ispGDX®160V/VA Device Datasheet
June 2010
Select Devices Discontinued!
Product Change Notification (PCN) #09-10 has been issued to discontinue select devices
in this data sheet.
The original datasheet pages have not been modified and do not reflect those changes.
Please refer to the table below for reference PCN and current product status.
Product Line Ordering Part Number Product Status Reference PCN
ispGDX160V-5B272
ispGDX160V-7B272 Discontinued PCN#09-10
ispGDX160V-5B208
ispGDX160V-7B208
ispGDX160V-5Q208
ispGDX160V-7Q208
ispGDX160V
ispGDX160V-7Q208I
Active / Orderable
ispGDX160VA-3B272
ispGDX160VA-5B272
ispGDX160VA-7B272
ispGDX160VA-5B272I
ispGDX160VA-7B272I
ispGDX160VA-9B272I
Discontinued PCN#09-10
ispGDX160VA-3Q208
ispGDX160VA-5Q208
ispGDX160VA-7Q208
ispGDX160VA-5Q208I
ispGDX160VA-7Q208I
ispGDX160VA-9Q208I
ispGDX160VA-3B208
ispGDX160VA-3BN208
ispGDX160VA-5B208
ispGDX160VA-5BN208
ispGDX160VA-7B208
ispGDX160VA-7BN208
ispGDX160VA-5B208I
ispGDX160VA-5BN208I
ispGDX160VA-7B208I
ispGDX160VA-7BN208I
ispGDX160VA-9B208I
ispGDX160VA
ispGDX160VA-9BN208I
Active / Orderable
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347
Internet: http://www.latticesemi.com
1
ispGDX
®160V/VA
In-System Programmable
3.3V Generic Digital Crosspoint
Functional Block DiagramFeatures
IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL
CROSSPOINT FAMILY
Advanced Architecture Addresses Programmable
PCB Interconnect, Bus Interface Integration and
Jumper/Switch Replacement
— “Any Input to Any Output” Routing
— Fixed HIGH or LOW Output Option for Jumper/DIP
Switch Emulation
— Space-Saving PQFP and BGA Packaging
— Dedicated IEEE 1149.1-Compliant Boundary Scan
Test
HIGH PERFORMANCE E2CMOS® TECHNOLOGY
— 3.3V Core Power Supply
— 3.5ns Input-to-Output/3.5ns Clock-to-Output Delay*
250MHz Maximum Clock Frequency*
TTL/3.3V/2.5V Compatible Input Thresholds and
Output Levels (Individually Programmable)*
— Low-Power: 16.5mA Quiescent Icc*
— 24mA IOL Drive with Programmable Slew Rate
Control Option
PCI Compatible Drive Capability*
— Schmitt Trigger Inputs for Noise Immunity
— Electrically Erasable and Reprogrammable
— Non-Volatile E2CMOS Technology
ispGDXV OFFERS THE FOLLOWING ADVANTAGES
— 3.3V In-System Programmable Using Boundary Scan
Test Access Port (TAP)
— Change Interconnects in Seconds
FLEXIBLE ARCHITECTURE
— Combinatorial/Latched/Registered Inputs or Outputs
— Individual I/O Tri-state Control with Polarity Control
— Dedicated Clock/Clock Enable Input Pins (four) or
Programmable Clocks/Clock Enables from I/O Pins
(40)
Single Level 4:1 Dynamic Path Selection (Tpd = 3.5ns)
— Programmable Wide-MUX Cascade Feature
Supports up to 16:1 MUX
— Programmable Pull-ups, Bus Hold Latch and Open
Drain on I/O Pins
— Outputs Tri-state During Power-up (“Live Insertion”
Friendly)
LEAD-FREE PACKAGE OPTIONS
* “VA” Version Only
Global Routing
Pool
(GRP)
I/O
Cells
I/O Pins B
Boundary
Scan
Control
I/O
Cells
ISP
Control
I/O Pins A
I/O Pins C
I/O Pins D
Description
The ispGDXV/VA architecture provides a family of fast,
flexible programmable devices to address a variety of
system-level digital signal routing and interface require-
ments including:
Multi-Port Multiprocessor Interfaces
•Wide Data and Address Bus Multiplexing
(e.g. 16:1 High-Speed Bus MUX)
Programmable Control Signal Routing
(e.g. Interrupts, DMAREQs, etc.)
Board-Level PCB Signal Routing for Prototyping or
Programmable Bus Interfaces
The devices feature fast operation, with input-to-output
signal delays (Tpd) of 3.5ns and clock-to-output delays of
3.5ns.
The architecture of the devices consists of a series of
programmable I/O cells interconnected by a Global Rout-
ing Pool (GRP). All I/O pin inputs enter the GRP directly
or are registered or latched so they can be routed to the
required I/O outputs. I/O pin inputs are defined as four
sets (A,B,C,D) which have access to the four MUX inputs
gdx160va_06
Copyright © 2004 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein
are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. August 2004
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
Lead-
Free
Package
Options
Available!
SELECT DEVICES
DISCONTINUED
2
Specifications ispGDX160V/VA
Description (Continued)
found in each I/O cell. Each output has individual, pro-
grammable I/O tri-state control (OE), output latch clock
(CLK), clock enable (CLKEN), and two multiplexer con-
trol (MUX0 and MUX1) inputs. Polarity for these signals
is programmable for each I/O cell. The MUX0 and MUX1
inputs control a fast 4:1 MUX, allowing dynamic selection
of up to four signal sources for a given output. A wider
16:1 MUX can be implemented with the MUX expander
feature of each I/O and a propagation delay increase of
2.0ns. OE, CLK, CLKEN, and MUX0 and MUX1 inputs
can be driven directly from selected sets of I/O pins.
Optional dedicated clock input pins give minimum clock-
to-output delays. CLK and CLKEN share the same set of
I/O pins. CLKEN disables the register clock when
CLKEN = 0.
Through in-system programming, connections between
I/O pins and architectural features (latched or registered
inputs or outputs, output enable control, etc.) can be
defined. In keeping with its data path application focus,
the ispGDXV devices contain no programmable logic
arrays. All input pins include Schmitt trigger buffers for
noise immunity. These connections are programmed
into the device using non-volatile E2CMOS technology.
Non-volatile technology means the device configuration
is saved even when the power is removed from the
device.
In addition, there are no pin-to-pin routing constraints for
1:1 or 1:n signal routing. That is,
any
I/O pin configured
as an input can drive one or more I/O pins configured as
outputs.
The device pins also have the ability to set outputs to
fixed HIGH or LOW logic levels (Jumper or DIP Switch
mode). Device outputs are specified for 24mA sink and
12mA source current (at JEDEC LVTTL levels) and can
be tied together in parallel for greater drive. On the
ispGDXVA, each I/O pin is individually programmable for
3.3V or 2.5V output levels as described later. Program-
mable output slew rate control can be defined
independently for each I/O pin to reduce overall ground
bounce and switching noise.
All I/O pins are equipped with IEEE1149.1-compliant
Boundary Scan Test circuitry for enhanced testability. In
addition, in-system programming is supported through
the Test Access Port via a special set of private com-
mands.
The ispGDXV I/Os are designed to withstand “live inser-
tion” system environments. The I/O buffers are disabled
during power-up and power-down cycles. When design-
ing for “live insertion,” absolute maximum rating conditions
for the Vcc and I/O pins must still be met.
Table 1. ispGDXV Family Members
ispGDXVA Device
ispGDX160VA
I/O Pins 160
I/O-OE Inputs* 40
I/O-CLK / CLKEN Inputs* 40
I/O-MUXsel1 Inputs* 40
I/O-MUXsel2 Inputs* 40
BSCAN Interface 4
RESET 1
Pin Count/Package 208-Pin PQFP
208-Ball fpBGA
272-Ball BGA
* The CLK/CLK_EN, OE, MUX0 and MUX1 terminals on each I/O cell can each be assigned to
25% of the I/Os.
** Global clock pins Y0, Y1, Y2 and Y3 are multiplexed with CLKEN0, CLKEN1, CLKEN2 and
CLKEN3 respectively in all devices.
TOE 1
Dedicated Clock Pins** 4
EPEN 1
80
20
20
20
20
4
1
100-Pin TQFP
1
2
1
240
60
60
60
60
4
1
388-Ball fpBGA
1
4
1
ispGDX80VA ispGDX240VA
SELECT DEVICES
DISCONTINUED
3
Specifications ispGDX160V/VA
Architecture
The ispGDXV/VA architecture is different from traditional
PLD architectures, in keeping with its unique application
focus. The block diagram is shown below. The program-
mable interconnect consists of a single Global Routing
Pool (GRP). Unlike ispLSI® devices, there are no pro-
grammable logic arrays on the device. Control signals for
OEs, Clocks/Clock Enables and MUX Controls must
come from designated sets of I/O pins. The polarity of
these signals can be independently programmed in each
I/O cell.
Each I/O cell drives a unique pin. The OE control for each
I/O pin is independent and may be driven via the GRP by
one of the designated I/O pins (I/O-OE set). The I/O-OE
set consists of 25% of the total I/O pins. Boundary Scan
test is supported by dedicated registers at each I/O pin.
In-system programming is accomplished through the
standard Boundary Scan protocol.
The various I/O pin sets are also shown in the block
diagram below. The A, B, C, and D I/O pins are grouped
together with one group per side.
I/O Architecture
Each I/O cell contains a 4:1 dynamic MUX controlled by
two select lines as well as a 4x4 crossbar switch con-
trolled by software for increased routing flexiability (Figure
1). The four data inputs to the MUX (called M0, M1, M2,
and M3) come from I/O signals in the GRP and/or
adjacent I/O cells. Each MUX data input can access one
quarter of the total I/Os. For example, in a 160 I/O
ispGDXV, each data input can connect to one of 40 I/O
pins. MUX0 and MUX1 can be driven by designated I/O
pins called MUXsel1 and MUXsel2. Each MUXsel input
covers 25% of the total I/O pins (e.g. 40 out of 160). MUX0
and MUX1 can be driven from either MUXsel1 or MUXsel2.
Figure 1. ispGDXV/VA I/O Cell and GRP Detail (160 I/O Device)
I/OCell 0
I/O Cell 1
I/O Cell 78
I/O Cell 79
80 I/O Cells
Boundary
Scan Cell
Bypass Option
I/O Cell N
Register
or Latch
I/O
Pin
Prog.
Pull-up
(VCCIO)
Prog. Slew Rate
D
A
BCLK
Reset
Q
4-to-1 MUX
160 Input GRP
Inputs Vertical
Outputs Horizontal
I/O Cell 159
I/O Cell 158
I/O Cell 81
M0
I/O Group A
I/O Group B
I/O Group C
I/O Group D
M1
4x4
Crossbar
Switch M2
M3 MUX1MUX0
Global
Reset
I/O Cell 80
• • • • • •
80 I/O Cells
ispGDXV/VA architecture enhancements over ispGDX (5V)
E2CMOS
Programmable
Interconnect
Logic “0” Logic “1” 160 I/O Inputs
C
R
Y0-Y3
Global
Clocks /
Clock_Enables
Prog.
Bus Hold
Latch
CLK_EN
From MUX Outputs
of 2 Adjacent I/O Cells
From MUX Outputs
of 2 Adjacent I/O Cells
To 2 Adjacent
I/O Cells above
To 2 Adjacent
I/O Cells below
Prog. Open Drain
2.5V/3.3V Output
N+1
N+2
N-1 N-2
SELECT DEVICES
DISCONTINUED
4
Specifications ispGDX160V/VA
Flexible mapping of MUXselx to MUXx allows the user to
change the MUX select assignment after the ispGDXV/
VA device has been soldered to the board. Figure 1
shows that the I/O cell can accept (by programming the
appropriate fuses) inputs from the MUX outputs of four
adjacent I/O cells, two above and two below. This en-
ables cascading of the MUXes to enable wider (up to
16:1) MUX implementations.
The I/O cell also includes a programmable flow-through
latch or register that can be placed in the input or output
path and bypassed for combinatorial outputs. As shown
in Figure 1, when the input control MUX of the register/
latch selects the “A” path, the register/latch gets its inputs
from the 4:1 MUX and drives the I/O output. When
selecting the “B” path, the register/latch is directly driven
by the I/O input while its output feeds the GRP. The
programmable polarity Clock to the latch or register can
be connected to any I/O in the I/O-CLK/CLKEN set (one-
quarter of total I/Os) or to one of the dedicated clock input
pins (Yx). The programmable polarity Clock Enable input
to the register can be programmed to connect to any of
the I/O-CLK/CLKEN input pin set or to the global clock
enable inputs (CLKENx). Use of the dedicated clock
inputs gives minimum clock-to-output delays and mini-
mizes delay variation with fanout. Combinatorial output
mode may be implemented by a dedicated architecture
bit and bypass MUX. I/O cell output polarity can be
programmed as active high or active low.
MUX Expander Using Adjacent I/O Cells
The ispGDXV/VA allows adjacent I/O cell MUXes to be
cascaded to form wider input MUXes (up to 16 x 1)
without incurring an additional full Tpd penalty. However,
there are certain dependencies on the locality of the
adjacent MUXes when used along with direct MUX
inputs.
Adjacent I/O Cells
Expansion inputs MUXOUT[n-2], MUXOUT[n-1],
MUXOUT[n+1], and MUXOUT[n+2] are fuse-selectable
for each I/O cell MUX. These expansion inputs share the
same path as the standard A, B, C and D MUX inputs, and
allow adjacent I/O cell outputs to be directly connected
without passing through the global routing pool. The
relationship between the [N+i] adjacent cells and A, B, C
and D inputs will vary depending on where the I/O cell is
located on the physical die. The I/O cells can be grouped
into “normal” and “reflected” I/O cells or I/O “hemi-
spheres.” These are defined as:
I/O MUX Operation
MUX1 MUX0 Data Input Selected
00 M0
01 M1
11 M2
10 M3
Device Normal I/O Cells Reflected I/O Cells
TBA TBA
B19-B0, A39-A20,
A19-A0, D39-D20 B20-B39, C0-C19,
C20-C39, D0-D19
ispGDX80VA
ispGDX160V/VA
ispGDX240VA TBA TBA
Table 2 shows the relationship between adjacent I/O
cells as well as their relationship to direct MUX inputs.
Note that the MUX expansion is circular and that I/O cell
B20, for example, draws on I/Os B19 and B18, as well as
B21 and B22, even though they are in different hemi-
spheres of the physical die. Table 2 shows some typical
cases and all boundary cases. All other cells can be
extrapolated from the pattern shown in the table.
D20 D19
B19 B20
A0 A39
C39 C0
D39
B0
D0
B39
I/O cell 0 I/O cell 159
I/O cell 79 I/O cell 80
I/O cell index increases in this direction
I/O cell index increases in this direction
Figure 2. I/O Hemisphere Configuration of
ispGDX160V/VA
Direct and Expander Input Routing
Table 2 also illustrates the routing of MUX direct inputs
that are accessible when using adjacent I/O cells as
inputs. Take I/O cell D23 as an example, which is also
shown in Figure 3.
SELECT DEVICES
DISCONTINUED
5
Specifications ispGDX160V/VA
B20
B21
B22
B23
D16
D17
D18
D19
D20
D21
D22
D23
B16
B17
B18
B19
B22
B23
B24
B25
D18
D19
D20
D21
D18
D19
D20
D21
B14
B15
B16
B17
B21
B22
B23
B24
D17
D18
D19
D20
D19
D20
D21
D22
B15
B16
B17
B18
B19
B20
B21
B22
D15
D16
D17
D18
D21
D22
D23
D24
B17
B18
B19
B20
B18
B19
B20
B21
D14
D15
D16
D17
D22
D23
D24
D25
B18
B19
B20
B21
Data D/
MUXOUT
Data C/
MUXOUT
Data B/
MUXOUT
Data A/
MUXOUT
Reflected
I/O Cells
Normal
I/O Cells
Table 2. Adjacent I/O Cells (Mapping of
ispGDX160V/VA)
It can be seen from Figure 3 that if the D21 adjacent I/O
cell is used, the I/O group “A” input is no longer available
as a direct MUX input.
The ispGDXV/VA can implement MUXes up to 16 bits
wide in a single level of logic, but care must be taken
when combining adjacent I/O cell outputs with direct
MUX inputs. Any particular combination of adjacent I/O
cells as MUX inputs will dictate what I/O groups (A, B, C
or D) can be routed to the remaining inputs. By properly
choosing the adjacent I/O cells, all of the MUX inputs can
be utilized.
S0S1
4 x 4
Crossbar
Switch
.m0
.m1
.m2
.m3
D23
I/O Group A
D21 MUX Out
I/O Group B
D22 MUX Out
I/O Group C
D24 MUX Out
I/O Group D
D25 MUX Out
ispGDX160V/VA I/O Cell
Figure 3. Adjacent I/O Cells vs. Direct Input Path for
ispGDX160V/VA, I/O D23 Special Features
Slew Rate Control
All output buffers contain a programmable slew rate
control that provides software-selectable slew rate op-
tions.
Open Drain Control
All output buffers provide a programmable Open-Drain
option which allows the user to drive system level reset,
interrupt and enable/disable lines directly without the
need for an off-chip Open-Drain or Open-Collector buffer.
Wire-OR logic functions can be performed at the printed
circuit board level.
Pull-up Resistor
All pins have a programmable active pull-up. A typical
resistor value for the pull-up ranges from 50k to 80k.
Output Latch (Bus Hold)
All pins have a programmable circuit that weakly holds
the previously driven state when all drivers connected to
the pin (including the pin's output driver as well as any
other devices connected to the pin by external bus) are
tristated.
ispGDX160VA New Features
Unique to the ispGDX160VA are user-programmable
I/Os supporting either 3.3V or 2.5V output voltage level
options. The ispGDX160VA uses a VCCIO pin to provide
the 2.5V reference voltage when used. The ispGDX160VA
VCCIO pin occupies the same location as VCC on the
ispGDX160V, allowing drop-in replacement. The
ispGDX160VA offers improved performance by reducing
fanout delays and has PCI compatible drive capability.
Only the ispGDX160VA is available in the fastest (3.5ns)
Commercial speed grade and in -5,-7, and -9ns Industrial
grades in all packages.
The ispGDX160VA has a device ID different from the
ispGDX160V requiring that the latest Lattice download
software be used for programming and verification. Al-
though the ispGDX160VA and ispGDX160V are
functionally equivalent, they are not 100% JEDEC com-
patible. All design files must be recompiled targeting the
ispGDX160VA.
SELECT DEVICES
DISCONTINUED
6
Specifications ispGDX160V/VA
The ispGDXV/VA Family architecture has been devel-
oped to deliver an in-system programmable signal routing
solution with high speed and high flexibility. The devices
are targeted for three similar but distinct classes of end-
system applications:
Programmable, Random Signal
Interconnect (PRSI)
This class includes PCB-level programmable signal rout-
ing and may be used to provide arbitrary signal swapping
between chips. It opens up the possibilities of program-
mable system hardware. It is characterized by the need
to provide a large number of 1:1 pin connections which
are statically configured, i.e., the pin-to-pin paths do not
need to change dynamically in response to control in-
puts.
Programmable Data Path (PDP)
This application area includes system data path trans-
ceiver, MUX and latch functions. With today’s 32- and
64-bit microprocessor buses, but standard data path glue
components still relegated primarily to eight bits, PCBs
are frequently crammed with a dozen or more data path
glue chips that use valuable real estate. Many of these
applications consist of “on-board” bus and memory inter-
faces that do not require the very high drive of standard
glue functions but can benefit from higher integration.
Therefore, there is a need for a flexible means to inte-
grate these on-board data path functions in an analogous
way to programmable logic’s solution to control logic
integration. Lattice’s CPLDs make an ideal control logic
complement to the ispGDXV/VA in-system program-
mable data path devices as shown below.
Data Path
Bus #1
Control
Inputs
(from P)
Address
Inputs
(from P)
Control
Outputs
System
Clock(s) Data Path
Bus #2
Configuration
(Switch)
Outputs
ISP/JTAG
Interface
ispLSI/
ispMACH
Device
ispGDXV/VA
Device
Buffers / RegistersDecoders
Buffers / RegistersState Machines
Figure 4. ispGDXV/VA Complements Lattice CPLDs
Applications
Programmable Switch Replacement (PSR)
Includes solid-state replacement and integration of me-
chanical DIP Switch and jumper functions. Through
in-system programming, pins of the ispGDXV/VA de-
vices can be driven to HIGH or LOW logic levels to
emulate the traditional device outputs. PSR functions do
not require any input pin connections.
These applications actually require somewhat different
silicon features. PRSI functions require that the device
support arbitrary signal routing on-chip between any two
pins with no routing restrictions. The routing connections
are static (determined at programming time) and each
input-to-output path operates independently. As a result,
there is little need for dynamic signal controls (OE,
clocks, etc.). Because the ispGDXV/VA device will inter-
face with control logic outputs from other components
(such as ispLSI or ispMACH™) on the board (which
frequently change late in the design process as control
logic is finalized), there must be no restrictions on pin-to-
pin signal routing for this type of application.
PDP functions, on the other hand, require the ability to
dynamically switch signal routing (MUXing) as well as
latch and tri-state output signals. As a result, the pro-
grammable interconnect is used to define
possible
signal
routes that are then selected dynamically by control
signals from an external MPU or control logic. These
functions are usually formulated early in the conceptual
design of a product. The data path requirements are
driven by the microprocessor, bus and memory architec-
ture defined for the system. This part of the design is the
earliest portion of the system design frozen, and will not
usually change late in the design because the result
would be total system and PCB redesign. As a result, the
ability to accommodate
arbitrary
any pin-to-any pin re-
routing is not a strong requirement as long as the designer
has the ability to define his functions with a reasonable
degree of freedom initially.
As a result, the ispGDXV/VA architecture has been
defined to support PSR and PRSI applications (including
bidirectional paths) with no restrictions, while PDP appli-
cations (using dynamic MUXing) are supported with a
minimal number of restrictions as described below. In this
way, speed and cost can be optimized and the devices
can still support the system designer’s needs.
The following diagrams illustrate several ispGDXV/VA
applications.
SELECT DEVICES
DISCONTINUED
7
Specifications ispGDX160V/VA
Figure 6. Data Bus Byte Swapper
Figure 7. Four-Port Memory Interface
Control Bus
Data Bus A
Data Bus B
OEA OEB
I/OA
D0-7
D8-15 D8-15
D0-7
I/OB
XCVR
OEA OEB
I/OA I/OB
XCVR
OEA OEB
I/OA I/OB
XCVR
OEA OEB
I/OA I/OB
XCVR
Bus 4
Bus 3
Bus 2
Bus 1
Port #1
OE1 Memory
Port
OEM
SEL0
SEL1
To
Memory
Port #2
OE2
Port #3
OE3
Note: All OE and SEL lines driven by external arbiter logic (not shown).
Port #4
OE4
4-to-1
16-Bit MUX
Bidirectional
Figure 5. Address Demultiplex/Data Buffering
Control Bus
MUXed Address Data Bus
DQ
CLK
OEA OEB
I/OA I/OB
Address
Buffered
Data
To Memory/
Peripherals
XCVR
Address
Latch
Applications (Continued)
Designing with the ispGDXV/VA
As mentioned earlier, this architecture satisfies the PRSI
class of applications without restrictions: any I/O pin as a
single input or bidirectional can drive any other I/O pin as
output.
For the case of PDP applications, the designer does have
to take into consideration the limitations on pins that can
be used as control (MUX0, MUX1, OE, CLK) or data
(MUXA-D) inputs. The restrictions on control inputs are
not likely to cause any major design issues because the
input possibilities span 25% of the total pins.
The MUXA-D input partitioning requires that designers
consciously assign pinouts so that MUX inputs are in the
appropriate, disjoint groups. For example, since the
MUXA group includes I/O0-39 (160 I/O device), it is not
possible to use I/O0 and I/O9 in the same MUX function.
As previously discussed, data path functions will be
assigned early in the design process and these restric-
tions are reasonable in order to optimize speed and cost.
User Electronic Signature
The ispGDXV/VA Family includes dedicated User Elec-
tronic Signature (UES) E2CMOS storage to allow users
to code design-specific information into the devices to
identify particular manufacturing dates, code revisions,
or the like. The UES information is accessible through
the boundary scan programming port via a specific com-
mand. This information can be read even when the
security cell is programmed.
Security
The ispGDXV/VA Family includes a security feature that
prevents reading the device program once set. Even
when set, it does not inhibit reading the UES or device ID
code. It can be erased only via a device bulk erase.
SELECT DEVICES
DISCONTINUED
8
Specifications ispGDX160VA
Absolute Maximum Ratings 1,2
Supply Voltage Vcc ................................. -0.5 to +5.4V
Input Voltage Applied............................... -0.5 to +5.6V
Off-State Output Voltage Applied ............ -0.5 to +5.6V
Storage Temperature................................ -65 to 150°C
Case Temp. with Power Applied ..............-55 to 125°C
Max. Junction Temp. (TJ) with Power Applied ... 150 °C
1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement.
DC Recommended Operating Conditions
C
SYMBOL
Table 2-0006/gdx160va
C
PARAMETER PACKAGE TYPE
Dedicated Clock Capacitance 8
UNITSTYPICAL TEST CONDITIONS
1
2
7PQFP
BGA, fpBGA
PQFP
BGA, fpBGA
I/O Capacitance
pf
10 pf
pf
10 pf
V = 3.3V, V = 2.0V
V = 3.3V, V = 2.0V
CC
CC Y
I/O
Capacitance (TA=25oC, f=1.0 MHz)
PARAMETER MINIMUM MAXIMUM UNITS
Erase/Reprogram Cycles 10,000 Cycles
Erase/Reprogram Specifications
SYMBOL
Table 2-0005/gdx160va
VCC
VCCIO
PARAMETER
Supply Voltage
I/O Reference Voltage
Commercial T
A
= 0°C to +70°CMIN. MAX. UNITS
3.00
2.3
3.60
3.60
V
Industrial T
A
= -40°C to +85°C3.00 3.60 V
V
SELECT DEVICES
DISCONTINUED
9
Specifications ispGDX160VA
Switching Test Conditions
Input Pulse Levels
Input Rise and Fall Time
Input Timing Reference Levels
Output Timing Reference Levels
Output Load
GND to V
CCIO(MIN)
< 1.5ns 10% to 90%
V
CCIO(MIN)
/2
V
CCIO(MIN)
/2
See Figure 8
3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (See Figure 8)
TEST CONDITION R1
3.3V 2.5V
R2 CL
A 35pF
D 35pF
B35pF
35pF
Active High
Slow Slew
Active Low
C5pF
5pF
156
156
156
144
144
144
R1 R2
153
153
153
134
134
134
Active Low to Z
at V +0.5V
OL
Active High to Z
at V -0.5V
OH
Table 2-0004A/gdx160va
DC Electrical Characteristics for 3.3V Range1
Over Recommended Operating Conditions
Figure 8. Test Load
VCCIO
R1
R2CL*
Device
Output Test
Point
*CL includes Test Fixture and Probe Capacitance.
0213D
VOL
SYMBOL
1. I/O voltage configuration must be set to VCC. Table 2-0007/gdx160va
VOH
VIH
VIL
PARAMETER
Output Low Voltage
Output High Voltage
Input High Voltage
Input Low Voltage
VCC = VCC (MIN) IOL = +100µA
IOL = +24mA
IOH = -100µA
IOH = -12mA
VCC = VCC (MIN)
VOH VOUT or VOUT VOL(MAX)
VOH VOUT or VOUT VOL (MAX)
CONDITION MIN. TYP. MAX. UNITS
2.8
2.0
-0.3
0.2
5.25
0.8
V
––0.55 V
V
2.4 V
VCCIO I/O Reference Voltage 3.0 3.6 V
V
V
SELECT DEVICES
DISCONTINUED
10
Specifications ispGDX160VA
DC Electrical Characteristics for 2.5V Range1
Over Recommended Operating Conditions
V
IH
SYMBOL
2.5V/gdx160va
V
OH
PARAMETER
Input High Voltage
Output High Voltage
VOH(MIN) VOUT or VOUT VOL(MAX)
VOH(MIN) VOUT or VOUT VOL(MAX)
V
CCIO=MIN,
IOH =
-8mA
V
CCIO=MIN,
IOL =
8mA
CONDITION MIN. TYP. MAX. UNITS
1.7
1.8
5.25
V
V
CCIO
V
IL
I/O Reference Voltage
Input Low Voltage 2.3
-0.3 2.7
0.7 V
V
V
V
CCIO=MIN,
IOH =
-100µA2.1 V
––0.6 V
V
CCIO=MIN,
IOL =
100µA––0.2 V
V
OL Output Low Voltage
1. I/O voltage configuration must be set to VCCIO.
DC Electrical Characteristics
Over Recommended Operating Conditions
SYMBOL
1. One output at a time for a maximum of one second. VOUT = 0.5V was selected to avoid test problems by
tester ground degradation. Characterized, but not 100% tested.
2. Typical values are at VCC = 3.3V and TA = 25°C.
3. ICC / MHz = (0.003 x I/O cell fanout) + 0.029.
e.g. An input driving four I/O cells at 40MHz results in a dynamic ICC of approximately ((0.003 x 4) + 0.029) x 40 = 1.64mA.
4. For a typical application with 50% of I/O pins used as inputs, 50% used as outputs or bi-directionals.
5. This parameter limits the total current sinking of I/O pins surrounding the nearest GND pin.
DC Char_gdx160va
I
PU
I
BHLS
PARAMETER
I/O Active Pullup Current
Bus Hold Low Sustaining Current
I
IH
I
IL
Input or I/O High Leakage Current
Input or I/O Low Leakage Current 0V VIN VIL (MAX)
CONDITION MIN. TYP.2MAX. UNITS
-10
10
-200
50
µA
I
BHT Bus Hold Trip Points VIL –V
IH V
µA
µA
µA
40 µA
(VCCIO-0.2) VIN VCCIO
VCCIO VIN 5.25V
0V
VIN VIL (MAX)
I
OS1Output Short Circuit Current -250 mA
VCC = 3.3V, VOUT = 0.5V, TA = 25°C
I
CCQ4Quiescent Power Supply Current 16.5 mA
VIL = 0.5V, VIH = VCC
VIN = VIL (MAX)
I
BHHS Bus Hold High Sustaining Current -40 µA
VIN = VIH (MIN)
I
BHLO Bus Hold Low Overdrive Current 550 µA
0V VIN VCCIO
I
CC Dynamic Power Supply Current
per Input Switching One input toggling at 50% duty cycle,
outputs open. See
Note 3 mA/
MHz
I
CONT5Maximum Continuous I/O Pin Sink
Current Through Any GND Pin ––160 mA
I
BHHO Bus Hold High Overdrive Current -550 µA
0V VIN VCCIO
SELECT DEVICES
DISCONTINUED
11
Specifications ispGDX160VA
5.0
5.0
5.0
8.5
6.0
9.5
6.0
6.0
6.0
6.0
14.0
5.0
0.5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Data Prop. Delay from Any I/O pin to Any I/O Pin (4:1 MUX)
Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX)
Clock Frequency, Max. Toggle
Clock Frequency with External Feedback
Input Latch or Register Setup Time Before Yx
Input Latch or Register Setup Time Before I/O Clock
Output Latch or Register Setup Time Before Yx
Output Latch or Register Setup Time Before I/O Clock
Global Clock Enable Setup Time Before Yx
Global Clock Enable Setup Time Before I/O Clock
I/O Clock Enable Setup Time Before Yx
Input Latch or Reg. Hold Time (Yx)
Input Latch or Reg. Hold Time (I/O Clock)
Output Latch or Reg. Hold Time (Yx)
Output Latch or Reg. Hold Time (I/O Clock)
Global Clock Enable Hold Time (Yx)
Global Clock Enable Hold Time (I/O Clock)
I/O Clock Enable Hold Time (Yx)
Output Latch or Reg. Clock (from Yx) to Output Delay
Input Latch or Register Clock (from Yx) to Output Delay
Output Latch or Register Clock (from I/O pin) to Output Delay
Input Latch or Register Clock (from I/O pin) to Output Delay
Input to Output Enable
Input to Output Disable
Test OE Output Enable
Test OE Output Disable
Clock Pulse Duration, High
Clock Pulse Duration, Low
Register Reset Delay from RESET Low
Reset Pulse Width
Output Delay Adder for Output Timings Using Slow Slew Rate
Output Skew (tgco1 Across Chip)
External Timing Parameters
Over Recommended Operating Conditions
ns
ns
MHz
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
143
111
4.0
3.0
4.0
3.0
2.5
1.5
4.5
0.0
1.5
0.0
1.5
0.0
1.5
0.0
3.5
3.5
10.0
A
A
A
A
A
A
B
C
B
C
D
A
tpd2
tsel2
fmax (Tog.)
fmax (Ext.)
tsu1
tsu2
tsu3
tsu4
tsuce1
tsuce2
tsuce3
th1
th2
th3
th4
thce1
thce2
thce3
tgco12
tgco22
tco12
tco22
ten2
tdis2
ttoeen2
ttoedis2
twh
twl
trst
trw
tsl
tsk
DESCRIPTION
PARAMETER
( )
1
tsu3+tgco1
UNITS
-5
MIN. MAX.
1. All timings measured with one output switching, fast output slew rate setting, except tsl.
2. The delay parameters are measured with Vcc as I/O voltage reference. An additional 0.5ns delay is incurred when Vccio is
used as I/O voltage reference.
#
3.5
3.5
3.5
6.0
4.0
7.0
5.0
5.0
6.0
6.0
8.0
3.5
0.5
250
166.7
3.0
2.5
2.5
2.0
2.5
1.5
3.0
0.0
0.5
0.0
1.0
0.0
1.0
0.0
2.0
2.0
5.0
-3
MIN. MAX.
TEST
1
COND.
SELECT DEVICES
DISCONTINUED
12
Specifications ispGDX160VA
9.0
9.0
9.0
13.5
11.5
15.7
10.5
10.5
10.5
10.5
22.0
9.0
1.0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Data Prop. Delay from Any I/O pin to Any I/O Pin (4:1 MUX)
Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX)
Clock Frequency, Max. Toggle
Clock Frequency with External Feedback
Input Latch or Register Setup Time Before Yx
Input Latch or Register Setup Time Before I/O Clock
Output Latch or Register Setup Time Before Yx
Output Latch or Register Setup Time Before I/O Clock
Global Clock Enable Setup Time Before Yx
Global Clock Enable Setup Time Before I/O Clock
I/O Clock Enable Setup Time Before Yx
Input Latch or Reg. Hold Time (Yx)
Input Latch or Reg. Hold Time (I/O Clock)
Output Latch or Reg. Hold Time (Yx)
Output Latch or Reg. Hold Time (I/O Clock)
Global Clock Enable Hold Time (Yx)
Global Clock Enable Hold Time (I/O Clock)
I/O Clock Enable Hold Time (Yx)
Output Latch or Reg. Clock (from Yx) to Output Delay
Input Latch or Register Clock (from Yx) to Output Delay
Output Latch or Register Clock (from I/O pin) to Output Delay
Input Latch or Register Clock (from I/O pin) to Output Delay
Input to Output Enable
Input to Output Disable
Test OE Output Enable
Test OE Output Disable
Clock Pulse Duration, High
Clock Pulse Duration, Low
Register Reset Delay from RESET Low
Reset Pulse Width
Output Delay Adder for Output Timings Using Slow Slew Rate
Output Skew (tgco1 Across Chip)
External Timing Parameters
Over Recommended Operating Conditions
ns
ns
MHz
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
83
62.5
7.0
6.0
7.0
6.0
4.0
3.0
8.5
0.0
3.0
0.0
3.0
0.0
3.0
0.0
6.0
6.0
18.0
A
A
A
A
A
A
B
C
B
C
D
A
tpd2
tsel2
fmax (Tog.)
fmax (Ext.)
tsu1
tsu2
tsu3
tsu4
tsuce1
tsuce2
tsuce3
th1
th2
th3
th4
thce1
thce2
thce3
tgco12
tgco22
tco12
tco22
ten2
tdis2
ttoeen2
ttoedis2
twh
twl
trst
trw
tsl
tsk
DESCRIPTION
PARAMETER
( )
1
tsu3+tgco1
UNITS
-9
MIN. MAX.
1. All timings measured with one output switching, fast output slew rate setting, except tsl.
2. The delay parameters are measured with Vcc as I/O voltage reference. An additional 0.5ns delay is incurred when Vccio is
used as I/O voltage reference.
#
-7
MIN. MAX.
TEST
1
COND.
100
80
5.5
4.5
5.5
4.5
3.5
2.5
6.5
0.0
2.5
0.0
2.5
0.0
2.5
0.0
5.0
5.0
14.0
7.0
7.0
7.0
11.0
9.0
13.0
8.5
8.5
8.5
8.5
18.0
7.0
0.5
SELECT DEVICES
DISCONTINUED
13
Specifications ispGDX160VA
External Timing Parameters (Continued)
1.0
0.00410 20 30 40 50 60 70
0.2
0.4
0.6
0.8
1.2
1.4
1.6
GRP Delay (ns)
I/O Cell Fanout
ispGDX160VA Maximum GRP Delay vs. I/O Cell Fanout
ispGDX160VA timings are specified with a GRP load
(fanout) of four I/O cells. The figure below shows the
GRP Delay with increased GRP loads. These deltas
apply to any signal path traversing the GRP (MUXA-D,
OE, CLK/CLKEN, MUXsel0-1). Global Clock signals
which do not use the GRP have no fanout delay adder.
SELECT DEVICES
DISCONTINUED
14
Specifications ispGDX160VA
-3 -5
PARAMETER # DESCRIPTION1MIN. MAX. MIN. MAX. UNITS
Inputs
tio 32 Input Buffer Delay 0.4 0.9 ns
GRP
tgrp 33 GRP Delay 1.1 1.1 ns
MUX
tmuxd 34 I/O Cell MUX A/B/C/D Data Delay 1.0 1.5 ns
tmuxexp 35 I/O Cell MUX A/B/C/D Expander Delay 1.5 2.0 ns
tmuxs 36 I/O Cell Data Select 1.0 1.5 ns
tmuxsio 37 I/O Cell Data Select (I/O Clock) 1.5 3.0 ns
tmuxsg 38 I/O Cell Data Select (Yx Clock) 1.5 2.0 ns
tmuxselexp 39 I/O Cell MUX Data Select Expander Delay 1.5 2.0 ns
Register
tiolat 40 I/O Latch Delay 1.0 1.0 ns
tiosu 41 I/O Register Setup Time Before Clock 0.8 2.0 ns
tioh 42 I/O Register Hold Time After Clock 1.7 1.5 ns
tioco 43 I/O Register Clock to Output Delay 1.2 0.5 ns
tior 44 I/O Reset to Output Delay 1.0 1.5 ns
tcesu 45 I/O Clock Enable Setup Time Before Clock 2.3 2.0 ns
tceh 46 I/O Clock Enable Hold Time After Clock 0.2 0.5 ns
Data Path
tfdbk 47 I/O Register Feedback Delay 0.6 0.9 ns
tiobp 48 I/O Register Bypass Delay 0.0 0.0 ns
tioob 49 I/O Register Output Buffer Delay 0.0 0.0 ns
tmuxcg 50 I/O Register A/B/C/D Data Input MUX Delay (Yx Clock) 1.5 2.0 ns
tmuxcio 51 I/O Register A/B/C/D Data Input MUX Delay (I/O Clock) 1.5 3.0 ns
tiodg 52 I/O Register I/O MUX Delay (Yx Clock) 3.5 4.0 ns
tiodio 53 I/O Register I/O MUX Delay (I/O Clock) 3.5 5.0 ns
Outputs
tob 54 Output Buffer Delay 1.0 1.5 ns
tobs 55 Output Buffer Delay (Slow Slew Option) 4.5 6.5 ns
toeen 56 I/O Cell OE to Output Enable 3.5 4.0 ns
toedis 57 I/O Cell OE to Output Disable 3.5 4.0 ns
tgoe 58 GRP Output Enable and Disable Delay 0.0 0.0 ns
ttoe 59 Test OE Enable and Disable Delay 2.5 2.0 ns
Clocks
tioclk 60 I/O Clock Delay 0.3 2.0 ns
tgclk 61 Global Clock Delay 1.3 2.0 ns
tgclkeng 62 Global Clock Enable (Yx Clock) 1.5 2.5 ns
tgclkenio 63 Global Clock Enable (I/O Clock) 1.0 3.5 ns
tioclkeng 64 I/O Clock Enable (Yx Clock) 0.5 2.5 ns
Global Reset
tgr 65 Global Reset to I/O Register Latch 6.0 11.0 ns
Internal Timing Parameters1
Over Recommended Operating Conditions
1. Internal T iming Parameters are not tested and are for reference only.
2. Refer to the T iming Model in this data sheet for further details.
SELECT DEVICES
DISCONTINUED
15
Specifications ispGDX160VA
-7 -9
PARAMETER # DESCRIPTION1MIN. MAX. MIN. MAX. UNITS
Inputs
tio 32 Input Buffer Delay 1.4 1.9 ns
GRP
tgrp 33 GRP Delay 1.1 1.1 ns
MUX
tmuxd 34 I/O Cell MUX A/B/C/D Data Delay 2.0 2.5 ns
tmuxexp 35 I/O Cell MUX A/B/C/D Expander Delay 2.5 3.0 ns
tmuxs 36 I/O Cell Data Select 2.0 2.5 ns
tmuxsio 37 I/O Cell Data Select (I/O Clock) 4.5 6.0 ns
tmuxsg 38 I/O Cell Data Select (Yx Clock) 2.5 3.0 ns
tmuxselexp 39 I/O Cell MUX Data Select Expander Delay 2.5 3.0 ns
Register
tiolat 40 I/O Latch Delay 1.0 1.0 ns
tiosu 41 I/O Register Setup Time Before Clock 3.2 4.4 ns
tioh 42 I/O Register Hold Time After Clock 2.3 2.6 ns
tioco 43 I/O Register Clock to Output Delay 0.5 0.5 ns
tior 44 I/O Reset to Output Delay 1.5 1.5 ns
tcesu 45 I/O Clock Enable Setup Time Before Clock 2.5 2.0 ns
tceh 46 I/O Clock Enable Hold Time After Clock 1.0 2.0 ns
Data Path
tfdbk 47 I/O Register Feedback Delay 1.2 1.3 ns
tiobp 48 I/O Register Bypass Delay 0.3 0.6 ns
tioob 49 I/O Register Output Buffer Delay 0.6 0.7 ns
tmuxcg 50 I/O Register A/B/C/D Data Input MUX Delay (Yx Clock) 2.5 3.0 ns
tmuxcio 51 I/O Register A/B/C/D Data Input MUX Delay (I/O Clock) 4.5 6.0 ns
tiodg 52 I/O Register I/O MUX Delay (Yx Clock) 5.0 6.0 ns
tiodio 53 I/O Register I/O MUX Delay (I/O Clock) 7.0 9.0 ns
Outputs
tob 54 Output Buffer Delay 2.2 2.9 ns
tobs 55 Output Buffer Delay (Slow Slew Option) 9.2 11.9 ns
toeen 56 I/O Cell OE to Output Enable 6.0 7.5 ns
toedis 57 I/O Cell OE to Output Disable 6.0 7.5 ns
tgoe 58 GRP Output Enable and Disable Delay 0.0 0.0 ns
ttoe 59 Test OE Enable and Disable Delay 2.5 3.0 ns
Clocks
tioclk 60 I/O Clock Delay 3.2 4.4 ns
tgclk 61 Global Clock Delay 2.7 3.4 ns
tgclkeng 62 Global Clock Enable (Yx Clock) 3.7 5.4 ns
tgclkenio 63 Global Clock Enable (I/O Clock) 5.7 8.4 ns
tioclkeng 64 I/O Clock Enable (Yx Clock) 4.2 6.4 ns
Global Reset
tgr 65 Global Reset to I/O Register Latch 13.7 16.4 ns
Internal Timing Parameters1
Over Recommended Operating Conditions
1. Internal T iming Parameters are not tested and are for reference only.
2. Refer to the T iming Model in this data sheet for further details.
SELECT DEVICES
DISCONTINUED
16
Specifications ispGDX160V
Absolute Maximum Ratings 1,2
Supply Voltage Vcc ................................. -0.5 to +5.4V
Input Voltage Applied............................... -0.5 to +5.6V
Off-State Output Voltage Applied ............ -0.5 to +5.6V
Storage Temperature................................ -65 to 150°C
Case Temp. with Power Applied .............. -55 to 125°C
Max. Junction Temp. (TJ) with Power Applied ... 150°C
1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement.
DC Recommended Operating Conditions
CSYMBOL
Table 2 - 0006
C
PARAMETER
Dedicated Clock Capacitance 10
UNITSTYPICAL TEST CONDITIONS
1
2
8I/O Capacitance pf
pf V = 3.3V, V = 2.0V
V = 3.3V, V = 2.0V
CC
CC Y
I/O
Capacitance (TA=25oC, f=1.0 MHz)
T
A
= 0°C to +70°C
T
A
= -40°C to +85°C
SYMBOL
Table 2-0005/gdxv
VCC
VIH
1
VIL
1
PARAMETER
Supply Voltage
Input High Voltage
1. Typical 100mV of input hysteresis.
Input Low Voltage
MIN. MAX. UNITS
3.0
3.0
2.0
-0.3
3.6
3.6
5.25
0.8
V
V
V
V
Commercial
Industrial
PARAMETER MINIMUM MAXIMUM UNITS
Erase/Reprogram Cycles 10,000 Cycles
Erase/Reprogram Specifications
SELECT DEVICES
DISCONTINUED
17
Specifications ispGDX160V
Output Low Voltage
Output High Voltage
Input or I/O Low Leakage Current
Input or I/O High Leakage Current
I/O Active Pull-Up Current
Bus Hold Low Sustaining Current
Bus Hold High Sustaining Current
Bus Hold Low Overdrive Current
Bus Hold High Overdrive Current
Bus Hold Trip Points
Output Short Circuit Current
Quiescent Power Supply Current
Dynamic Power Supply Current
per Input Switching
Maximum Continuous I/O Pin Sink
Current Through Any GND Pin
IOL =24 mA
IOH =-12 mA
0V VIN VIL (Max.)
VCC VIN 5.25V
0V VIN VIL
VIN = VIL (Max.)
VIN = VIH (Min.)
0V VIN VCC
0V VIN VCC
VCC = 3.3V, VOUT = 0.5V, TA = 25˚C
VIL = 0.5V, VIH = VCC
One input toggling @ 50% duty cycle,
outputs open.
70
2.4
50
-50
VIL
0.55
-10
10
-150
550
-550
VIH
-250
96
Switching Test Conditions
DC Electrical Characteristics
Over Recommended Operating Conditions
V
V
µA
µA
µA
µA
µA
µA
µA
V
mA
mA
mA/MHz
mA
VOL
VOH
IIL
IIH
IIL-PU
IBHLS
IBHHS
IBHLO
IBHHO
IBHT
IOS1
ICCQ4
ICC
1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems by tester ground
degradation. Characterized but not 100% tested.
2. T ypical values are at VCC = 3.3V and TA = 25oC.
3. ICC / MHz = (0.01 x I/O cell fanout) + 0.04
e.g. An input driving four I/O cells at 40 MHz results in a dynamic ICC of approximately ((0.01 x 4) + 0.04) x 40 = 3.2 mA.
4. For a typical application with 50% of I/O pins used as inputs, 50% used as outputs or bidirectionals.
5. This parameter limits the total current sinking of I/O pins surrounding the nearest GND pin.
SYMBOL MIN. MAX.TYP.2
PARAMETER CONDITION UNITS
Input Pulse Levels GND to 3.0V
Input Rise and Fall Time 1.5ns 10% to 90%
Input Timing Reference Levels 1.5V
Output Timing Reference Levels 1.5V
Output Load See figure at right
3-state levels are measured 0.5V from steady-state
active level.
+ 3.3V
R1
R2CL*
Device
Output Test
Point
*CL includes Test Fixture and Probe Capacitance.
See
Note 3
ICONT5
Output Load Conditions
TEST CONDITION R1 R2 CL
A 15313435pF
B13435pF
15335pF
Active High
Slow Slew
Active Low
C
D
153
5pF
35pF
1345pF
Active Low to Z
at V +0.5V
OL
Active High to Z
at V -0.5V
OH
Table 2-0004A
SELECT DEVICES
DISCONTINUED
18
Specifications ispGDX160V
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Data Prop. Delay from Any I/O pin to Any I/O pin (4:1 MUX)
Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX)
Clock Frequency, Max. Toggle
Clock Frequency with External Feedback
Input Latch or Register Setup Time Before Yx
Input Latch or Register Setup Time Before I/O Clock
Output Latch or Register Setup Time Before Yx
Output Latch or Register Setup Time Before I/O Clock
Global Clock Enable Setup Time Before Yx
Global Clock Enable Setup Time Before I/O Clock
I/O Clock Enable Setup Time Before Yx
Input Latch or Register Hold Time (Yx)
Input Latch or Register Hold Time (I/O Clock)
Output Latch or Register Hold Time (Yx)
Output Latch or Register Hold Time (I/O Clock)
Global Clock Enable Hold Time (Yx)
Global Clock Enable Hold Time (I/O Clock)
I/O Clock Enable Hold Time (Yx)
Output Latch or Register Clock (from Yx) to Output Delay
Input Latch or Register Clock (from Yx) to Output Delay
Output Latch or Register Clock (from I/O pin) to Output Delay
Input Latch or Register Clock (from I/O pin) to Output Delay
Input to Output Enable
Input to Output Disable
Test OE Output Enable
Test OE Output Disable
Clock Pulse Duration, High
Clock Pulse Duration, Low
Register Reset Delay from RESET Low
Reset Pulse Width
Output Delay Adder for Output Timings Using Slow Slew Rate
Output Skew (tgco1 Across Chip)
External Timing Parameters
Over Recommended Operating Conditions
ns
ns
MHz
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
143
110
4.0
3.0
4.0
3.0
2.5
1.5
4.5
0.0
1.5
0.0
1.5
0.0
1.5
0.0
3.5
3.5
10.0
5.0
6.5
5.0
8.5
6.0
9.5
6.0
6.0
9.0
9.0
14.0
8.0
0.5
100
80.0
5.5
4.5
5.5
4.5
3.5
2.5
6.5
0.0
2.5
0.0
2.5
0.0
2.5
0.0
5.0
5.0
14.0
7.0
9.0
7.0
11.0
9.0
13.0
8.5
8.5
12.0
12.0
18.0
12.0
0.5
A
A
A
A
A
A
B
C
B
C
D
A
tpd
tsel
fmax (Tog.)
fmax (Ext.)
tsu1
tsu2
tsu3
tsu4
tsuce1
tsuce2
tsuce3
th1
th2
th3
th4
thce1
thce2
thce3
tgco1
tgco2
tco1
tco2
ten
tdis
ttoeen
ttoedis
twh
twl
trst
trw
tsl
tsk
DESCRIPTIONPARAMETER
TEST
1
COND.
( )
1
tsu3+tgco1
UNITS
-5
MIN. MAX.
-7
MIN. MAX.
1. All timings measured with one output switching, fast output slew rate setting, except tsl.
#
SELECT DEVICES
DISCONTINUED
19
Specifications ispGDX160V
External Timing Parameters (Continued)
1.0
0.00410 20 30 40 50 60 70
0.2
0.4
0.6
0.8
1.2
1.4
1.6
GRP Delay (ns)
I/O Cell Fanout
ispGDX160V Maximum GRP Delay vs. I/O Cell Fanout
ispGDX160V timings are specified with a GRP load
(fanout) of four I/O cells. The figure below shows the
GRP Delay with increased GRP loads. These deltas
apply to any signal path traversing the GRP (MUXA-D,
OE, CLK/CLKEN, MUXsel0-1). Global Clock signals
which do not use the GRP have no fanout delay adder.
SELECT DEVICES
DISCONTINUED
20
Specifications ispGDX160V
-5 -7
PARAMETER # DESCRIPTION1MIN. MAX. MIN. MAX. UNITS
Inputs
tio 32 Input Buffer Delay 0.9 1.4 ns
GRP
tgrp 33 GRP Delay 1.1 1.1 ns
MUX
tmuxd 34 I/O Cell MUX A/B/C/D Data Delay 1.5 2.0 ns
tmuxexp 35 I/O Cell MUX A/B/C/D Expander Delay 2.0 2.5 ns
tmuxs 36 I/O Cell Data Select 3.0 4.0 ns
tmuxsio 37 I/O Cell Data Select (I/O Clk) 4.5 6.5 ns
tmuxsg 38 I/O Cell Data Select (Yx Clk) 3.5 4.5 ns
tmuxselexp 39 I/O Cell MUX Data Select Expander Delay 3.5 4.5 ns
Register
tiolat 40 I/O Latch Delay 1.0 1.0 ns
tiosu 41 I/O Register Setup Time Before Clock 2.0 3.2 ns
tioh 42 I/O Register Hold Time After Clock 1.5 2.3 ns
tioco 43 I/O Register Clock to Output Delay 0.5 0.5 ns
tior 44 I/O Reset to Output Delay 1.5 1.5 ns
tcesu 45 I/O Clock Enable Setup Time Before Clock 2.0 2.5 ns
tceh 46 I/O Clock Enable Hold Time After Clock 0.5 1.0 ns
Data Path
tfdbk 47 I/O Register Feedback Delay 0.9 1.2 ns
tiobp 48 I/O Register Bypass Delay 0.0 0.3 ns
tioob 49 I/O Register Output Buffer Delay 0.0 0.6 ns
tmuxcg 50 I/O Register A/B/C/D Data Input MUX Delay (Yx Clk) 2.0 2.5 ns
tmuxcio 51 I/O Register A/B/C/D Data Input MUX Delay (I/O Clk) 3.0 4.5 ns
tiodg 52 I/O Register I/O MUX Delay (Yx Clk) 4.0 5.0 ns
tiodio 53 I/O Register I/O MUX Delay (I/O Clk) 5.0 7.0 ns
Outputs
tob 54 Output Buffer Delay 1.5 2.2 ns
tobs 55 Output Buffer Delay (Slow Slew Option) 9.5 14.2 ns
toeen 56 I/O Cell OE to Output Enable 4.0 6.0 ns
toedis 57 I/O Cell OE to Output Disable 4.0 6.0 ns
tgoe 58 GRP Output Enable and Disable Delay 0.0 0.0 ns
ttoe 59 Test OE Enable and Disable Delay 5.0 6.0 ns
Clocks
tioclk 60 I/O Clock Delay 2.0 3.2 ns
tgclk 61 Global Clock Delay 2.0 2.7 ns
tgclkeng 62 Global Clock Enable (Yx Clk) 2.5 3.7 ns
tgclkenio 63 Global Clock Enable (I/O Clk) 3.5 5.7 ns
tioclkeng 64 I/O Clock Enable (Yx Clk) 2.5 4.2 ns
Global Reset
tgr 65 Global Reset to I/O Register Latch 11.0 13.7 ns
Internal Timing Parameters1
Over Recommended Operating Conditions
1. Internal T iming Parameters are not tested and are for reference only.
2. Refer to the T iming Model in this data sheet for further details.
SELECT DEVICES
DISCONTINUED
21
Specifications ispGDX160V/VA
Switching Waveforms
Clock Width
CLK
(I/O INPUT)
t
wl
t
wh
COMBINATORIAL
I/O OUTPUT
VALID INPUT
DATA (I/O INPUT)
t
pd
t
sel
VALID INPUT
MUXSEL (I/O INPUT)
Combinatorial Output
COMBINATORIAL
I/O OUTPUT
OE (I/O INPUT)
t
en
t
dis
I/O Output Enable/Disable
Registered Output
Reset
REGISTERED
I/O OUTPUT
t
rst
RESET
t
rw
I/O Pin
RESET
TOE
Y0,1,2,3
Y0,1,2,3, Enable
tgclk #61
tgclkeng #62
tgclkenio #63
MUX0
MUX1
tgrp #33
MUX Expander Input
GRP
A
B
C
D
OE tgoe #58
tmuxexp #35
tmuxselexp #39
tiobp #48
CLK
CLKEN
MUX Expander Output
tioob #49
tmuxd #34
tmuxs #36
tmuxio #37
tmuxg #38
tmuxcg #50
tmuxcio #51
tiod #52, #53
tgr #65
0902/gdx160v/va
tio #32 tfdbk #47
tioclk #60
tioclkeg #64
tiolat #40
tiosu #41
tioh #42
tioco #43
tior #44
tcesu #45
tceh #46
tob #54
tobs #55
toeen #56
toedis #57
ttoe #59
CLK
CLKEN
DQ
DATA
(I/O INPUT)
REGISTERED
I/O OUTPUT
CLK
CLKEN
VALID INPUT
tt
h
t
suce
t
ceh
t
co
1/
f
max
(external fdbk)
t
gco
su
ispGDXV Timing Model
SELECT DEVICES
DISCONTINUED
22
Specifications ispGDX160V/VA
ispLEVER Development System
The ispLEVER Development System supports ispGDX
design using a VHDL or Verilog language syntax. From
creation to in-system programming, the ispLEVER sys-
tem is an easy-to-use, self-contained design tool.
Features
VHDL and Verilog Synthesis Support Available
ispGDX Design Compiler
- Design Rule Checker
- I/O Connectivity Checker
- Automatic Compiler Function
Industry Standard JEDEC File for Programming
Min/Max Timing Report
Interfaces To Popular Timing Simulators
User Electronic Signature (UES) Support
Detailed Log and Report Files For Easy Design
Debug
On-line Help
•Windows® XP, Windows 2000, Windows 98 and
Windows NT® Compatible
Solaris® and HP-UX Versions Available
In-System Programmability
All necessary programming of the ispGDXV/VA is done
via four TTL level logic interface signals. These four
signals are fed into the on-chip programming circuitry
where a state machine controls the programming.
On-chip programming can be accomplished using an
IEEE 1149.1 boundary scan protocol. The IEEE 1149.1-
compliant interface signals are Test Data In (TDI), Test
Data Out (TDO), Test Clock (TCK) and Test Mode Select
(TMS) control. The EPEN pin is also used to enable or
disable the JTAG port.
The embedded controller port enable pin (EPEN) is used
to enable the JTAG tap controller and in that regard has
similar functionality to a TRST pin. When the pin is driven
high, the JTAG TAP controller is enabled. This is also true
when the pin is left unconnected, in which case the pin is
pulled high by the permanent internal pullup. This allows
ISP programming and BSCAN testing to take place as
specified by the Instruction Table.
When the pin is driven low, the JTAG TAP controller is
driven to a reset state asynchronously. It stays there
while the pin is held low. After pulling the pin high the
JTAG controller becomes active. The intent of this fea-
ture is to allow the JTAG interface to be directly controlled
by the data bus of an embedded controller (hence the
name Embedded Port Enable). The EPEN signal is used
as a “device select” to prevent spurious programming
and/or testing from occuring due to random bit patterns
on the data bus. Figure 9 illustrates the block diagram for
the ispJTAG™ interface.
Figure 9. ispJTAG Device Programming Interface
ispGDX
160V/VA
Device
TDO
TDI
TMS
TCK
EPEN
ispJTAG
Programming
Interface
ispLSI
Device ispMACH
Device
ispGDX
160V/VA
Device
ispGDX
160V/VA
Device
SELECT DEVICES
DISCONTINUED
23
Specifications ispGDX160V/VA
Boundary Scan
The ispGDXV/VA devices provide IEEE1149.1a test
capability and ISP programming through a standard
Boundary Scan Test Access Port (TAP) interface.
The boundary scan circuitry on the ispGDXV/VA Family
operates independently of the programmed pattern. This
allows customers using boundary scan test to have full
test capability with only a single BSDL file.
The ispGDXV/VA devices are identified by the 32-bit
JTAG IDCODE register. The device ID assignments are
listed in Table 4.
Table 3. I/O Shift Register Order
Figure 10. Boundary Scan Register Circuit for I/O Pins
Normal
Function
OE
EXTEST
Update DR
SCANOUT
(to next cell)
Clock DR
SCANIN
(from previous
cell
Shift DR
Normal
Function
TOE
DQ
DQ
DQ
DQ DQ
I/O Pin
Reset
BSCAN
Registers BSCAN
Latches
HIGHZ
0
1
0
1
PROG_MODE
EXTEST
I/O Shift Reg Order/ispGDXVA
ispGDX160V/VA TDI, TOE, Y2, Y3, RESET, Y1, Y0, I/O B20 .. B39, I/O C0 .. C39, I/O D0 .. D19, I/O B19 .. B0,
I/O A39.. A0, I/O D39 .. D20, TDO
I/O SHIFT REGISTER ORDERDEVICE
Table 4. ispGDX160V/VA Device ID Codes
ID Code/GDX160V/VA
ispGDX160V 0000, 0000, 0011, 0101, 0011, 0000, 0100, 0011
ispGDX160VA 0001, 0000, 0011, 0101, 0011, 0000, 0100, 0011
32-BIT BOUNDARY SCAN ID CODEDEVICE
SELECT DEVICES
DISCONTINUED
24
Specifications ispGDX160V/VA
The ispJTAG programming is accomplished by execut-
ing Lattice private instructions under the Boundary Scan
State Machine.
Details of the programming sequence are transparent to
the user and are handled by Lattice ISP Daisy Chain
1
0
0
1
1
0
0
1
0
0
0
0
1
0
1
1
0101
1
1
0
1
0
0
111
0
0
1
Update-IR
Exit2-IR
Pause-IR
Exit1-IR
Shift-IR
Capture-IR
Select-IR-Scan
Update-DR
Exit2-DR
Pause-DR
Exit1-DR
Shift-DR
Capture-DR
Select-DR-Scan
Run-Test/Idle
Test-Logic-Reset
Figure 12. Boundary Scan State Machine
Figure 11. Boundary Scan Register Circuit for Input-Only Pins
Downlowad (ispDCD™), ispCODE ‘C’ routines or any
third-party programmers. Contact Lattice Technical Sup-
port to obtain more detailed programming information.
SCANOUT
(to next cell)
Clock DR
SCANIN
(from previous
cell
Shift DR
DQ
Input Pin
Boundary Scan (Continued)
SELECT DEVICES
DISCONTINUED
25
Specifications ispGDX160V/VA
Symbol Parameter Min Max Units
tbtcp TCK [BSCAN test] clock pulse width 100 ns
tbtch TCK [BSCAN test] pulse width high 50 ns
tbtcl TCK [BSCAN test] pulse width low 50 ns
tbtsu TCK [BSCAN test] setup time 20 ns
tbth TCK [BSCAN test] hold time 25 ns
trf TCK [BSCAN test] rise and fall time 50 mV/ns
tbtco TAP controller falling edge of clock to valid output 25 ns
tbtoz TAP controller falling edge of clock to data output disable 25 ns
tbtvo TAP controller falling edge of clock to data output enable 25 ns
tbtcpsu BSCAN test Capture register setup time 20 ns
tbtcph BSCAN test Capture register hold time 25 ns
tbtuco BSCAN test Update reg, falling edge of clock to valid output 50 ns
tbtuoz BSCAN test Update reg, falling edge of clock to output disable 50 ns
tbtuov BSCAN test Update reg, falling edge of clock to output enable 50 ns
Figure 13. Boundary Scan Waveforms and Timing Specifications
TMS
TDI
TCK
TDO
Data to be
captured
Data to be
driven out
Valid Data Valid Data
Valid Data Valid Data
Data Captured
btsu
Tbth
T
btcl
T
btch
Tbtcp
T
btvo
Tbtco
Tbtoz
T
btcsu
Tbtch
T
btuov
Tbtuco
Tbtuoz
T
Boundary Scan (Continued)
SELECT DEVICES
DISCONTINUED
26
Specifications ispGDX160V/VA
I/O Input/Output Pins – These are the general purpose bidirectional data pins. When used as outputs,
each may be independently latched, registered or tristated. They can also each assume one other
control function (OE, CLK/CLKEN, and MUXsel as described in the text).
TOE Test Output Enable Pin – This pin tristates all I/P pins when a logic low is driven.
RESET Active LOW Input Pin – Resets all I/O register outputs when LOW.
Yx/CLKENx Input Pins –These can be either Global Clocks or Clock Enables.
EPEN Input Pin – JTAG TAP Controller Enable Pin. When high, JTAG operation is enabled. When low,
JTAG TAP controller is driven to reset.
TDI Input Pin – Serial data input during ISP programming or Boundary Scan mode.
TCK Input Pin – Serial data clock during ISP programming or Boundary Scan mode.
TMS Input Pin – Control input during ISP programming or Boundary Scan mode.
TDO Output Pin – Serial data output during ISP programming or Boundary Scan mode.
GND Ground (GND)
VCC Vcc – Supply voltage (3.3V).
VCCIO2Input – This pin is used if optional 2.5V output is to be used. Every I/O can independently select either
3.3V or the optional voltage as its output level. If the optional output voltage is not required, this pin
must be connected to the VCC supply. Programmable pull-up resistors and bus-hold latches only draw
current from this supply.
NC1No Connect.
Signal Descriptions
Signal Name Description
1. NC pins are not to be connected to any active signals, VCC or GND.
2. “VA” version only.
SELECT DEVICES
DISCONTINUED
27
Specifications ispGDX160V/VA
Signal Locations: ispGDX160V/VA
Signal 208-Pin PQFP 208-Ball fpBGA 272-Ball BGA
TOE 178 D9 A12
RESET 185 A8 D10
Y0/CLKEN0 75 N8 V10
Y1/CLKEN1 76 R8 Y10
Y2/CLKEN2 180 B9 C11
Y3/CLKEN3 181 C9 A11
EPEN 183 A9 B10
TDI 81 P9 Y12
TCK 80 T9 U11
TMS 79 T8 V11
TDO 78 P8 W11
GND 6, 15, 25, 35, 44, 54, 63, D4, D13, G7, G8, G9, A1, D4, D8, D13, D17, H4, H17, J9, J10, J11, J12,
77, 91, 100, 110, 119, 129, G10, H7, H8, H9, H10, K9, K10, K11, K12, L9, L10, L11, L12, M9, M10,
139, 148, 159, 168, 182, J7, J8, J9, J10, K7, K8, M11, M12, N4, N17, U4, U8, U13, U17
195, 204 K9, K10, N4, N13
VCC 1, 17, 33, 49, 65, 89, 105, E131, F4, F13, L4, L13, C181, D6, D11, D15, F4, F17, K4, L17, R4, R17, U6,
121, 137, 153, 1561, 170, M4, M13, N5, N11, N12 U10, U15
184, 193 D5, D6, D12, E4
VCCIO 1561E131C181
NC 73, 74, 179 A10, P7, T7 A2, A6, A7, A10, A15, A19, A20, B1, B2, B4, B11,
B14, B18, B19, B20, C2, C3, C10, D2, D3, D16, E2,
E17, E19, H1, H3, H18, H20, K20, L1, N1, N3, N18
N20, T2, T4, T19, U5, U18, U19, V3, V14, V18, V19,
W1, W2, W3, W7, W10, W14, W19, W20, Y1, Y2, Y6,
Y9, Y11, Y18, Y20
1. VCC on ispGDX160V, VCCIO on ispGDX160VA.
SELECT DEVICES
DISCONTINUED
28
Specifications ispGDX160V/VA
I/O Locations: ispGDX160V/VA (Ordered by I/O Signal Name and 208-Pin PQFP Location)
I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA
VCC
I/O A0 CLK/CLKEN 2 B2 E4
I/O A1 OE 3 B1 C1
I/O A2 MUXsel1 4 C2 D1
I/O A3 MUXsel2 5 A1 E3
GND
I/O A4 CLK/CLKEN 7 C1 E1
I/O A5 OE 8 D3 F3
I/O A6 MUXsel1 9 D2 G4
I/O A7 MUXsel2 10 D1 F2
I/O A8 CLK/CLKEN 11 E3 F1
I/O A9 OE 12 E2 G3
I/O A10 MUXsel1 13 E1 G2
I/O A11 MUXsel2 14 F3 G1
GND
I/O A12 CLK/CLKEN 16 F2 H2
VCC
I/O A13 OE 18 F1 J4
I/O A14 MUXsel1 19 G4 J3
I/O A15 MUXsel2 20 G2 J2
I/O A16 CLK/CLKEN 21 G3 J1
I/O A17 OE 22 G1 K2
I/O A18 MUXsel1 23 H4 K3
I/O A19 MUXsel2 24 H2 K1
GND
I/O A20 CLK/CLKEN 26 H3 L2
I/O A21 OE 27 H1 L3
I/O A22 MUXsel1 28 J1 L4
I/O A23 MUXsel2 29 J3 M1
I/O A24 CLK/CLKEN 30 J2 M2
I/O A25 OE 31 J4 M3
I/O A26 MUXsel1 32 K1 M4
VCC
I/O A27 MUXsel2 34 K3 N2
GND
I/O A28 CLK/CLKEN 36 K2 P1
I/O A29 OE 37 K4 P2
I/O A30 MUXsel1 38 L1 R1
I/O A31 MUXsel2 39 L2 P3
I/O A32 CLK/CLKEN 40 L3 R2
I/O A33 OE 41 M1 T1
I/O A34 MUXsel1 42 M2 P4
I/O A35 MUXsel2 43 M3 R3
GND
I/O A36 CLK/CLKEN 45 N1 U1
I/O A37 OE 46 N2 T3
I/O A38 MUXsel1 47 N3 U2
I/O A39 MUXsel2 48 P1 V1
VCC
I/O B0 CLK/CLKEN 50 P2 U3
I/O B1 OE 51 R1 V2
I/O B2 MUXsel1 52 R2 W4
I/O B3 MUXsel2 53 T1 V4
GND
I/O B4 CLK/CLKEN 55 P3 Y3
I/O B5 OE 56 T2 Y4
I/O B6 MUXsel1 57 R3 V5
I/O B7 MUXsel2 58 P4 W5
I/O B8 CLK/CLKEN 59 T3 Y5
I/O B9 OE 60 R4 V6
I/O B10 MUXsel1 61 T4 U7
I/O B11 MUXsel2 62 P5 W6
GND
I/O B12 CLK/CLKEN 64 R5 V7
VCC
I/O B13 OE 66 N6 Y7
I/O B14 MUXsel1 67 T5 V8
I/O B15 MUXsel2 68 R6 W8
I/O B16 CLK/CLKEN 69 P6 Y8
I/O B17 OE 70 T6 U9
I/O B18 MUXsel1 71 N7 V9
I/O B19 MUXsel2 72 R7 W9
GND
I/O B20 CLK/CLKEN 82 R9 W12
I/O B21 OE 83 N9 V12
I/O B22 MUXsel1 84 T10 U12
I/O B23 MUXsel2 85 P10 Y13
I/O B24 CLK/CLKEN 86 R10 W13
I/O B25 OE 87 N10 V13
I/O B26 MUXsel1 88 T11 Y14
VCC
I/O B27 MUXsel2 90 P11 Y15
GND
I/O B28 CLK/CLKEN 92 R11 W15
I/O B29 OE 93 T12 Y16
I/O B30 MUXsel1 94 P12 U14
I/O B31 MUXsel2 95 R12 V15
I/O B32 CLK/CLKEN 96 T13 W16
I/O B33 OE 97 R13 Y17
I/O B34 MUXsel1 98 T14 V16
I/O B35 MUXsel2 99 P13 W17
GND
I/O B36 CLK/CLKEN 101 R14 U16
I/O B37 OE 102 T15 V17
I/O B38 MUXsel1 103 T16 W18
I/O B39 MUXsel2 104 R15 Y19
VCC
I/O C0 CLK/CLKEN 106 P14 T17
I/O C1 OE 107 P15 V20
I/O C2 MUXsel1 108 R16 U20
I/O C3 MUXsel2 109 N14 T18
GND
I/O C4 CLK/CLKEN 111 P16 T20
I/O C5 OE 112 N15 R18
I/O C6 MUXsel1 113 N16 P17
I/O C7 MUXsel2 114 M14 R19
I/O C8 CLK/CLKEN 115 M15 R20
I/O C9 OE 116 M16 P18
I/O C10 MUXsel1 117 L15 P19
I/O C11 MUXsel2 118 L14 P20
GND
I/O C12 CLK/CLKEN 120 L16 N19
VCC
I/O C13 OE 122 K13 M17
I/O C14 MUXsel1 123 K15 M18
I/O C15 MUXsel2 124 K14 M19
I/O C16 CLK/CLKEN 125 K16 M20
I/O C17 OE 126 J13 L19
I/O C18 MUXsel1 127 J15 L18
I/O C19 MUXsel2 128 J14 L20
GND
I/O C20 CLK/CLKEN 130 J16 K19
I/O C21 OE 131 H14 K18
I/O C22 MUXsel1 132 H16 K17
I/O C23 MUXsel2 133 H15 J20
I/O C24 CLK/CLKEN 134 H13 J19
I/O C25 OE 135 G16 J18
I/O C26 MUXsel1 136 G14 J17
VCC
I/O C27 MUXsel2 138 G15 H19
I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA
GND
I/O C28 CLK/CLKEN 140 G13 G20
I/O C29 OE 141 F16 G19
I/O C30 MUXsel1 142 F14 F20
I/O C31 MUXsel2 143 F15 G18
I/O C32 CLK/CLKEN 144 E16 F19
I/O C33 OE 145 E14 E20
I/O C34 MUXsel1 146 E15 G17
I/O C35 MUXsel2 147 D16 F18
GND
I/O C36 CLK/CLKEN 149 C16 D20
I/O C37 OE 150 D15 E18
I/O C38 MUXsel1 151 D14 D19
I/O C39 MUXsel2 152 C15 C20
VCC
I/O D0 CLK/CLKEN 154 B16 D18
I/O D1 OE 155 A16 C19
VCC/VCCIO1
I/O D2 MUXsel1 157 B15 B17
I/O D3 MUXsel2 158 A15 C17
GND
I/O D4 CLK/CLKEN 160 C14 A18
I/O D5 OE 161 B14 A17
I/O D6 MUXsel1 162 A14 C16
I/O D7 MUXsel2 163 C13 B16
I/O D8 CLK/CLKEN 164 B13 A16
I/O D9 OE 165 A13 C15
I/O D10 MUXsel1 166 C12 D14
I/O D11 MUXsel2 167 B12 B15
GND
I/O D12 CLK/CLKEN 169 D11 C14
VCC
I/O D13 OE 171 A12 A14
I/O D14 MUXsel1 172 C11 C13
I/O D15 MUXsel2 173 B11 B13
I/O D16 CLK/CLKEN 174 D10 A13
I/O D17 OE 175 A11 D12
I/O D18 MUXsel1 176 B10 C12
I/O D19 MUXsel2 177 C10 B12
GND
VCC
I/O D20 CLK/CLKEN 186 C8 A9
I/O D21 OE 187 B8 B9
I/O D22 MUXsel1 188 D8 C9
I/O D23 MUXsel2 189 A7 D9
I/O D24 CLK/CLKEN 190 C7 A8
I/O D25 OE 191 B7 B8
I/O D26 MUXsel1 192 D7 C8
VCC
I/O D27 MUXsel2 194 A6 B7
GND
I/O D28 CLK/CLKEN 196 C6 C7
I/O D29 OE 197 B6 B6
I/O D30 MUXsel1 198 A5 A5
I/O D31 MUXsel2 199 C5 D7
I/O D32 CLK/CLKEN 200 B5 C6
I/O D33 OE 201 A4 B5
I/O D34 MUXsel1 202 B4 A4
I/O D35 MUXsel2 203 C4 C5
GND
I/O D36 CLK/CLKEN 205 A3 A3
I/O D37 OE 206 C3 D5
I/O D38 MUXsel1 207 B3 C4
I/O D39 MUXsel2 208 A2 B3
NOTE: VCC and GND Pads Shown for Reference, 1VCC in ispGDX160V
SELECT DEVICES
DISCONTINUED
29
Specifications ispGDX160V/VA
I/O A3 MUXsel2 5 A1 E3
I/O D39 MUXsel2 208 A2 B3
I/O D36 CLK/CLKEN 205 A3 A3
I/O D33 OE 201 A4 B5
I/O D30 MUXsel1 198 A5 A5
I/O D27 MUXsel2 194 A6 B7
I/O D23 MUXsel2 189 A7 D9
I/O D17 OE 175 A11 D12
I/O D13 OE 171 A12 A14
I/O D9 OE 165 A13 C15
I/O D6 MUXsel1 162 A14 C16
I/O D3 MUXsel2 158 A15 C17
I/O D1 OE 155 A16 C19
I/O A1 OE 3 B1 C1
I/O A0 CLK/CLKEN 2 B2 E4
I/O D38 MUXsel1 207 B3 C4
I/O D34 MUXsel1 202 B4 A4
I/O D32 CLK/CLKEN 200 B5 C6
I/O D29 OE 197 B6 B6
I/O D25 OE 191 B7 B8
I/O D21 OE 187 B8 B9
I/O D18 MUXsel1 176 B10 C12
I/O D15 MUXsel2 173 B11 B13
I/O D11 MUXsel2 167 B12 B15
I/O D8 CLK/CLKEN 164 B13 A16
I/O D5 OE 161 B14 A17
I/O D2 MUXsel1 157 B15 B17
I/O D0 CLK/CLKEN 154 B16 D18
I/O A4 CLK/CLKEN 7 C1 E1
I/O A2 MUXsel1 4 C2 D1
I/O D37 OE 206 C3 D5
I/O D35 MUXsel2 203 C4 C5
I/O D31 MUXsel2 199 C5 D7
I/O D28 CLK/CLKEN 196 C6 C7
I/O D24 CLK/CLKEN 190 C7 A8
I/O D20 CLK/CLKEN 186 C8 A9
I/O D19 MUXsel2 177 C10 B12
I/O D14 MUXsel1 172 C11 C13
I/O D10 MUXsel1 166 C12 D14
I/O D7 MUXsel2 163 C13 B16
I/O D4 CLK/CLKEN 160 C14 A18
I/O C39 MUXsel2 152 C15 C20
I/O C36 CLK/CLKEN 149 C16 D20
I/O A7 MUXsel2 10 D1 F2
I/O A6 MUXsel1 9 D2 G4
I/O A5 OE 8 D3 F3
I/O D26 MUXsel1 192 D7 C8
I/O D22 MUXsel1 188 D8 C9
I/O D16 CLK/CLKEN 174 D10 A13
I/O D12 CLK/CLKEN 169 D11 C14
I/O C38 MUXsel1 151 D14 D19
I/O C37 OE 150 D15 E18
I/O C35 MUXsel2 147 D16 F18
I/O A10 MUXsel1 13 E1 G2
I/O A9 OE 12 E2 G3
I/O A8 CLK/CLK_EN 11 E3 F1
I/O C33 OE 145 E14 E20
I/O C34 MUXsel1 146 E15 G17
I/O C32 CLK/CLKEN 144 E16 F19
I/O A13 OE 18 F1 J4
I/O A12 CLK/CLKEN 16 F2 H2
I/O A11 MUXsel2 14 F3 G1
I/O C30 MUXsel1 142 F14 F20
I/O C31 MUXsel2 143 F15 G18
I/O C29 OE 141 F16 G19
I/O A17 OE 22 G1 K2
I/O A15 MUXsel2 20 G2 J2
I/O A16 CLK/CLKEN 21 G3 J1
I/O A14 MUXsel1 19 G4 J3
I/O C28 CLK/CLKEN 140 G13 G20
I/O C26 MUXsel1 136 G14 J17
I/O C27 MUXsel2 138 G15 H19
I/O C25 OE 135 G16 J18
I/O A21 OE 27 H1 L3
I/O A19 MUXsel2 24 H2 K1
I/O A20 CLK/CLKEN 26 H3 L2
I/O A18 MUXsel1 23 H4 K3
I/O C24 CLK/CLKEN 134 H13 J19
I/O C21 OE 131 H14 K18
I/O C23 MUXsel2 133 H15 J20
I/O C22 MUXsel1 132 H16 K17
I/O A22 MUXsel1 28 J1 L4
I/O A24 CLK/CLKEN 30 J2 M2
I/O A23 MUXsel2 29 J3 M1
I/O A25 OE 31 J4 M3
I/O C17 OE 126 J13 L19
I/O C19 MUXsel2 128 J14 L20
I/O C18 MUXsel1 127 J15 L18
I/O C20 CLK/CLKEN 130 J16 K19
I/O A26 MUXsel1 32 K1 M4
I/O A28 CLK/CLKEN 36 K2 P1
I/O A27 MUXsel2 34 K3 N2
I/O A29 OE 37 K4 P2
I/O C13 OE 122 K13 M17
I/O C15 MUXsel2 124 K14 M19
I/O C14 MUXsel1 123 K15 M18
I/O C16 CLK/CLKEN 125 K16 M20
I/O A30 MUXsel1 38 L1 R1
I/O A31 MUXsel2 39 L2 P3
I/O A32 CLK/CLKEN 40 L3 R2
I/O C11 MUXsel2 118 L14 P20
I/O C10 MUXsel1 117 L15 P19
I/O C12 CLK/CLKEN 120 L16 N19
I/O A33 OE 41 M1 T1
I/O A34 MUXsel1 42 M2 P4
I/O A35 MUXsel2 43 M3 R3
I/O C7 MUXsel2 114 M14 R19
I/O Locations: ispGDX160V/VA (Ordered by 208-Ball BGA Location)
I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA
I/O C8 CLK 115 M15 R20
I/O C9 OE 116 M16 P18
I/O A36 CLK/CLKEN 45 N1 U1
I/O A37 OE 46 N2 T3
I/O A38 MUXsel1 47 N3 U2
I/O B13 OE 66 N6 Y7
I/O B18 MUXsel1 71 N7 V9
I/O B21 OE 83 N9 V12
I/O B25 OE 87 N10 V13
I/O C3 MUXsel2 109 N14 T18
I/O C5 OE 112 N15 R18
I/O C6 MUXsel1 113 N16 P17
I/O A39 MUXsel2 48 P1 V1
I/O B0 CLK/CLKEN 50 P2 U3
I/O B4 CLK/CLKEN 55 P3 Y3
I/O B7 MUXsel2 58 P4 W5
I/O B11 MUXsel2 62 P5 W6
I/O B16 CLK/CLKEN 69 P6 Y8
I/O B23 MUXsel2 85 P10 Y13
I/O B27 MUXsel2 90 P11 Y15
I/O B30 MUXsel1 94 P12 U14
I/O B35 MUXsel2 99 P13 W17
I/O C0 CLK/CLKEN 106 P14 T17
I/O C1 OE 107 P15 V20
I/O C4 CLK/CLKEN 111 P16 T20
I/O B1 OE 51 R1 V2
I/O B2 MUXsel1 52 R2 W4
I/O B6 MUXsel1 57 R3 V5
I/O B9 OE 60 R4 V6
I/O B12 CLK/CLKEN 64 R5 V7
I/O B15 MUXsel2 68 R6 W8
I/O B19 MUXsel2 72 R7 W9
I/O B20 CLK/CLKEN 82 R9 W12
I/O B24 CLK/CLKEN 86 R10 W13
I/O B28 CLK/CLKEN 92 R11 W15
I/O B31 MUXsel2 95 R12 V15
I/O B33 OE 97 R13 Y17
I/O B36 CLK/CLKEN 101 R14 U16
I/O B39 MUXsel2 104 R15 Y19
I/O C2 MUXsel1 108 R16 U20
I/O B3 MUXsel2 53 T1 V4
I/O B5 OE 56 T2 Y4
I/O B8 CLK/CLKEN 59 T3 Y5
I/O B10 MUXsel1 61 T4 U7
I/O B14 MUXsel1 67 T5 V8
I/O B17 OE 70 T6 U9
I/O B22 MUXsel1 84 T10 U12
I/O B26 MUXsel1 88 T11 Y14
I/O B29 OE 93 T12 Y16
I/O B32 CLK/CLKEN 96 T13 W16
I/O B34 MUXsel1 98 T14 V16
I/O B37 OE 102 T15 V17
I/O B38 MUXsel1 103 T16 W18
SELECT DEVICES
DISCONTINUED
30
Specifications ispGDX160V/VA
I/O C32 CLK/CLKEN 144 E16 F19
I/O C30 MUXsel1 142 F14 F20
I/O A11 MUXsel2 14 F3 G1
I/O A10 MUXsel1 13 E1 G2
I/O A9 OE 12 E2 G3
I/O A6 MUXsel1 9 D2 G4
I/O C34 MUXsel1 146 E15 G17
I/O C31 MUXsel2 143 F15 G18
I/O C29 OE 141 F16 G19
I/O C28 CLK/CLKEN 140 G13 G20
I/O A12 CLK/CLKEN 16 F2 H2
I/O C27 MUXsel2 138 G15 H19
I/O A16 CLK/CLKEN 21 G3 J1
I/O A15 MUXsel2 20 G2 J2
I/O A14 MUXsel1 19 G4 J3
I/O A13 OE 18 F1 J4
I/O C26 MUXsel1 136 G14 J17
I/O C25 OE 135 G16 J18
I/O C24 CLK/CLKEN 134 H13 J19
I/O C23 MUXsel2 133 H15 J20
I/O A19 MUXsel2 24 H2 K1
I/O A17 OE 22 G1 K2
I/O A18 MUXsel1 23 H4 K3
I/O C22 MUXsel1 132 H16 K17
I/O C21 OE 131 H14 K18
I/O C20 CLK/CLKEN 130 J16 K19
I/O A20 CLK/CLKEN 26 H3 L2
I/O A21 OE 27 H1 L3
I/O A22 MUXsel1 28 J1 L4
I/O C18 MUXsel1 127 J15 L18
I/O C17 OE 126 J13 L19
I/O C19 MUXsel2 128 J14 L20
I/O A23 MUXsel2 29 J3 M1
I/O A24 CLK/CLKEN 30 J2 M2
I/O A25 OE 31 J4 M3
I/O A26 MUXsel1 32 K1 M4
I/O C13 OE 122 K13 M17
I/O C14 MUXsel1 123 K15 M18
I/O C15 MUXsel2 124 K14 M19
I/O C16 CLK/CLKEN 125 K16 M20
I/O A27 MUXsel2 34 K3 N2
I/O C12 CLK/CLKEN 120 L16 N19
I/O A28 CLK/CLKEN 36 K2 P1
I/O A29 OE 37 K4 P2
I/O A31 MUXsel2 39 L2 P3
I/O A34 MUXsel1 42 M2 P4
I/O C6 MUXsel1 113 N16 P17
I/O C9 OE 116 M16 P18
I/O C10 MUXsel1 117 L15 P19
I/O C11 MUXsel2 118 L14 P20
I/O A30 MUXsel1 38 L1 R1
I/O A32 CLK/CLKEN 40 L3 R2
I/O A35 MUXsel2 43 M3 R3
I/O D36 CLK/CLKEN 205 A3 A3
I/O D34 MUXsel1 202 B4 A4
I/O D30 MUXsel1 198 A5 A5
I/O D24 CLK/CLKEN 190 C7 A8
I/O D20 CLK/CLKEN 186 C8 A9
I/O D16 CLK/CLKEN 174 D10 A13
I/O D13 OE 171 A12 A14
I/O D8 CLK/CLKEN 164 B13 A16
I/O D5 OE 161 B14 A17
I/O D4 CLK/CLKEN 160 C14 A18
I/O D39 MUXsel2 208 A2 B3
I/O D33 OE 201 A4 B5
I/O D29 OE 197 B6 B6
I/O D27 MUXsel2 194 A6 B7
I/O D25 OE 191 B7 B8
I/O D21 OE 187 B8 B9
I/O D19 MUXsel2 177 C10 B12
I/O D15 MUXsel2 173 B11 B13
I/O D11 MUXsel2 167 B12 B15
I/O D7 MUXsel2 163 C13 B16
I/O D2 MUXsel1 157 B15 B17
I/O A1 OE 3 B1 C1
I/O D38 MUXsel1 207 B3 C4
I/O D35 MUXsel2 203 C4 C5
I/O D32 CLK/CLKEN 200 B5 C6
I/O D28 CLK/CLKEN 196 C6 C7
I/O D26 MUXsel1 192 D7 C8
I/O D22 MUXsel1 188 D8 C9
I/O D18 MUXsel1 176 B10 C12
I/O D14 MUXsel1 172 C11 C13
I/O D12 CLK/CLKEN 169 D11 C14
I/O D9 OE 165 A13 C15
I/O D6 MUXsel1 162 A14 C16
I/O D3 MUXsel2 158 A15 C17
I/O D1 OE 155 A16 C19
I/O C39 MUXsel2 152 C15 C20
I/O A2 MUXsel1 4 C2 D1
I/O D37 OE 206 C3 D5
I/O D31 MUXsel2 199 C5 D7
I/O D23 MUXsel2 189 A7 D9
I/O D17 OE 175 A11 D12
I/O D10 MUXsel1 166 C12 D14
I/O D0 CLK/CLKEN 154 B16 D18
I/O C38 MUXsel1 151 D14 D19
I/O C36 CLK/CLKEN 149 C16 D20
I/O A4 CLK/CLK_EN 7 C1 E1
I/O A3 MUXsel2 5 A1 E3
I/O A0 CLK/CLKEN 2 B2 E4
I/O C37 OE 150 D15 E18
I/O C33 OE 145 E14 E20
I/O A8 CLK/CLKEN 11 E3 F1
I/O A7 MUXsel2 10 D1 F2
I/O A5 OE 8 D3 F3
I/O C35 MUXsel2 147 D16 F18
I/O Locations: ispGDX160V/VA (Ordered by 272-Ball BGA Location)
I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA I/O Control 208 208 272
Signal Signal PQFP fpBGA BGA
I/O C5 OE 112 N15 R18
I/O C7 MUXsel2 114 M14 R19
I/O C8 CLK 115 M15 R20
I/O A33 OE 41 M1 T1
I/O A37 OE 46 N2 T3
I/O C0 CLK/CLKEN 106 P14 T17
I/O C3 MUXsel2 109 N14 T18
I/O C4 CLK/CLKEN 111 P16 T20
I/O A36 CLK/CLKEN 45 N1 U1
I/O A38 MUXsel1 47 N3 U2
I/O B0 CLK/CLKEN 50 P2 U3
I/O B10 MUXsel1 61 T4 U7
I/O B17 OE 70 T6 U9
I/O B22 MUXsel1 84 T10 U12
I/O B30 MUXsel1 94 P12 U14
I/O B36 CLK/CLKEN 101 R14 U16
I/O C2 MUXsel1 108 R16 U20
I/O A39 MUXsel2 48 P1 V1
I/O B1 OE 51 R1 V2
I/O B3 MUXsel2 53 T1 V4
I/O B6 MUXsel1 57 R3 V5
I/O B9 OE 60 R4 V6
I/O B12 CLK/CLKEN 64 R5 V7
I/O B14 MUXsel1 67 T5 V8
I/O B18 MUXsel1 71 N7 V9
I/O B21 OE 83 N9 V12
I/O B25 OE 87 N10 V13
I/O B31 MUXsel2 95 R12 V15
I/O B34 MUXsel1 98 T14 V16
I/O B37 OE 102 T15 V17
I/O C1 OE 107 P15 V20
I/O B2 MUXsel1 52 R2 W4
I/O B7 MUXsel2 58 P4 W5
I/O B11 MUXsel2 62 P5 W6
I/O B15 MUXsel2 68 R6 W8
I/O B19 MUXsel2 72 R7 W9
I/O B20 CLK/CLKEN 82 R9 W12
I/O B24 CLK/CLKEN 86 R10 W13
I/O B28 CLK/CLKEN 92 R11 W15
I/O B32 CLK/CLKEN 96 T13 W16
I/O B35 MUXsel2 99 P13 W17
I/O B38 MUXsel1 103 T16 W18
I/O B4 CLK/CLKEN 55 P3 Y3
I/O B5 OE 56 T2 Y4
I/O B8 CLK/CLKEN 59 T3 Y5
I/O B13 OE 66 N6 Y7
I/O B16 CLK/CLKEN 69 P6 Y8
I/O B23 MUXsel2 85 P10 Y13
I/O B26 MUXsel1 88 T11 Y14
I/O B27 MUXsel2 90 P11 Y15
I/O B29 OE 93 T12 Y16
I/O B33 OE 97 R13 Y17
I/O B39 MUXsel2 104 R15 Y19
SELECT DEVICES
DISCONTINUED
31
Specifications ispGDX160V/VA
Signal Configuration: ispGDX160V/VA
ispGDX160V/VA 272-Ball BGA Signal Diagram
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ANC
1
NC
1
I/O
D4 I/O
D5 I/O
D8 NC
1
I/O
D13 I/O
D16 TOE
Y3/
CLKEN3
NC
1
I/O
D20 I/O
D24 NC
1
NC
1
I/O
D30 I/O
D34 I/O
D36 NC
1
GND A
BNC
1
NC
1
NC
1
I/O
D2 I/O
D7 I/O
D11 NC
1
I/O
D15 I/O
D19 EPEN
NC
1
I/O
D21 I/O
D25 I/O
D27 I/O
D29 I/O
D33 NC
1
I/O
D39 NC
1
NC
1
B
CI/O
C39 I/O
D1 VCCIO
VCC
2
I/O
D3 I/O
D6 I/O
D9 I/O
D12 I/O
D14 I/O
D18
Y2/
CLKEN2
NC
1
I/O
D22 I/O
D26 I/O
D28 I/O
D32 I/O
D35 I/O
D38 NC
1
NC
1
I/O
A1 C
DI/O
C36 I/O
C38 I/O
D0 GND NC
1
VCC I/O
D10 GND I/O
D17 VCC
RESET
I/O
D23 GND I/O
D31 VCC I/O
D37 GND NC
1
NC
1
I/O
A2 D
EI/O
C33 NC
1
I/O
C37 NC
1
I/O
A0 I/O
A3 NC
1
I/O
A4 E
FI/O
C30 I/O
C32 I/O
C35 VCC VCC I/O
A5 I/O
A7 I/O
A8 F
GI/O
C28 I/O
C29 I/O
C31 I/O
C34 I/O
A6 I/O
A9 I/O
A10 I/O
A11 G
HNC
1
I/O
C27 NC
1
GND GND NC
1
I/O
A12 NC
1
H
JI/O
C23 I/O
C24 I/O
C25 I/O
C26 GND GND GND GND I/O
A13 I/O
A14 I/O
A15 I/O
A16 J
KNC
1
I/O
C20 I/O
C21 I/O
C22 GND GND GND GND VCC I/O
A18 I/O
A17 I/O
A19 K
LI/O
C19 I/O
C17 I/O
C18 VCC GND GND GND GND I/O
A22 I/O
A21 I/O
A20 NC
1
L
MI/O
C16 I/O
C15 I/O
C14 I/O
C13 GND GND GND GND I/O
A26 I/O
A25 I/O
A24 I/O
A23 M
NNC
1
I/O
C12 NC
1
GND GND NC
1
I/O
A27 NC
1
N
PI/O
C11 I/O
C10 I/O
C9 I/O
C6 I/O
A34 I/O
A31 I/O
A29 I/O
A28 P
RI/O
C8 I/O
C7 I/O
C5 VCC VCC I/O
A35 I/O
A32 I/O
A30 R
TI/O
C4 NC
1
I/O
C3 I/O
C0 NC
1
I/O
A37 NC
1
I/O
A33 T
UI/O
C2 NC
1
NC
1
GND I/O
B36 VCC I/O
B30 GND I/O
B22 TCK VCC I/O
B17 GND I/O
B10 VCC NC
1
GND I/O
B0 I/O
A38 I/O
A36 U
VI/O
C1 NC
1
NC
1
I/O
B37 I/O
B34 I/O
B31 NC
1
I/O
B25 I/O
B21 TMS
Y0/
CLKEN0
I/O
B18 I/O
B14 I/O
B12 I/O
B9 I/O
B6 I/O
B3 NC
1
I/O
B1 I/O
A39 V
WNC
1
NC
1
I/O
B38 I/O
B35 I/O
B32 I/O
B28 NC
1
I/O
B24 I/O
B20 TDO NC
1
I/O
B19 I/O
B15 NC
1
I/O
B11 I/O
B7 I/O
B2 NC
1
NC
1
NC
1
W
YNC
1
I/O
B39 NC
1
I/O
B33 I/O
B29 I/O
B27 I/O
B26 I/O
B23 TDI NC
1
Y1/
CLKEN1
NC
1
I/O
B16 I/O
B13 NC
1
I/O
B8 I/O
B5 I/O
B4 NC
1
NC
1
Y
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1. NCs are not to be connected to any active signals, Vcc or GND.
2. VCCIO on ispGDX160VA. VCC on ispGDX160V.
ispGDX160V/VA
Bottom View
SELECT DEVICES
DISCONTINUED
32
Specifications ispGDX160V/VA
Signal Configuration: ispGDX160V/VA
ispGDX160V/VA 208-Ball fpBGA Signal Diagram
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
I/O
D1 I/O
D3 I/O
D6 I/O
D9 I/O
D13 I/O
D17 NC1EPEN RESET I/O
D23 I/O
D27 I/O
D30 I/O
D33 I/O
D36 I/O
D39 I/O
A3 A
B
A
I/O
D0 I/O
D2 I/O
D5 I/O
D8 I/O
D11 I/O
D15 I/O
D18
Y2/
CLKEN2
I/O
D21 I/O
D25 I/O
D29 I/O
D32 I/O
D34 I/O
D38 I/O
A0 I/O
A1 B
CI/O
C36 I/O
C39 I/O
D4 I/O
D7 I/O
D10 I/O
D14 I/O
D19
Y3/
CLKEN3
I/O
D20 I/O
D24 I/O
D28 I/O
D31 I/O
D35 I/O
D37 I/O
A2 I/O
A4 C
DI/O
C35 I/O
C37 I/O
C38 GND VCC I/O
D12 I/O
D16 TOE I/O
D22 I/O
D26 VCC VCC GND I/O
A5 I/O
A6 I/O
A7 D
EI/O
C32 I/O
C34 I/O
C33 VCCIO/
VCC
2
VCC I/O
A8 I/O
A9 I/O
A10 E
FI/O
C29 I/O
C31 I/O
C30 VCC VCC I/O
A11 I/O
A12 I/O
A13 F
GI/O
C25 I/O
C27 I/O
C26 I/O
C28 GND GND GND GND I/O
A14 I/O
A16 I/O
A15 I/O
A17 G
HI/O
C22 I/O
C23 I/O
C21 I/O
C24 GND GND GND GND I/O
A18 I/O
A20 I/O
A19 I/O
A21 H
JI/O
C20 I/O
C18 I/O
C19 I/O
C17 GND GND GND GND I/O
A25 I/O
A23 I/O
A24 I/O
A22 J
KI/O
C16 I/O
C14 I/O
C15 I/O
C13 GND GND GND GND I/O
A29 I/O
A27 I/O
A28 I/O
A26 K
LI/O
C12 I/O
C10 I/O
C11 VCC VCC I/O
A32 I/O
A31 I/O
A30 L
MI/O
C9 I/O
C8 I/O
C7 VCC VCC I/O
A35 I/O
A34 I/O
A33 M
NI/O
C6 I/O
C5 I/O
C3 GND VCC VCC I/O
B25 I/O
B21
Y0/
CLKEN0
I/O
B18 I/O
B13 VCC GND I/O
A38 I/O
A37 I/O
A36 N
PI/O
C4 I/O
C1 I/O
C0 I/O
B35 I/O
B30 I/O
B27 I/O
B23 TDI TDO NC
1
I/O
B16 I/O
B11 I/O
B7 I/O
B4 I/O
B0 I/O
A39 P
RI/O
C2 I/O
B39 I/O
B36 I/O
B33 I/O
B31 I/O
B28 I/O
B24 I/O
B20
Y1/
CLKEN1
I/O
B19 I/O
B15 I/O
B12 I/O
B9 I/O
B6 I/O
B2 I/O
B1 R
TI/O
B38 I/O
B37 I/O
B34 I/O
B32 I/O
B29 I/O
B26 I/O
B22 TCK TMS NC
1
I/O
B17 I/O
B14 I/O
B10 I/O
B8 I/O
B5 I/O
B3 T
16 15 14 13 12 11 10
1. NCs are not to be connected to any active signals, Vcc or GND.
2. VCCIO on ispGDX160VA. VCC on ispGDX160V.
987654321
ispGDX160V/VA
Bottom View
SELECT DEVICES
DISCONTINUED
33
Specifications ispGDX160V/VA
Pin Configuration: ispGDX160V/VA
ispGDX160V/VA 208-Pin PQFP Pinout Diagram
1. No Connect Pins (NC) are not to be connected to any active signal, Vcc or GND.
2. VCCIO on ispGDX160VA. VCC on ispGDX160V.
ispGDX160V/VA
Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
VCC
I/O A 0
I/O A 1
I/O A 2
I/O A 3
GND
I/O A 4
I/O A 5
I/O A 6
I/O A 7
I/O A 8
I/O A 9
I/O A 10
I/O A 11
GND
I/O A 12
VCC
I/O A 13
I/O A 14
I/O A 15
I/O A 16
I/O A 17
I/O A 18
I/O A 19
GND
I/O A 20
I/O A 21
I/O A 22
I/O A 23
I/O A 24
I/O A 25
I/O A 26
VCC
I/O A 27
GND
I/O A 28
I/O A 29
I/O A 30
I/O A 31
I/O A 32
I/O A 33
I/O A 34
I/O A 35
GND
I/O A 36
I/O A 37
I/O A 38
I/O A 39
VCC
I/O B 0
I/O B 1
I/O B 2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
VCCIO/VCC
2
I/O D1
I/O D 0
VCC
I/O C 39
I/O C 38
I/O C 37
I/O C 36
GND
I/O C 35
I/O C 34
I/O C 33
I/O C 32
I/O C 31
I/O C 30
I/O C 29
I/O C 28
GND
I/O C 27
VCC
I/O C 26
I/O C 25
I/O C 24
I/O C 23
I/O C 22
I/O C 21
I/O C 20
GND
I/O C 19
I/O C 18
I/O C 17
I/O C 16
I/O C 15
I/O C 14
I/O C 13
VCC
I/O C 12
GND
I/O C 11
I/O C 10
I/O C 9
I/O C 8
I/O C 7
I/O C 6
I/O C 5
I/O C 4
GND
I/O C 3
I/O C 2
I/O C 1
I/O C 0
VCC
Data
Control
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
Data
Control I/O B 3
GND
I/O B 4
I/O B 5
I/O B 6
I/O B 7
I/O B 8
I/O B 9
I/O B 10
I/O B 11
GND
I/O B 12
VCC
I/O B 13
I/O B 14
I/O B 15
I/O B 16
I/O B 17
I/O B 18
I/O B 19
1
NC
1
NC
CLK_EN0/Y0
CLK_EN1/Y1
GND
TDO
TMS
TCK
TDI
I/O B 20
I/O B 21
I/O B 22
I/O B 23
I/O B 24
I/O B 25
I/O B 26
VCC
I/O B 27
GND
I/O B 28
I/O B 29
I/O B 30
I/O B 31
I/O B 32
I/O B 33
I/O B 34
I/O B 35
GND
I/O B 36
I/O B 37
I/O B 38
I/O B 39
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
Data Control
I/O D 39
I/O D 38
I/O D 37
I/O D 36
GND
I/O D 35
I/O D 34
I/O D 33
I/O D 32
I/O D 31
I/O D 30
I/O D 29
I/O D 28
GND
I/O D 27
VCC
I/O D 26
I/O D 25
I/O D 24
I/O D 23
I/O D 22
I/O D 21
I/O D 20
RESET
VCC
EPEN
GND
Y3/CLK_EN3
Y2/CLK_EN2
NC
1
TOE
I/O D 19
I/O D 18
I/O D 17
I/O D 16
I/O D 15
I/O D 14
I/O D 13
VCC
I/O D 12
GND
I/O D 11
I/O D 10
I/O D 9
I/O D 8
I/O D 7
I/O D 6
I/O D 5
I/O D 4
GND
I/O D 3
I/O D 2
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
Data Control
SELECT DEVICES
DISCONTINUED
34
Specifications ispGDX160V/VA
Part Number Description
Table 2-0041A/ispGDXV/A
208-Pin PQFP
208-Ball fpBGA
5
7
ispGDX160VA-5Q208
208-Ball fpBGA5 ispGDX160VA-5B208
ispGDXVA 272-Ball BGA5 ispGDX160VA-5B272
208-Pin PQFP3.5 ispGDX160VA-3Q208
208-Ball fpBGA3.5 ispGDX160VA-3B208 272-Ball BGA3.5 ispGDX160VA-3B272
208-Pin PQFP7 ispGDX160VA-7Q208
ispGDX160VA-7B208
272-Ball BGA7 ispGDX160VA-7B272
208-Pin PQFP
208-Ball fpBGA
5
7
ispGDX160V-5Q208
208-Ball fpBGA5 ispGDX160V-5B208
ispGDXV* 272-Ball BGA5 ispGDX160V-5B272
208-Pin PQFP7 ispGDX160V-7Q208
ispGDX160V-7B208 272-Ball BGA7 ispGDX160V-7B272
FAMILY ORDERING NUMBER PACKAGEtpd (ns)
COMMERCIAL
*Use ispGDX160VA for new designs.
Note: The ispGDX160VA devices are dual-marked with both Commercial and Industrial grades. The Industrial speed grade is slower,
e.g. ispGDX160VA-3B208-5I.
Ordering Information
Conventional Packaging
Device Number
160V
160VA
Grade
Blank = Commercial
I = Industrial
ispGDX XXXXX X XXXXX X
Speed
3 = 3.5ns Tpd
5 = 5ns Tpd
7 = 7ns Tpd
9 = 9ns Tpd
Package
Q208 = 208-Pin PQFP
B208 = 208-Ball fpBGA
BN208 = Lead-Free 208-Ball fpBGA
B272 = 272-Ball BGA
-
Device Family
0212/ispGDXVA
SELECT DEVICES
DISCONTINUED
35
Specifications ispGDX160V/VA
Ordering Information (Cont.)
Table 2-0041C/ispGDXV
208-Pin PQFP
208-Ball fpBGA
5
7
ispGDX160VA-5Q208I
208-Ball fpBGA5 ispGDX160VA-5B208I
ispGDXVA
ispGDXV*
272-Ball BGA5 ispGDX160VA-5B272I
208-Pin PQFP7 ispGDX160VA-7Q208I
208-Pin PQFP7 ispGDX160V-7Q208I
ispGDX160VA-7B208I
272-Ball BGA7 ispGDX160VA-7B272I
208-Ball fpBGA9
208-Pin PQFP9 ispGDX160VA-9Q208I
ispGDX160VA-9B208I
272-Ball BGA9 ispGDX160VA-9B272I
FAMILY ORDERING NUMBER PACKAGEtpd (ns) INDUSTRIAL
*Use ispGDX160VA for new designs.
Note: The ispGDX160VA devices are dual-marked with both Commercial and Industrial grades. The Industrial speed grade is slower,
e.g. ispGDX160VA-3B208-5I.
Conventional Packaging (Cont.)
Lead-Free Packaging
ispGDXVA Lead-Free 208-Ball fpBGA3.5 ispGDX160VA-3BN208
Lead-Free 208-Ball fpBGA5 ispGDX160VA-5BN208 Lead-Free 208-Ball fpBGA7 ispGDX160VA-7BN208
FAMILY ORDERING NUMBER PACKAGEtpd (ns)
COMMERCIAL
Lead-Free 208-Ball fpBGA5 ispGDX160VA-5BN208I
Lead-Free 208-Ball fpBGA7 ispGDX160VA-7BN208I
ispGDXVA
Lead-Free 208-Ball fpBGA9 ispGDX160VA-9BN208I
FAMILY ORDERING NUMBER PACKAGEtpd (ns)
INDUSTRIAL
Note: The ispGDX160VA devices are dual-marked with both Commercial and Industrial grades. The Industrial speed grade is slower,
e.g. ispGDX160VA-3B208-5I.
SELECT DEVICES
DISCONTINUED