1
x5 A51.2
II LEDMAXL +
=
-2
A2 +
=A51.2
=
2
iPPL
'-1.027A
25
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
9.2.1.2.3 Average LED Current
DetermineIL-MAX:
(35)
Assume VADJ = 1.24 V and solve for RSNS:
(36)
The closest 1% tolerance resistor is 0.1 therefore the ILED is:
(37)
The chosen component from step 3 is:
(38)
9.2.1.2.4 Output Capacitance
No output capacitance is necessary.
9.2.1.2.5 Input Capacitance
Determine tON:
(39)
Solve for CIN-MIN:
(40)
Choose CIN:
(41)
DetermineIIN-RMS:
(42)
The chosen components from step 5 are:
(43)
9.2.1.2.6 PFET
Determine minimum Q1 voltage rating and current rating:
(44)
(45)
A 100 V, 3.8 A PFET is chosen with RDS-ON = 19 0mand Qg= 20 nC. Determine IT-RMS and PT:
=V1.10
k98.6 :
( )k9.49k98.6V24.1 :+:x
VONTURN =
-
VONTURN =
-V24.1 ( )RR 2UV1UV +x R1UV
=:
=k06.7
:
xk9.49V24.1 - V24.1V10
=
R1UV xRV24.1 2UV
-
-V24.1V ONTURN
1
2k9.49A22RV UVHYS x:
=
Px
=V1.A22 =
P
2== V
RHYS
UV =:k50
PA22PA22 V1.1
SMC,V100,A3D1o
mA457VDx=x mV750 = mW343IP DD =
( ) 1ID1I LEDD -
=
x-
=¨
¨
©
§ILED
x
¸
¸
¹
·
VIN Kx
VO
mA457A97.1 =
x
¸
¸
¹
·
V35
1ID-
=¨
¨
©
§95.0V48 x
VV MAXINMAXD == -- V75
Q1o3.8 DPAK,V100,A
mW577m190A74.1RIP 2
DSON
2
RMSTT =:
x
=
x
=-
1
1.97A x
+
xx
=¨
¨
©
§
V35 12
1
95.0V48 x
IRMST-
2
¸
¸
¹
·
¸
¸
¹
·
¨
¨
©
§1.027A
1.97A
1.74A
=
IRMST-
ILED x
=1D 2
x
+
x¸
¸
¸
¹
·
¸
¸
¹
·
¨
¨
©
§
¨
¨
¨
©
§
12
1iL-PP
'
ILED
IRMST-
26
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
(46)
(47)
The chosen component from step 6 is:
(48)
9.2.1.2.7 Diode
Determine minimum D1 voltage rating and current rating:
(49)
(50)
A 100-V, 3-A diode is chosen with VD= 750 mV. Determine PD:
(51)
The chosen component from step 7 is:
(52)
9.2.1.2.8 Input UVLO
Solve for RUV2:
(53)
The closest 1% tolerance resistor is 49.9 ktherefore VHYS is:
(54)
Solve for RUV1:
(55)
The closest 1% tolerance resistor is 6.98 ktherefore VTURN-ON is:
(56)
EN Pin Duty Cycle (%)
LED Current (A)
0 10 20 30 40 50 60 70 80 90 100
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
D001
:
=
:
=k9.49R k98.6R
2UV
1UV
27
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
The chosen components from step 8 are:
(57)
9.2.1.2.9 IADJ Connection Method
The IADJ pin is left open forcing VADJ = 1.24 V.
9.2.1.2.10 PWM Dimming Method
PWM dimming signal pair is applied to the EN pin and GND at fDIM = 1 kHz.
9.2.1.3 Application Curve
Figure 31 shows the LED current versus EN pin PWM duty cycle for the application.
Black = 200 Hz Red = 1 kHz Gray = 20 kHz
Figure 31. EN Pin PWM Dimming
IADJ
EN
CSN
LM3409
UVLO VIN = 24 V
ILED = 1 A
VCC
COFF
GND
CSP
CF
ROFF
PGATE
COFF
RUV2
RUV1
DAP
VIN
VO = 14 V
RSNS
1
2
3
4
5 6
7
8
9
10
VADJ
CIN1
CO
D1
L1
Q1
RF2
CF2
28
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
9.2.2 Analog Dimming Application for 4 LEDs
9.2.2.1 Design Requirements
fSW = 500 kHz
VIN = 24 V; VIN-MAX = 42 V
VO= 14 V
ILED =1A
ΔiL-PP = 450 mA; ΔiLED-PP = 50 mA
ΔvIN-PP =1V
VTURN-ON = 10 V; VHYS = 1.1 V
η= 0.90
9.2.2.2 Detailed Design Procedure
Table 2. Design 2 Bill of Materials
QTY PART ID PART VALUE MANUFACTURER PART NUMBER
1 LM3409/LM3409Q Buck controller TI LM3409MY/LM3409QMY
2 CIN1 4.7-µF X7R 10% 50 V MURATA GRM55ER71H475MA01L
1 CF1-µF X7R 10% 16 V TDK C1608X7R1C105K
1 CF2 0.1-µF X7R 10% 16 V TDK C1608X7R1C104K
1 COFF 470-pF X7R 10% 50 V TDK C1608X7R1H471K
1 CO2.2-µF X7R 10% 50 V MURATA GRM43ER71H225MA01L
1 Q1 PMOS 70 V 5.7 A ZETEX ZXMP7A17KTC
1 D1 Schottky 60 V 5 A COMCHIP CDBC560-G
1 L1 22 µH 20% 4.2 A TDK SLF12575T-220M4R0
1 RF2 1 k1% VISHAY CRCW06031K00FKEA
H22L1 P
=
ns
x700
V14
=H22PmA445
=
iPPL =
'-tV OFFO x
L1
tV
L1 OFFO x
= = H8.21 P
=
ns700V14 x mA450i PPL
'-
:
=
=k4.15R pF470C
OFF
OFF
=
fSW =tOFF
1-¸
¸
¹
·
¨
¨
©
§
VIN
xK
VO
kHz503
=
ns700
1- ¸
¹
·
¨
©
§V14 V2490.0 x
tOFF =1lnk4.15pF490 -
x:x
-¨
¨
©
§ns700
=
¸
¸
¹
·
V14 V24.1
lnR(COFF + 20 pF)t OFFOFF xx
-
=1-
¨
¨
©
§
¸
¸
¹
·
VO
V24.1
=
ROFF
-- 1 ¸
¸
¹
·
¨
¨
©
§VO
xKVIN
-xx 1lnfCOFF + 20 pF SW ¨
¨
©
§
¸
¸
¹
·
V24.1 VO
=:
=k5.15
xx lnkHz500pF490 ¸
¹
·
-1
¨
©
§V24.1 V14
-- 1 ¸
¹
·
¨
©
§x V2490.0 V14
ROFF
29
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
Table 2. Design 2 Bill of Materials (continued)
QTY PART ID PART VALUE MANUFACTURER PART NUMBER
1 ROFF 15.4 k1% VISHAY CRCW060315K4FKEA
1 RUV1 6.98 k1% VISHAY CRCW06036K98FKEA
1 RUV2 49.9 k1% VISHAY CRCW060349K9FKEA
1 RSNS 0.2 1% 1W VISHAY WSL2512R2000FEA
9.2.2.2.1 Nominal Switching Frequency
Assume COFF = 470 pF and η= 0.90. Solve for ROFF:
(58)
The closest 1% tolerance resistor is 15.4 k; therefore, the actual tOFF and target fSW are:
(59)
(60)
The chosen components from step 1 are:
(61)
9.2.2.2.2 Inductor Ripple Current
Solve for L1:
(62)
The closest standard inductor value is 22 µH; therefore, the actual ΔiL-PP is:
(63)
The chosen component from step 2 is:
(64)
2CC MINININ =x= -PF
64.3
mV720
CMININ =
-= = PF
82.1
s29.1A02.1 Px
vPPIN
'-
tI ONLED x
tON =1tOFF
-kHz5031
=-700ns=s29.1 P
fSW
2.2 PF
CO=
=
COxC MINO- 1.75 =PF
2.2
1PF
1.27
=
CMINO =
-
=
1
CMINO-
2xSxfSW x ZC
m250kHz5032 :xxSx
==
ZC-'-
iPPL 'iPPLED-
'x-
ir PPLEDD =250 m:
x:mA502 - mA50mA450
:
=2.0RSNS
R5 SNS
x
VADJ
ILED =-2=2
-A02.1
=
mA445
2.05 :xV24.1
iPPL
'-
=
RSNS = = :203.0
x A22.15 V24.1
VADJ
x-
I5 MAXL
A1
2+=+II LEDMAXL =
-2A22.1=
mA445
iPPL
'-
30
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
9.2.2.2.3 Average LED Current
DetermineIL-MAX:
(65)
Assume VADJ = 1.24 V and solve for RSNS:
(66)
The closest 1% tolerance resistor is 0.2 therefore ILED is:
(67)
The chosen component from step 3 is:
(68)
9.2.2.2.4 Output Capacitance
Assume rD= 2 and determine ZC:
(69)
Solve for CO-MIN and :
(70)
Choose CO:
(71)
The chosen component from step 5 is:
(72)
9.2.2.2.5 Input Capacitance
Determine tON:
(73)
Solve for CIN-MIN:
(74)
Choose CIN:
(75)
DetermineIIN-RMS:
2== V
RHYS
UV =:k50
PA22PA22 V1.1
SMC,V60,A51D o
mW268mV750mA358VIP DDD =
x
=
x
=
1- ¸
¸
¹
·
¨
¨
©
§
xK
VOx ILED
ID = (1- D) x ILED = VIN
ID =1-¸
¹
·
¨
©
§V14
V24 90.0x x 1.02A = 358 mA
V42VV MAXINMAXD == --
DPAK,V70,A5.7Q1o
mW129m190mA
830
RIP 2
DSON
2
RMSTT =
:x
=
x
=-
mA830I RMST =
-
ILED x
=1D 2
x
+
x¸
¸
¸
¹
·
¸
¸
¹
·
¨
¨
©
§
¨
¨
¨
©
§
12
1iL-PP
'
ILED
IRMST-
A02.1I RMST x
=
-12
1
12
x
+
x¸
¸
¹
·
¸
¸
¹
·
¨
¨
©
§
¨
¨
©
§
A02.1 mA445
V14 90.0V24 x
=mA660
=
IDI LEDT =
x
=IV LEDO x
VIN Kxx A02.1V14 xV24 90.0
VV MAXINMAXT == -- V42
= F7.4 PCIN
fI SWLED xx
=
IRMSIN- tt OFFON x
mA486ns700s29.1kHz503A02.1 =
xPxx
=
IRMSIN-
31
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
(76)
The chosen component from step 5 is:
(77)
9.2.2.2.6 PFET
Determine minimum Q1 voltage rating and current rating:
(78)
(79)
A 70V, 5.7 A PFET is chosen with RDS-ON = 190 mand Qg= 20 nC. Determine IT-RMS and PT:
(80)
(81)
The chosen component from step 6 is:
(82)
9.2.2.2.7 Diode
Determine minimum D1 voltage rating and current rating:
(83)
(84)
A 60 V, 5 A diode is chosen with VD= 750 mV. Determine PD:
(85)
The chosen component from step 7 is:
(86)
9.2.2.2.8 Input UVLO
Solve for RUV2:
(87)
IADJ Voltage (V)
LED Current (A)
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
0.2
0.4
0.6
0.8
1
D001
:
=
:
=k9.49R k98.6R
2UV
1UV
=V1.10
k98.6 :
( )k9.49k98.6V24.1 :+:x
VONTURN =
-
VONTURN =
-V24.1 ( )RR 2UV1UV +x R1UV
=:
=k06.7
:
xk9.49V24.1 - V24.1V10
=
R1UV xRV24.1 2UV
-
-V24.1V ONTURN
1
2k9.49A22RV UVHYS x:
=
Px
=V1.A22 =
P
32
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
The closest 1% tolerance resistor is 49.9 ktherefore VHYS is:
(88)
Solve for RUV1:
(89)
The closest 1% tolerance resistor is 6.98 ktherefore VTURN-ON is:
(90)
The chosen components from step 8 are:
(91)
9.2.2.2.9 IADJ Connection Method
The IADJ pin is connected to an external voltage source and varied from 0 1.24 V to dim. An RC filter (RF2 = 1
kand CF2 = 0.1 µF) is used as recommended.
9.2.2.2.10 PWM Dimming Method
No PWM dimming is necessary.
9.2.2.3 Application Curve
Figure 32 shows the LED current versus IADJ voltage for the application.
Figure 32. Analog Dimming Profile
IADJ
EN
CSN
LM3409/HV
UVLO
D1
L1
CIN
VIN
ILED
VCC
COFF
GND Q1
CSP
CF
ROFF
PGATE
COFF
RUV2
RUV1
DAP
VIN
VO
RSNS
1
2
3
4
5 6
7
8
9
10
33
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
9.2.3 LM3409 Buck Converter Application
Figure 33. LM3409 Buck Converter Simplified Schematic
9.2.3.1 Design Requirements
Nominal input voltage: VIN
Maximum input voltage: VIN-MAX
Nominal output voltage (number of LEDs x forward voltage): VO
LED string dynamic resistance: rD
Switching frequency (at nominal VIN, VO): fSW
Average LED current: ILED
Inductor current ripple: ΔiL-PP
LED current ripple: ΔiLED-PP
Input voltage ripple: ΔvIN-PP
UVLO characteristics: VTURN-ON and VHYS
Expected efficiency: η
9.2.3.2 Detailed Design Procedure
9.2.3.2.1 Nominal Switching Frequency
Calculate switching frequency (fSW) at the nominal operating point (VIN and VO). Assume a COFF value (from 470
pF to 1 nF) and a system efficiency (η). Solve for ROFF:
OFFONSWLEDRMSIN ttfII xxx
=
-
MININ
C-= = OFFLED t
1
I¨
¨
©
§-x ¸
¸
¹
·
SW
f
PPIN
v-
'
ONLED tI x
PPIN
v-
'
C
Z
MINO 1
C=
-SW
f2 xxSx
C
Z=D
r x PPLED
i-
'
PPLEDPPL ii -- '-'
SNS
R=MAXL
I5 -
xADJ
V
2
I
ILED
MAXL- +
=iPPL-
'
L1=OFFO tV x
PPL
i-
'
=
OFF
R-- 1 ¸
¸
¹
·
¨
¨
©
§xKIN
V
O
V
¸
¸
¹
·
-1
¨
¨
©
§
xx SW lnf(COFF + 20 pF) V24.1
O
V
34
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
(92)
9.2.3.2.2 Inductor Ripple Current
Set the inductor ripple current (ΔiL-PP) by solving for the appropriate inductor (L1):
(93)
9.2.3.2.3 Average LED Current
Set the average LED current (ILED) by first solving for the peak inductor current (IL-MAX):
(94)
Peak inductor current is detected across the sense resistor (RSNS). In most cases, assume the maximum value
(VADJ = 1.24 V) at the IADJ pin and solve for RSNS:
(95)
If the calculated RSNS is far from a standard value, the beginning of the process can be iterated to choose a new
ROFF, L1, and RSNS value that is a closer fit. The easiest way to approach the iterative process is to change the
nominal fSW target knowing that the switching frequency varies with operating conditions anyways.
Another method for finding a standard RSNS value is to change the VADJ value. However, this would require an
external voltage source or a resistor from the IADJ pin to GND as explained in the Adjustable Peak Current
Control section of this data sheet.
9.2.3.2.4 Output Capacitance
A minimum output capacitance (CO-MIN) may be necessary to reduce ΔiLED-PP below ΔiL-PP. With the specified
ΔiLED-PP and the known dynamic resistance (rD) of the LED string, solve for the required impedance (ZC) for CO-
MIN:
(96)
Solve for CO-MIN:
(97)
9.2.3.2.5 Input Capacitance
Set the input voltage ripple (ΔvIN-PP) by solving for the required minimum capacitance (CIN-MIN):
(98)
The necessary RMS input current rating (IIN-RMS) is:
(99)
2
-ILED =R5 SNS
x
VADJ iPPL-
'
-
R1UV =RV24.1 2UV
xV24.1V ONTURN-
R2UV =VHYS
PA
22
DDD VIP x
=
D
I (1- D) x
=LED
I
DSON
2
RMSTT RIP x
=-
ILED x
=1D 2
x
+
x¸
¸
¸
¹
·
¸
¸
¹
·
¨
¨
©
§
¨
¨
¨
©
§
12
1iL-PP
'
ILED
IRMST-
LEDT II D x
=
35
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
9.2.3.2.6 PFET
The PFET voltage rating should be at least 15% higher than the maximum input voltage (VIN-MAX) and current
rating should be at least 10% higher than the average PFET current (IT):
(100)
Given a PFET with on-resistance (RDS-ON), solve for the RMS transistor current (IT-RMS) and power dissipation
(PT):
(101)
(102)
9.2.3.2.7 Diode
The Schottky diode needs a voltage rating similar to the PFET. Higher current diodes with a lower forward
voltage are suggested. Given a diode with forward voltage (VD), solve for the average diode current (ID) and
power dissipation (PD):
(103)
(104)
9.2.3.2.8 Input UVLO
Input UVLO is set with the turnon threshold voltage (VTURN-ON) and the desired hysteresis (VHYS). To set VHYS,
solve for RUV2:
(105)
To set VTURN-ON, solve for RUV1:
(106)
9.2.3.2.9 IADJ Connection Method
The IADJ pin controls the high-side current sense threshold in three ways outlined in the Adjustable Peak
Current Control section.
Method 1: Leave IADJ pin open and ILED is calculated as in the Average LED Current section of the Design
Guide.
Method 2: Apply an external voltage (VADJ) to the IADJ pin from 0 to 1.24 V to analog dim or to reduce ILED as
follows:
(107)
Keep in mind that analog dimming will eventually push the converter in to DCM and the inductor current ripple
will no longer be constant causing a divergence from linear dimming at low levels.
A 0.1 µF capacitor connected from the IADJ pin to GND is recommended when using this method. It may also be
necessary to have a 1kseries resistor with the capacitor to create an RC filter. The filter will help remove high
frequency noise created by other connected circuitry.
Method 3: Connect an external resistor or potentiometer to GND (REXT) and the internal 5 µA current source will
set the voltage. Again, a 0.1 µF capacitor connected from the IADJ pin to GND is recommended. To set ILED,
solve for REXT:
PA
1
REXT =ILED +
¨
©
§2xRSNS
¸
¹
·
iL-PP
'
36
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
(108)
9.2.3.2.10 PWM Dimming Method
There are two methods to PWM dim using the LM3409/09HV:
Method 1:Apply an external PWM signal to the EN terminal.
Method 2: Perform external parallel FET shunt dimming as detailed in the External Parallel FET PWM Dimming
section.
UVLO
IADJ
EN
COFF
GND
VIN
VCC
CSP
CSN
PGATE
VIA
GND
GND
VIN
CF
L1
D1
+
Q1
RSNS
ROFF
CIN
RUV1
RUV2
LED+
-
LED-
COFF
37
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
www.ti.com
SNVS602L MARCH 2009REVISED JUNE 2016
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation FeedbackCopyright © 2009–2016, Texas Instruments Incorporated
10 Power Supply Recommendations
Any DC output power supply may be used provided it has a high enough voltage and current range for the
particular application required.
11 Layout
11.1 Layout Guidelines
The performance of any switching converter depends as much upon the layout of the PCB as the component
selection. Following a few simple guidelines will maximimize noise rejection and minimize the generation of EMI
within the circuit.
Discontinuous currents are the most likely to generate EMI, therefore take care when routing these paths. The
main path for discontinuous current in the LM3409/09HV buck converter contains the input capacitor (CIN), the
recirculating diode (D1), the P-channel MOSFET (Q1), and the sense resistor (RSNS). This loop should be kept as
small as possible and the connections between all three components should be short and thick to minimize
parasitic inductance. In particular, the switch node (where L1, D1 and Q1 connect) should be just large enough
to connect the components without excessive heating from the current it carries.
The IADJ, COFF, CSN and CSP pins are all high-impedance control inputs which couple external noise easily,
therefore the loops containing these high impedance nodes should be minimized. The most sensitive loop
contains the sense resistor (RSNS) which should be placed as close as possible to the CSN and CSP pins to
maximize noise rejection. The off-time capacitor (COFF) should be placed close to the COFF and GND pins for
the same reason. Finally, if an external resistor (REXT) is used to bias the IADJ pin, it should be placed close to
the IADJ and GND pins, also.
In some applications the LED or LED array can be far away (several inches or more) from the LM3409/09HV, or
on a separate PCB connected by a wiring harness. When an output capacitor is used and the LED array is large
or separated from the rest of the converter, the output capacitor should be placed close to the LEDs to reduce
the effects of parasitic inductance on the AC impedance of the capacitor.
11.2 Layout Example
Figure 34. Layout Recommendation
38
LM3409
,
LM3409-Q1
,
LM3409HV
,
LM3409HV-Q1
SNVS602L MARCH 2009REVISED JUNE 2016
www.ti.com
Product Folder Links: LM3409 LM3409-Q1 LM3409HV LM3409HV-Q1
Submit Documentation Feedback Copyright © 2009–2016, Texas Instruments Incorporated
12 Device and Documentation Support
12.1 Device Support
12.1.1 Third-Party Products Disclaimer
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 3. Related Links
PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL
DOCUMENTS TOOLS &
SOFTWARE SUPPORT &
COMMUNITY
LM3409 Click here Click here Click here Click here Click here
LM3409-Q1 Click here Click here Click here Click here Click here
LM3409HV Click here Click here Click here Click here Click here
LM3409HV-Q1 Click here Click here Click here Click here Click here
12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
12.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary
SLYZ022 TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGE OPTION ADDENDUM
www.ti.com 10-Dec-2020
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM3409HVMY/NOPB ACTIVE HVSSOP DGQ 10 1000 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SYHB
LM3409HVMYX/NOPB ACTIVE HVSSOP DGQ 10 3500 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SYHB
LM3409MY/NOPB ACTIVE HVSSOP DGQ 10 1000 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SXFB
LM3409MYX/NOPB ACTIVE HVSSOP DGQ 10 3500 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SXFB
LM3409QHVMY/NOPB ACTIVE HVSSOP DGQ 10 1000 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SZEB
LM3409QHVMYX/NOPB ACTIVE HVSSOP DGQ 10 3500 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SZEB
LM3409QMY/NOPB ACTIVE HVSSOP DGQ 10 1000 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SZDB
LM3409QMYX/NOPB ACTIVE HVSSOP DGQ 10 3500 RoHS & Green SN Level-3-260C-168 HR -40 to 125 SZDB
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com 10-Dec-2020
Addendum-Page 2
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LM3409, LM3409-Q1, LM3409HV, LM3409HV-Q1 :
Catalog: LM3409, LM3409HV
Automotive: LM3409-Q1, LM3409HV-Q1
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM3409HVMY/NOPB HVSSOP DGQ 10 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM3409HVMYX/NOPB HVSSOP DGQ 10 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM3409MY/NOPB HVSSOP DGQ 10 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM3409MYX/NOPB HVSSOP DGQ 10 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM3409QHVMY/NOPB HVSSOP DGQ 10 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM3409QHVMYX/NOPB HVSSOP DGQ 10 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM3409QMY/NOPB HVSSOP DGQ 10 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM3409QMYX/NOPB HVSSOP DGQ 10 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 6-Sep-2019
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM3409HVMY/NOPB HVSSOP DGQ 10 1000 210.0 185.0 35.0
LM3409HVMYX/NOPB HVSSOP DGQ 10 3500 367.0 367.0 35.0
LM3409MY/NOPB HVSSOP DGQ 10 1000 210.0 185.0 35.0
LM3409MYX/NOPB HVSSOP DGQ 10 3500 367.0 367.0 35.0
LM3409QHVMY/NOPB HVSSOP DGQ 10 1000 210.0 185.0 35.0
LM3409QHVMYX/NOPB HVSSOP DGQ 10 3500 367.0 367.0 35.0
LM3409QMY/NOPB HVSSOP DGQ 10 1000 210.0 185.0 35.0
LM3409QMYX/NOPB HVSSOP DGQ 10 3500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 6-Sep-2019
Pack Materials-Page 2
www.ti.com
PACKAGE OUTLINE
C
5.05
4.75 TYP
1.1 MAX
8X 0.5
10X 0.27
0.17
2X
2
0.23
0.13 TYP
0 - 8 0.15
0.05
1.88
1.58
2.05
1.75
0.25
GAGE PLANE
0.7
0.4
A
3.1
2.9
NOTE 3
B3.1
2.9
4214864/A 05/2020
PowerPAD - 1.1 mm max heightDGQ0010A
PLASTIC SMALL OUTLINE
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187, variation BA-T.
PowerPAD is a trademark of Texas Instruments.
TM
110
0.08 C A B
6
5
PIN 1 ID
AREA
NOTE 4
SEATING PLANE
0.1 C
SEE DETAIL A
DETAIL A
TYPICAL
SCALE 3.700
EXPOSED
THERMAL PAD
4
1
5
8
www.ti.com
EXAMPLE BOARD LAYOUT
(4.4)
0.05 MAX
ALL AROUND 0.05 MIN
ALL AROUND
10X (1.45)
10X (0.3)
8X (0.5)
(2.2)
NOTE 9
(3.1)
NOTE 9
(1.88)
(2.05)
SOLDER MASK
OPENING
( 0.2) TYP
VIA (1.3) TYP
(1.3)
TYP
(R0.05) TYP
4214864/A 05/2020
PowerPAD - 1.1 mm max heightDGQ0010A
PLASTIC SMALL OUTLINE
SYMM
SYMM
SEE DETAILS
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X
1
56
10
SOLDER MASK
OPENING
METAL COVERED
BY SOLDER MASK
SOLDER MASK
DEFINED PAD
TM
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
9. Size of metal pad may vary due to creepage requirement.
METAL
SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
EXPOSED
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED
METAL
www.ti.com
EXAMPLE STENCIL DESIGN
10X (1.45)
10X (0.3)
8X (0.5)
(4.4)
(1.88)
(2.05)
BASED ON
0.125 THICK
STENCIL
(R0.05) TYP
4214864/A 05/2020
PowerPAD - 1.1 mm max heightDGQ0010A
PLASTIC SMALL OUTLINE
1.59 X 1.730.175 1.72 X 1.870.150 1.88 X 2.05 (SHOWN)0.125 2.10 X 2.290.1
SOLDER STENCIL
OPENING
STENCIL
THICKNESS
NOTES: (continued)
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
11. Board assembly site may have different recommendations for stencil design.
TM
SOLDER PASTE EXAMPLE
EXPOSED PAD
100% PRINTED SOLDER COVERAGE BY AREA
SCALE:15X
SYMM
SYMM
1
56
10
BASED ON
0.125 THICK
STENCIL
BY SOLDER MASK
METAL COVERED
SEE TABLE FOR
DIFFERENT OPENINGS
FOR OTHER STENCIL
THICKNESSES
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated