J/SST/U308 Series
Vishay Siliconix
Document Number: 70237
S-50149—Rev. H, 24-Jan-05
www.vishay.com
1
N-Channel JFETs
J308 SST308 U309
J309 SST309 U310
J310 SST310
PRODUCT SUMMARY
Part Number VGS(off) (V) V(BR)GSS Min (V) gfs Min (mS) IDSS Min (mA)
J308 1 to 6.5 25 8 12
J309 1 to 425 10 12
J310 2 to 6.5 25 8 24
SST308 1 to 6.5 25 8 12
SST309 1 to 425 10 12
SST310 2 to 6.5 25 8 24
U309 1 to 425 10 12
U310 2.5 to 625 10 24
FEATURES BENEFITS APPLICATIONS
DExcellent High Frequency Gain:
Gps 11.5 dB @ 450 MHz
DVery Low Noise: 2.7 dB @ 450 MHz
DVery Low Distortion
DHigh ac/dc Switch Off-Isolation
DWideband High Gain
DVery High System Sensitivity
DHigh Quality of Amplification
DHigh-Speed Switching Capability
DHigh Low-Level Signal Amplification
DHigh-Frequency Amplifier/Mixer
DOscillator
DSample-and-Hold
DVery Low Capacitance Switches
DESCRIPTION
The J/SST/U308 series offers superb amplification characteristics.
Of special interest is its high-frequency performance. Even at 450
MHz, this series offers high power gain at low noise.
Low-cost J series TO-226AA (TO-92) packaging supports
automated assembly with tape-and-reel options. The SST series
TO-236 (SOT-23) package provides surface-mount capabilities
and is available with tape-and-reel options. The U series
hermetically-sealed TO-206AC (TO-52) package supports full
military processing. (See Military and Packaging Information for
further details.)
For similar dual products packaged in the TO-78, see the
U430/431 data sheet.
D
S
G
TO-236
(SOT-23)
2
3
1
TO-226AA
(TO-92)
Top View
J308
J309
J310
D
G
S
1
2
3Top View
SST308 (Z8)*
SST309 (Z9)*
SST310 (Z0)*
*Marking Code for TO-236
Top View
U309
U310
G and Case
TO-206AC
(TO-52)
D
S
1
23
For applications information see AN104.
J/SST/U308 Series
Vishay Siliconix
www.vishay.com
2Document Number: 70237
S-50149—Rev. H, 24-Jan-05
ABSOLUTE MAXIMUM RATINGS
Gate-Drain, Gate-Source Voltage 25 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Current : (J/SST Prefixes) 10 mA. . . . . . . . . . . . . . . . . . . .
(U Prefix) 20 mA. . . . . . . . . . . . . . . . . . . . . . . . . .
Lead Temperature (1/16” from case for 10 sec.) 300_C. . . . . . . . . . . . . . . . . . .
Storage Temperature : (J/SST Prefixes) 55 to 150_C. . . . . . . . . . . . . .
(U Prefix) 65 to 175_C. . . . . . . . . . . . . . . . . . . .
Operating Junction Temperature 55 to 150_C. . . . . . . . . . . . . . . . . . . . . . . . . .
Power Dissipation : (J/SST Prefixes)a350 mW. . . . . . . . . . . . . . . . .
(U Prefix)b500 mW. . . . . . . . . . . . . . . . . . . . . . .
Notes
a. Derate 2.8 mW/_C above 25_C
b. Derate 4 mW/_C above 25_C
SPECIFICATIONS FOR J/SST308, J/SST309 AND J/SST310 (TA = 25_C UNLESS NOTED)
Limits
J/SST308 J/SST309 J/SST310
Parameter Symbol Test Conditions TypaMin Max Min Max Min Max Unit
Static
Gate-Source
Breakdown Voltage V(BR)GSS IG = 1 mA , VDS = 0 V 35 25 25 25 V
Gate-Source Cutoff Voltage VGS(off) VDS = 10 V, ID = 1 nA 16.5 1426.5 V
Saturation Drain CurrentbIDSS VDS = 10 V, VGS = 0 V 12 60 12 30 24 60 mA
Gate Reverse Current
IGSS
VGS = 15 V, VDS = 0 V 0.002 111 nA
Gate Reverse Current IGSS TA = 125_C0.001 111mA
Gate Operating Current IGVDG = 9 V, ID = 10 mA 15 pA
Drain-Source On-Resistance rDS(on) VGS = 0 V, ID = 1 mA 35 W
Gate-Source Forward Voltage VGS(F) IG = 10 mA
VDS = 0 V J 0.7 1 1 1 V
Dynamic
Common-Source
Forward Transconductance gfs VDS = 10 V, ID = 10 mA
14 810 8mS
Common-Source
Output Conductance gos
VDS = 10 V
,
ID = 10 mA
f = 1 kHz 110 250 250 250 mS
Common-Source
Ci
J 4 5 5 5
Common-Source
Input Capacitance Ciss VDS = 10 V
V 10 V
SST 4
pF
Common-Source
C
Crss
DS
VGS = 10 V
f = 1 MHz J 1.9 2.5 2.5 2.5 pF
Common Source
Reverse Transfer Capacitance
C
rss
f = 1 MHz
SST 1.9
Equivalent Input
Noise Voltage enVDS = 10 V, ID = 10 mA
f = 100 Hz 6nV
Hz
High Frequency
Common-Gate
gf
f = 105 MHz 14
Common-Gate
Forward Transconductance gfg f = 450 MHz 13
mS
Common-Gate
g
f = 105 MHz 0.16 mS
Common-Gate
Output Conductance gog
VDS = 10 V f = 450 MHz 0.55
Common Gate Power Gainc
G
VDS = 10 V
ID = 10 mA f = 105 MHz 16
Common-Gate Power GaincGpg f = 450 MHz 11.5
dB
Noise Figure
NF
f = 105 MHz 1.5
dB
N
o
i
se
Fi
gure
NF
f = 450 MHz 2.7
Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. NZB
b. Pulse test: PW v300 ms duty cycle v3%.
c. Gain (Gpg) measured at optimum input noise match.
J/SST/U308 Series
Vishay Siliconix
Document Number: 70237
S-50149—Rev. H, 24-Jan-05
www.vishay.com
3
SPECIFICATIONS FOR U309 AND U310 (TA = 25_C UNLESS NOTED)
Limits
U309 U310
Parameter Symbol Test Conditions TypaMin Max Min Max Unit
Static
Gate-Source Breakdown Voltage V(BR)GSS IG = 1 mA , VDS = 0 V 35 25 25 V
Gate-Source Cutoff Voltage VGS(off) VDS = 10 V, ID = 1 nA 142.5 6 V
Saturation Drain CurrentbIDSS VDS = 10 V, VGS = 0 V 12 30 24 60 mA
Gate Reverse Current
IGSS
VGS = 15 V, VDS = 0 V 0.002 0.15 0.15 nA
Gate Reverse Current IGSS TA = 125_C0.001 0.15 0.15 mA
Gate Operating Current IGVDG = 9 V, ID = 10 mA 15 pA
Drain-Source On-Resistance rDS(on) VGS = 0 V, ID = 1 mA 35 W
Gate-Source Forward Voltage VGS(F) IG = 10 mA , VDS = 0 V 0.7 1 1 V
Dynamic
Common-Source
Forward Transconductance gfs
VDS = 10 V, ID = 10 mA
14 10 10 mS
Common-Source
Output Conductance gos
,
f = 1 kHz 110 250 250 mS
Common-Source
Input Capacitance Ciss
VDS = 10 V, VGS = 10 V
4 5 5
pF
Common-Source
Reverse Transfer Capacitance Crss
,
f = 1 MHz 1.9 2.5 2.5
pF
Equivalent Input Noise Voltage enVDS = 10 V, ID = 10 mA
f = 100 Hz 6nV
Hz
High Frequency
Common-Gate
gf
f = 105 MHz 14
Common-Gate
Forward Transconductance gfg f = 450 MHz 13
mS
Common-Gate
g
f = 105 MHz 0.16 mS
Common-Gate
Output Conductance gog
V
DS
= 10 V f = 450 MHz 0.55
Common Gate Power Gainc, d
G
VDS = 10 V
ID = 10 mA f = 105 MHz 16 14 14
Common-Gate Power Gainc,
d
Gpg f = 450 MHz 11.5 10 10
dB
Noise Figure
d
NF
f = 105 MHz 1.5 2 2
dB
N
o
i
se
Fi
gure
d
NF
f = 450 MHz 2.7 3.5 3.5
Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. NZB
b. Pulse test: PW v300 ms duty cycle v3%.
c. Gain (Gpg) measured at optimum input noise match.
d. Not a production test.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
J/SST/U308 Series
Vishay Siliconix
www.vishay.com
4Document Number: 70237
S-50149—Rev. H, 24-Jan-05
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
100
05431
80
20
0
50
40
10
0
Drain Current and Transconductance
vs. Gate-Source Cutoff Voltage Gate Leakage Current
Output Characteristics
On-Resistance and Output Conductance
vs. Gate-Source Cutoff Voltage Common-Source Forward Transconductance
vs. Drain Current
VGS(off) Gate-Source Cutoff Voltage (V) VDG Drain-Gate Voltage (V)
ID Drain Current (mA)VGS(off) Gate-Source Cutoff Voltage (V)
VDS Drain-Source Voltage (V)
IDSS @ VDS = 10 V, VGS = 0 V
gfs @ VDS = 10 V, VGS = 0 V
f = 1 kHz
gfs
IDSS
TA = 55_C
25_C125_C
VGS = 0 V
0.2 V
0.4 V
0.6 V
0.8 V
VGS(off) = 3 V
60
40
2
30
20
100
3541
80
0
300
240
120
60
0
60
40
20
20
180
rDS @ ID = 1 mA, VGS = 0 V
gos @ VDS = 10 V, VGS = 0 V, f = 1 kHz
rDS
06312159
IGSS @ 125_C
TA = 125_C
TA = 25_C
200 mA
0.1 1 10
20
16
8
4
0
12
15
0 0.40.2 0.8 1
12
6
3
0
9
0.6
1.0 V
gos
IGSS @ 25_C
0.1 pA
1 pA
10 pA
100 pA
1 nA
10 nA
VDS = 10 V
f = 1 kHz
VGS(off) = 1.5 V
10 mA
Output Characteristics
VDS Drain-Source Voltage (V)
VGS = 0 V
1.2 V
0.4 V
1.6 V
0.8 V
30
0 0.40.2 0.8 1
24
12
6
0
18
0.6
2.0 V
2.4 V
VGS(off) = 3 V
IG @ ID = 10 mA 200 mA
IDSS Saturation Drain Current (mA)
gfs Forward Transconductance (mS)
rDS(on) Drain-Source On-Resistance ( Ω )
gos Output Conductance (mS)
IG Gate Leakage
ID Drain Current (mA)
ID Drain Current (mA) gfs Forward Transconductance (mS)
J/SST/U308 Series
Vishay Siliconix
Document Number: 70237
S-50149—Rev. H, 24-Jan-05
www.vishay.com
5
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
Output Characteristics
VDS Drain-Source Voltage (V)
50
042810
40
20
10
0
30
6
2.4 V
VGS = 0 V
0.4 V
0.8 V
1.2 V
1.6 V
2.0 V
Transfer Characteristics
VGS Gate-Source Voltage (V)
30
01.20.4 1.6 2
24
12
6
0
18
0.8
TA = 55_C
VGS(off) = 1.5 V
125_C
Transfer Characteristics
VGS Gate-Source Voltage (V)
100
01.80.6 2.4 3
80
40
20
0
60
1.2
TA = 55_C
25_C
VGS(off) = 3 V
125_C
30
01.2 1.60.4 2
24
12
6
0
0.8
18
Transconductance vs. Gate-Source Voltage
VGS Gate-Source Voltage (V)
VGS(off) = 1.5 V
TA = 55_C
125_C
50
01.8 2.40.6 3
40
20
10
0
1.2
30
Transconductance vs. Gate-Source Voltage
VGS Gate-Source Voltage (V)
TA = 55_C
25_C
125_C
VGS(off) = 3 V
VGS(off) = 3 V
VDS = 10 V VDS = 10 V
VDS = 10 V
f = 1 kHz
VDS = 10 V
f = 1 kHz
25_C
25_C
Output Characteristics
VDS Drain-Source Voltage (V)
VGS = 0 V
0.2 V
0.4 V
0.6 V
0.8 V
1.0 V
20
068210
16
8
4
0
4
12
VGS(off) = 1.5 V
gfs Forward Transconductance (mS)
gfs Forward Transconductance (mS) ID Drain Current (mA)
ID Drain Current (mA)
ID Drain Current (mA)
ID Drain Current (mA)
J/SST/U308 Series
Vishay Siliconix
www.vishay.com
6Document Number: 70237
S-50149—Rev. H, 24-Jan-05
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
1 10 100
100
80
40
20
0
60
VGS(off) = 1.5 V
VGS(off) = 3 V
On-Resistance vs. Drain Current
ID Drain Current (mA)
1100.1
100
80
40
20
0
60
ID Drain Current (mA)
RL+10 V
ID
Assume VDD = 15 V, VDS = 5 V
VGS(off) = 1.5 V
VGS(off) = 3 V
Circuit Voltage Gain vs. Drain Current
15
012 16 204
12
6
3
0
9
8
Common-Source Input Capacitance
vs. Gate-Source Voltage
VDS = 0 V
f = 1 MHz
VDS = 5 V
VGS Gate-Source Voltage (V)
Common-Source Reverse Feedback Capacitance
vs. Gate-Source Voltage
10
012 20164
8
4
2
0
6
8
VDS = 0 V
f = 1 MHz
VDS = 5 V
VGS Gate-Source Voltage (V)
100
10
1
0.1
100 1000
(mS)
TA = 25_C
VDG = 10 V
ID = 10 mA
CommonGate
gig
big
Input Admittance vs. Frequency
f Frequency (MHz)
100
10
1
0.1
100 1000
(mS)
TA = 25_C
VDG = 10 V
ID = 10 mA
CommonGate
gfg
bfg
Forward Admittance vs. Frequency
f Frequency (MHz)
200 500 200 500
AV+
gfs RL
1)RLgos
AV Voltage Gain
rDS(on) Drain-Source On-Resistance ( Ω )
Ciss Input Capacitance (pF)
Crss Reverse Feedback Capacitance (pF)
J/SST/U308 Series
Vishay Siliconix
Document Number: 70237
S-50149—Rev. H, 24-Jan-05
www.vishay.com
7
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
10 100 1 k 100 k10 k
20
16
8
4
0
12
Equivalent Input Noise Voltage vs. Frequency
ID = 1 mA
VDS = 10 V
ID = 10 mA
f Frequency (Hz)
150
120
60
30
0
0.1 1 10
90
Output Conductance vs. Drain Current
VGS(off) = 3 V
ID Drain Current (mA)
TA = 55_C
25_C
125_C
10
1
0.1
0.01
100 1000
(mS)
TA = 25_C
VDG = 10 V
ID = 10 mA
CommonGate
brg
grg
+grg
Reverse Admittance vs. Frequency
f Frequency (MHz)
100
10
1
0.1
100 1000
(mS)
TA = 25_C
VDG = 10 V
ID = 10 mA
CommonGate
gog
bog
Output Admittance vs. Frequency
f Frequency (MHz)
200 500 200 500
VDS = 10 V
f = 1 kHz
en Noise Voltage nV / Hz
gos Output Conductance (µS)
Document Number: 91000 www.vishay.com
Revision: 18-Jul-08 1
Disclaimer
Legal Disclaimer Notice
Vishay
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.