  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DSingle-Supply Operation
− Input Voltage Range Extends to Ground
− Output Swings to Ground While Sinking
Current
DInput Offset Voltage
− 150 µV Max at 25°C for LT1013A
DOffset-Voltage Temperature Coefficient
− 2.5 µV/°C Max for LT1013A
DInput Offset Current
− 0.8 nA Max at 25°C for LT1013A
DHigh Gain . . . 1.5 V/µV Min (RL = 2 k),
0.8 V/µV Min (RL = 600 k) for LT1013A
DLow Supply Current . . . 0.5 mA Max at
TA = 25°C for LT1013A
DLow Peak-to-Peak Noise Voltage . . . 0.55 µV
Typ
DLow Current Noise . . . 0.07 pA/Hz Typ
description/ordering information
The LT1013 devices are dual precision
operational amplifiers, featuring high gain, low
supply current, low noise, and low-offset-voltage
temperature coefficient.
The LT1013 devices can be operated from a
single 5-V power supply; the common-mode input
voltage range includes ground, and the output can
also swing to within a few millivolts of ground.
Crossover distortion is eliminated. The LT1013
can be operated with both dual ±15-V and single
5-V supplies.
The LT1013C, LT1013AC, and LT1013D are characterized for operation from 0°C to 70°C. The LT1013I,
LT1013AI, and LT1013DI are characterized for operation from −40°C to 105°C. The LT1013M, LT1013AM, and
LT1013DM are characterized for operation over the full military temperature range of −55°C to 125°C.
Copyright 2004, Texas Instruments Incorporated
       !"# $%
$   ! ! &   ' 
$$ ()% $ !* $  #) #$
*  ## !%
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1
2
3
4
8
7
6
5
1IN+
VCC−
2IN+
2IN−
1IN−
1OUT
VCC+
2OUT
LT1013, LT1013D ...D PACKAGE
(TOP VIEW)
3212019
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN−
NC
NC
1IN−
NC
1IN+
NC
LT1013, LT1013A . . . FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
NC NC
NC
NC
2IN+ CC+
V
CC−
V
1
2
3
4
8
7
6
5
1OUT
1IN−
1IN+
VCC−
VCC+
2OUT
2IN−
2IN+
LT1013, LT1013D . . . JG OR P PACKAGE
(TOP VIEW)
NC − No internal connection
 !$ !#  ++,-- ## !  $
# &( $%  ## & !$ !$
!* $  #) #$ *  ## !%
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ORDERING INFORMATION
TAVIOmax
AT 25°C
(µV) PACKAGEORDERABLE
PART NUMBER TOP-SIDE
MARKING
P−DIP (P) Tube of 50 LT1013CP LT1013P
300
SOIC (D)
Tube of 75 LT1013CD
1013C
0°C to 70°C
300
SOIC (D) Reel of 2500 LT1013CDR 1013C
0°C to 70°CP−DIP (P) Tube of 50 LT1013DP LT1013DP
800
SOIC (D)
Tube of 75 LT1013DD
1013D
800
SOIC (D) Reel of 2500 LT1013DDR 1013D
P−DIP (P) Tube of 50 LT1013DIP LT1013DIP
−40°C to 105°C 800
SOIC (D)
Tube of 75 LT1013DID
1013DI
−40 C to 105 C
800
SOIC (D) Reel of 2500 LT1013DIDR 1013DI
C−DIP (JG) Tube of 50 LT1013AMJG LT1013AMJG
150
C−DIP (JGB) Tube of 50 LT1013AMJGB LT1013AMJGB
150 LCCC (FK) Tube of 55 LT1013AMFK LT1013AMFK
−55°C to 125°C
LCCC (FKB) Tube of 55 LT1013AMFKB LT1013AMFKB
−55
°
C to 125
°
C
C−DIP (JG) Tube of 50 LT1013MJG LT1013MJG
300 C−DIP (JGB) Tube of 50 LT1013MJGB LT1013MJGB
300
LCCC (FKB) Tube of 55 LT1013MFKB LT1013MFKB
800 SOIC (D) Tube of 75 LT1013DMD 1013DM
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
..
...
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
schematic (each amplifier)
OUT
600
J1
800
VCC−
VCC+
IN−
IN+
30
42 k
Q40
Q39
Q41
Q38
14 k
Q37
Q35
3.9 k
75 pF 5 k5 k2 k
1.3 k
2 kQ24
Q23
Q34
21 pF 2.5 pF 2.4 k
18
Q26
Q33
Q25
Q30
Q32Q15Q14Q16Q13Q6
Q5
9 k9 k1.6 k1.6 k1.6 k100 1 k
Q3
Q4
400
400
Q1
Q21
Q22
Q2
Q12
Q29
Q11
Q9 Q7
Q8
10 pF
Q10
Q18
Q19 2 k
10 pF
Q27
Q28
4 pF Q31
Q17
Q36
Q20
Component values are nominal.
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage (see Note 1): VCC+ 22 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VCC− −22 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input, see Note 1) VCC− − 5 V to VCC+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage (see Note 2) ±30 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Notes 4 and 5): D package 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . .
P package 85°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating virtual junction temperature, TJ 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 60 seconds: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC−.
2. Differential voltages are at IN+ with respect to IN−.
3. The output may be shorted to either supply.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. Due to
variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be
activated at power levels slightly above or below the rated dissipation.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
..
...
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
LT1013C LT1013AC LT1013DC
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYPMAX MIN TYPMAX MIN TYPMAX
UNIT
25°C60 300 40 150 200 800
VIO Input offset voltage RS = 50 Full range 400 240 1000 µV
aV
Temperature coefficient of input
Full range
0.4
2.5
0.3
2
0.7
5
V/°C
aVIO
Temperature coefficient of input
offset voltage Full range 0.4 2.5 0.3 2 0.7 5 µV/°C
Long-term drift of input offset voltage 25°C 0.5 0.4 0.5 µV/mo
25°C0.2 1.5 0.15 0.8 0.2 1.5
IIO Input offset current Full range 2.8 1.5 2.8 nA
IIB
Input bias current
25°C−15 −30 −12 −20 −15 −30
nA
IIB Input bias current Full range −38 −25 −38 nA
−15
−15.3
−15
−15.3
−15
−15.3
25
°
C
−15
to
13.5
−15.3
to
13.8
−15
to
13.5
−15.3
to
13.8
−15
to
13.5
−15.3
to
13.8
VICR
Common-mode input voltage range
25 C
to
13.5
to
13.8
to
13.5
to
13.8
to
13.5
to
13.8
V
VICR Common-mode input voltage range
−15
−15
−15
V
Full range
−15
to
13
−15
to
13
−15
to
13
Full range
to
13
to
13
to
13
VOM
Maximum peak output voltage swing
RL = 2 k
25°C±12.5 ±14 ±13 ±14 ±12.5 ±14
V
VOM Maximum peak output voltage swing RL = 2 kFull range ±12 ±12.5 ±12 V
Large-signal differential voltage
VO = ±10 V, RL = 600 25°C0.5 0.2 0.8 2.5 0.5 2
A
VD
Large-signal differential voltage
amplification
VO = ±10 V,
RL = 2 k
25°C1.2 7 1.5 8 1.2 7 V/µV
AVD
amplification
VO = ±10 V, RL = 2 kFull range 0.7 1 0.7
V/µV
CMRR
Common-mode rejection ratio
VIC = −15 V to 13.5 V 25°C97 114 100 117 97 114
dB
CMRR Common-mode rejection ratio VIC = −14.9 V to 13 V Full range 94 98 94 dB
kSVR
Supply-voltage rejection ratio
VCC+ = ±2 V to ±18 V
25°C100 117 103 120 100 117
dB
kSVR
Supply-voltage rejection ratio
(VCC/VIO)VCC+ = ±2 V to ±18 V Full range 97 101 97 dB
Channel separation VO = ±10 V, RL = 2 k25°C 120 137 123 140 120 137 dB
rid Differential input resistance 25°C 70 300 100 400 70 300 M
ric Common-mode input resistance 25°C 4 5 4 G
ICC
Supply current per amplifier
25°C0.35 0.55 0.35 0.5 0.35 0.55
mA
I
CC
Supply current per amplifier
Full range 0.7 0.55 0.6
mA
Full range is 0°C to 70°C.
All typical values are at TA = 25°C.
Template Release Date: 7−11−94
..
...
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC− = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
TA
LT1013C LT1013AC LT1013DC
PARAMETER
TEST CONDITIONS
TA
MIN TYPMAX MIN TYPMAX MIN TYPMAX
UNIT
VIO
Input offset voltage
RS = 50
25°C 90 450 60 250 250 950
V
VIO Input offset voltage RS = 50 Full range 570 350 1200 µV
25°C 0.3 2 0.2 1.3 0.3 2
IIO Input offset current Full range 6 3.5 6 nA
25°C −18 −50 −15 −35 −18 −50
IIB Input bias current Full range −90 −55 −90 nA
0
−0.3
0
−0.3
0
−0.3
25
°
C
0
to
−0.3
to
0
to
−0.3
to
0
to
−0.3
to
VICR
Common-mode input voltage
25 C
to
3.5
to
3.8
to
3.5
to
3.8
to
3.5
to
3.8
V
VICR
Common-mode input voltage
range
0
0
0
V
range
Full range
0
to
0
to
0
to
Full range
to
3
to
3
to
3
Output low, No load 25°C 15 25 15 25 15 25
Output low,
25°C 5 10 5 10 5 10
Maximum peak output voltage
Output low,
RL = 600 to GND Full range 13 13 13 mV
V
OM
Maximum peak output voltage
swing
Output low, Isink = 1 mA 25°C 220 350 220 350 220 350
VOM
swing
Output high, No load 25°C 4 4.4 4 4.4 4 4.4
Output high,
25°C 3.4 4 3.4 4 3.4 4 V
Output high,
RL = 600 to GND Full range 3.2 3.3 3.2
V
Large-signal differential
AVD
Large-signal differential
voltage amplification VO = 5 mV to 4 V
,
RL = 500 25°C 1 1 1V/µV
ICC
Supply current per amplifier
25°C 0.32 0.5 0.31 0.45 0.32 0.5
mA
I
CC
Supply current per amplifier
Full range 0.55 0.5 0.55
mA
Full range is 0°C to 70°C.
All typical values are at TA = 25°C.
operating characteristics, VCC±= ±15 V, VIC = 0, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate 0.2 0.4 V/µs
f = 10 Hz 24
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 22
nV/Hz
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 0.55 µV
InEquivalent input noise current f = 10 Hz 0.07 pA/Hz
..
...
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
LT1013I LT1013AI LT1013DI
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYPMAX MIN TYPMAX MIN TYPMAX
UNIT
25°C60 300 40 150 200 800
VIO Input offset voltage RS = 50 Full range 550 300 1000 µV
aV
Temperature coefficient of input
Full range
0.4
2.5
0.3
2
0.7
5
V/°C
aVIO
Temperature coefficient of input
offset voltage Full range 0.4 2.5 0.3 2 0.7 5 µV/°C
Long-term drift of input offset
Long-term drift of input offset
voltage 25°C 0.5 0.4 0.5 µV/mo
IIO
Input offset current
25°C0.2 1.5 0.15 0.8 0.2 1.5
nA
IIO Input offset current Full range 2.8 1.5 2.8 nA
25°C−15 −30 −12 −20 −15 −30
IIB Input bias current Full range −38 −25 −38 nA
−15
−15.3
−15
−15.3
−15
−15.3
25
°
C
−15
to
13.5
−15.3
to
13.8
−15
to
13.5
−15.3
to
13.8
−15
to
13.5
−15.3
to
13.8
25 C
to
13.5
to
13.8
to
13.5
to
13.8
to
13.5
to
13.8
VICR Common-mode input voltage range
−15
−15
−15
V
Full range
−15
to
13
−15
to
13
−15
to
13
Full range
to
13
to
13
to
13
VOM
Maximum peak output voltage
RL = 2 k
25°C±12.5 ±14 ±13 ±14 ±12.5 ±14
V
VOM
Maximum peak output voltage
swing RL = 2 kFull range ±12 ±12.5 ±12 V
Large-signal differential voltage
VO = ±10 V, RL = 600 25°C0.5 0.2 0.8 2.5 0.5 2
A
VD
Large-signal differential voltage
amplification
VO = ±10 V,
RL = 2 k
25°C1.2 7 1.5 8 1.2 7 V/µV
AVD
amplification
VO = ±10 V, RL = 2 kFull range 0.7 1 0.7
V/µV
CMRR
Common-mode
VIC = −15 V to 13.5 V 25°C97 114 100 117 97 114
dB
CMRR
Common-mode
rejection ratio VIC = −14.9 V to 13 V Full range 94 97 94 dB
kSVR
Supply-voltage rejection ratio
VCC = ±2 V to ±18 V
25°C100 117 103 120 100 117
dB
k
SVR
Supply-voltage rejection ratio
(VCC/VIO)VCC± = ±2 V to ±18 V Full range 97 101 97 dB
Channel separation VO = ±10 V, RL = 2 k25°C 120 137 123 140 120 137 dB
rid Differential input resistance 25°C 70 300 100 400 70 300 M
ric Common-mode input resistance 25°C 4 5 4 G
ICC
Supply current per amplifier
25°C0.35 0.55 0.35 0.5 0.35 0.55
mA
I
CC
Supply current per amplifier
Full range 0.7 0.55 0.6
mA
Full range is −40°C to 105°C.
All typical values are at TA = 25°C.
Template Release Date: 7−11−94
..
...
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC− = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
TA
LT1013I LT1013AI LT1013DI
PARAMETER
TEST CONDITIONS
TA
MIN TYPMAX MIN TYPMAX MIN TYPMAX
UNIT
VIO
Input offset voltage
RS = 50
25°C 90 450 60 250 250 950
V
VIO Input offset voltage RS = 50 Full range 570 350 1200 µV
25°C 0.3 2 0.2 1.3 0.3 2
IIO Input offset current Full range 6 3.5 6 nA
25°C −18 −50 −15 −35 −18 −50
IIB Input bias current Full range −90 −55 −90 nA
0
−0.3
0
−0.3
0
−0.3
25
°
C
0
to
−0.3
to
0
to
−0.3
to
0
to
−0.3
to
VICR
Common-mode input voltage
25 C
to
3.5
to
3.8
to
3.5
to
3.8
to
3.5
to
3.8
V
VICR
Common-mode input voltage
range
0
0
0
V
range
Full range
0
to
0
to
0
to
Full range
to
3
to
3
to
3
Output low, No load 25°C 15 25 15 25 15 25
Output low,
25°C 5 10 5 10 5 10
Maximum peak output voltage
Output low,
RL = 600 to GND Full range 13 13 13 mV
V
OM
Maximum peak output voltage
swing
Output low, Isink = 1 mA 25°C 220 350 220 350 220 350
VOM
swing
Output high, No load 25°C 4 4.4 4 4.4 4 4.4
Output high,
25°C 3.4 4 3.4 4 3.4 4 V
Output high,
RL = 600 to GND Full range 3.2 3.3 3.2
Large-signal differential
AVD
Large-signal differential
voltage amplification VO = 5 mV to 4 V
,
RL = 500 25°C 1 1 1V/µV
ICC
Supply current per amplifier
25°C 0.32 0.5 0.31 0.45 0.32 0.5
mA
I
CC
Supply current per amplifier
Full range 0.55 0.5 0.55
mA
Full range is −40°C to 105°C.
All typical values are at TA = 25°C.
operating characteristics, VCC±= ±15 V, VIC = 0, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate 0.2 0.4 V/µs
f = 10 Hz 24
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 22
nV/Hz
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 0.55 µV
InEquivalent input noise current f = 10 Hz 0.07 pA/Hz
..
...
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
LT1013M LT1013AM LT1013DM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYPMAX MIN TYPMAX MIN TYPMAX
UNIT
25°C 60 300 40 150 200 800
VIO Input offset voltage RS = 50 Full range 550 300 1000 µV
aV
Temperature coefficient of
Full range
0.5
2.5
0.4
2
0.5
2.5
V/°C
aVIO
Temperature coefficient of
input offset voltage Full range 0.5 2.50.4 20.5 2.5µV/°C
Long-term drift of input offset voltage 25°C 0.5 0.4 0.5 µV/mo
25°C 0.2 1.5 0.15 0.8 0.2 1.5
IIO Input offset current Full range 5 2.5 5 nA
IIB
Input bias current
25°C −15 −30 −12 −20 −15 −30
nA
IIB Input bias current Full range −45 −30 −45 nA
−15
−15.3
−15
−15.3
−15
−15.3
25
°
C
−15
to
−15.3
to
−15
to
−15.3
to
−15
to
−15.3
to
VICR
Common-mode input voltage range
25 C
to
13.5
to
13.8
to
13.5
to
13.8
to
13.5
to
13.8
V
VICR Common-mode input voltage range
−14.9
−14.9
−14.9
V
Full range
−14.9
to
−14.9
to
−14.9
to
Full range
to
13
to
13
to
13
VOM
Maximum peak output voltage swing
RL = 2 k
25°C±12.5 ±14 ±13 ±14 ±12.5 ±14
V
VOM Maximum peak output voltage swing RL = 2 kFull range ±11.5 ±12 ±11.5 V
Large-signal differential voltage
VO = ±10 V, RL = 600 25°C 0.5 2 0.8 2.5 0.5 2
A
VD
Large-signal differential voltage
amplification
VO = +10 V,
RL = 2 k
25°C 1.2 7 1.5 8 1.2 7 V/µV
AVD
amplification
VO = +10 V, RL = 2 kFull range 0.25 0.5 0.25
V/µV
CMRR
Common-mode rejection ratio
VIC = −15 V to 13.5 V 25°C 97 117 100 117 97 114
dB
CMRR Common-mode rejection ratio VIC = −14.9 V to 13 V Full range 94 97 94 dB
kSVR
Supply-voltage rejection ratio
VCC = ±2 V to ±18 V
25°C 100 117 103 120 100 117
dB
kSVR
Supply-voltage rejection ratio
(VCC/VIO)VCC± = ±2 V to ±18 V Full range 97 100 97 dB
Channel separation VO = ±10 V, RL = 2 k25°C 120 137 123 140 120 137 dB
rid Differential input resistance 25°C 70 300 100 400 70 300 M
ric Common-mode input resistance 25°C 4 5 4 G
ICC
Supply current per amplifier
25°C 0.35 0.55 0.35 0.5 0.35 0.55
mA
I
CC
Supply current per amplifier
Full range 0.7 0.6 0.7
mA
On products compliant to MIL-PRF-38535, Class B, this parameter is not production tested.
Full range is −55°C to 125°C.
All typical values are at TA = 25°C.
Template Release Date: 7−11−94
..
...
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC− = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
TA
LT1013M LT1013AM LT1013DM
PARAMETER
TEST CONDITIONS
TA
MIN TYPMAX MIN TYPMAX MIN TYPMAX
UNIT
RS = 50
25°C 90 450 60 250 250 950
V
IO
Input offset voltage RS = 50 Full range 400 1500 250 900 800 2000 µV
VIO
Input offset voltage
RS = 50 , VIC = 0.1 V 125°C 200 750 120 450 560 1200
25°C 0.3 2 0.2 1.3 0.3 2
IIO Input offset current Full range 10 6 10 nA
IIB
Input bias current
25°C −18 −50 −15 −35 −18 −50
nA
IIB Input bias current Full range −120 −80 −120 nA
0
−0.3
0
−0.3
0
−0.3
25
°
C
0
to
−0.3
to
0
to
−0.3
to
0
to
−0.3
to
Common-mode input voltage
25 C
to
3.5
to
3.8
to
3.5
to
3.8
to
3.5
to
3.8
VICR
Common-mode input voltage
range
0
0
0
V
range
Full range
0
to
0
to
0
to
Full range
to
3
to
3
to
3
Output low, No load 25°C 15 25 15 25 15 25
Output low,
25°C 5 10 5 10 5 10
Maximum peak output voltage
Output low,
RL = 600 to GND Full range 18 15 18 mV
V
OM
Maximum peak output voltage
swing
Output low, Isink = 1 mA 25°C 220 350 220 350 220 350
VOM
swing
Output high, No load 25°C 4 4.4 4 4.4 4 4.4
Output high,
25°C 3.4 4 3.4 4 3.4 4 V
Output high,
RL = 600 to GND Full range 3.1 3.2 3.1
V
Large-signal differential
AVD
Large-signal differential
voltage amplification VO = 5 mV to 4 V
,
RL = 500 25°C 1 1 1V/µV
ICC
Supply current per amplifier
25°C 0.32 0.5 0.31 0.45 0.32 0.5
mA
I
CC
Supply current per amplifier
Full range 0.65 0.55 0.65
mA
Full range is −55°C to 125°C.
All typical values are at TA = 25°C.
operating characteristics, VCC±= ±15 V, VIC = 0, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate 0.2 0.4 V/µs
f = 10 Hz 24
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 22
nV/Hz
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 0.55 µV
InEquivalent input noise current f = 10 Hz 0.07 pA/Hz
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
vs Supply voltage 1
VIO Input offset voltage vs Temperature 2
VIO Change in input offset voltage vs Time 3
IIO Input offset current vs Temperature 4
IIB Input bias current vs Temperature 5
VIC Common-mode input voltage vs Input bias current 6
AVD
Differential voltage amplification
vs Load resistance 7, 8
AVD Differential voltage amplification vs Frequency 9, 10
Channel separation vs Frequency 11
Output saturation voltage vs Temperature 12
CMRR Common-mode rejection ratio vs Frequency 13
kSVR Supply-voltage rejection ratio vs Frequency 14
ICC Supply current vs Temperature 15
IOS Short-circuit output current vs Time 16
VnEquivalent input noise voltage vs Frequency 17
InEquivalent input noise current vs Frequency 17
VN(PP) Peak-to-peak input noise voltage vs Time 18
Pulse response
Small signal 19, 21
Pulse response Large signal 20, 22, 23
Phase shift vs Frequency 9
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
|VCC±| − Supply Voltage − V
10 k
INPUT OFFSET VOLTAGE
vs
SUPPLY VOLTAGE
VIO − Input Offset Voltage − mV
1 k 3 k 30 k 100 k 300 k 1 M 3 M 10 M
0.01
0.1
1
10
RS
RS
+
VCC+ = 5 V, VCC− = 0
TA = −55°C to 125°C
VCC+ = 5 V
VCC− = 0
TA = 25°C
VCC± = ± 15V
TA = 25°C
VIO
VCC± = ±15 V
TA = −55°C to 125°C
Figure 1 Figure 2
TA − Free-Air Temperature − °C
200
1251007550250
150
100
50
0
−50
−100
−150
−200
−250
−50 −25
INPUT OFFSET VOLTAGE
OF REPRESENTATIVE UNITS
vs
FREE-AIR TEMPERATURE
VIO − Input Offset Voltage − uV
VCC± = ±15 V
250
VIO Vµ
Figure 3
3
2
1
00123
4
t − Time After Power-On − min
WARM-UP CHANGE
IN INPUT OFFSET VOLTAGE
vs
TIME AFTER POWER-ON
5
45
JG Package
VCC± = ±15 V
TA = 25°C
XVIO − Change in Input Offset Voltage − uV
VIO Vµ
Figure 4
0.2
00 25 50 75 100
IIO − Input Offset Current − nA
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
1
0.4
125
0.6
0.8
IIO
VIC = 0
VCC± = ±2.5 V
VCC+ = 5 V, VCC− = 0
VCC± = ±15 V
TA − Free-Air Temperature − °C
−50 −25
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 5
TA − Free-Air Temperature − °C
IIB − Input Bias Current − nA
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
IIB
−50 −25 0 25 50 75 100 125
0
−5
−10
−15
−20
−25
−30
VCC±= 5 V, VCC− = 0
VCC± = ±2.5 V
VCC± = ±15 V
VIC = 0
Figure 6
IIB − Input Bias Current − nA
0
VIC − Common-Mode Input Voltage − V
COMMON-MODE INPUT VOLTAGE
vs
INPUT BIAS CURRENT
−15
−10
−5
5
10
15
0 −5 −10 −15 −20 −25 −30
−1
0
1
2
3
4
5
VIC
TA = 25°C
VCC± = ±15 V
(left scale) VCC± = 5 V
VCC− = 0
(right scale)
VIC − Common-Mode Input Voltage − V
V
IC
RL − Load Resistance −
AVD − Differential Voltage Amplification − V/
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
100 400 1 k 4 k 10 k
AVD µV
10
4
1
0.4
0.1
VCC± = ±15 V
VO = ±10 V
TA = −55°C
TA = 25°C
TA = 125°C
Figure 7
RL − Load Resistance −
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
100 400 1 k 4 k 10 k
VCC±= 5 V, VCC− = 0
VO = 20 mV to 3.5 V
TA = −55°C
TA = 25°C
TA = 125°C
AVD − Differential Voltage Amplification − V/AVD µV
10
4
1
0.4
0.1
Figure 8
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
AVD − Differential Voltage Amplification − dB
f − Frequency − MHz
0.01 0.3 1 3 10240°
220°
200°
180°
160°
140°
120°
100°
80°
0
10
25
DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE SHIFT
vs
FREQUENCY
AVD
VCC+ = 5 V
VCC− = 0
VIC = 0
CL = 100 pF
TA = 25°C
AVD
20
15
5
VCC± = ±15 V
VCC+ = 5 V
VCC− = 0
VCC± = ±15 V
Phase Shift
−10
−5
−15
Figure 9
60
20
0
−20
100
120
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
140
80
40
f − Frequency − Hz
0.01 0.1 1 10 100 1 k 10 k 100 k 1 M 10 M
CL = 100 pF
TA = 25°C
VCC+ = 5 V
VCC− = 0 VCC± = ±15 V
Figure 10
AVD − Differential Voltage Amplification − dB
AVD
Figure 11
120
100
80
6010 100 1 k 10 k
Channel Separation − dB
140
f − Frequency − Hz
CHANNEL SEPARATION
vs
FREQUENCY
160
100 k 1 M
Limited by
Thermal
Interaction
VCC± = ±15 V
VI(PP) = 20 V to 5 kHz
RL = 2 k
TA = 25°C
RL = 1 k
Limited by
Pin-to-Pin
Capacitance
RL = 100
1
0.1
0.01
Output Saturation Voltage − V
OUTPUT SATURATION VOLTAGE
vs
FREE-AIR TEMPERATURE
10
TA − Free-Air Temperature − °C
−50 −25 0 25 50 75 100 125
Isink = 10 mA
Isink = 5 mA
Isink = 1 mA
Isink = 100 µA
Isink = 10 µA
Isink = 0
VCC+ = 5 V to 30 V
VCC− = 0
Figure 12
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 13
60
40
20
010 100 1 k 10 k
CMRR − Common-Mode Rejection Ratio − dB
80
100
f − Frequency − Hz
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
100 k 1 M
VCC+ = 5 V
VCC− = 0
TA = 25°C
VCC± = ±15 V
Figure 14
0.1 1 10 100 1 k
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
10 k 100 k 1 M
0
20
40
60
80
100
120
140
f − Frequency − Hz
Negative
Supply
Positive
Supply
VCC± = ±15 V
TA = 25°C
kSVR − Supply-Voltage Rejection Ratio − dB
Figure 15
TA − Free-Air Temperature − °C
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
025 50 75 100 125
260
300
340
380
420
460
ICC Aµ
−50
VCC+ = +15 V
VCC+ = 5 V, VCC− = 0
−25
− Supply Current Per Amplifier −
Figure 16
01
− Short-Circuit Output Current − mA
t − Elapsed Time − min
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
23
TA = −55°CVCC+ = +15 V
TA = 25°C
TA = 125°C
TA = 125°C
TA = 25°C
TA = −55°C
IOS
−10
−20
−30
−40
30
20
10
0
40
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 17
100
1000
300
110
Vn − Equivalent Input Noise Voltage − nV/Hz
f − Frequency − Hz
EQUIVALENT INPUT NOISE VOLTAGE
AND EQUIVALENT INPUT NOISE CURRENT
vs
FREQUENCY
30
10 100
VCC± = ±2 V to ±18 V
TA = 25°C
1/f Corner = 2 Hz
In
Vn
Vn
1k
nV/ Hz
1200
800
400
00246
VN(PP) − Noise Voltage − nV
1600
t − Time − s
PEAK-TO-PEAK INPUT NOISE VOLTAGE
OVER A
10-SECOND PERIOD
2000
810
N(PP)
V
VCC± = ±2 V to ±18 V
f = 0.1 Hz to 10 Hz
TA = 25°C
Figure 18
Vn − Equivalent Input Noise Voltage − nV/Hz
fA/ Hz
Vn
Figure 19
t − Time − µs
0
46810
VO − Output Voltage − mV
60
80
12 14
40
20
20
VCC± = ±15 V
AV = 1
TA = 25°C
V
O
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
−40
−60
−80
−20
Figure 20
0
−5
−15
0 50 100 150
V) − Output Voltage − V
5
15
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
20
200 250 300 35
0
−10
10
VCC± = ±15 V
AV = 1
TA = 25°C
VO
t − Time − µs
−20
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
VO − Output Voltage − mV
VO
t − Time − µs
60
40
0
0204060
80
120
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
140
80 100 120 140
20
100
160 VCC+ = 5 V, VCC− = 0
VI = 0 to 100 mV
RL = 600 to GND
AV = 1
TA = 25°C
−20
Figure 21
VO − Output Voltage − mV
VO
t − Time − µs
2
1
−1
0102030
3
5
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
6
40 50 60 70
0
4
VCC+ = 5 V, VCC− = 0
VI = 0 to 4 V
RL = 4.7 k to 5 V
AV = 1
TA = 25°C
−2
Figure 22
−2
VO − Output Voltage − V
VO
t − Time − µs
2
1
−1
0102030
3
5
6
40 50 60 70
0
4
VCC+ = 5 V, VCC− = 0
VI = 0 to 4 V
RL = 0
AV = 1
TA = 25°C
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
Figure 23
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
single-supply operation
The LT1013 is fully specified for single-supply operation (VCC− = 0). The common-mode input voltage range
includes ground, and the output swings to within a few millivolts of ground.
Furthermore, the LT1013 has specific circuitry that addresses the difficulties of single-supply operation, both
at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a
transient basis. If the input is more than a few hundred millivolts below ground, the LT1013 is designed to deal
with the following two problems that can occur:
1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited
current flows from the substrate (VCC− terminal) to the input, which can destroy the unit. On the LT1013,
the 400- resistors in series with the input [see schematic (each amplifier)] protect the device, even
when the input is 5 V below ground.
2. When the input is more than 400 mV below ground (at TA = 25°C), the input stage of similar operational
amplifiers saturates, and phase reversal occurs at the output. This can cause lockup in servo systems.
Because of unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the LT1013 outputs
do not reverse, even when the inputs are at −1.5 V (see Figure 24).
This phase-reversal protection circuitry does not function when the other operational amplifier on the LT1013
is driven hard into negative saturation at the output. Phase-reversal protection does not work on amplifier 1
when amplifier 2 output is in negative saturation nor on amplifier 2 when amplifier 1 output is in negative
saturation.
At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more
than a few microamperes while swinging to ground. The all-npn output stage of the LT1013 maintains its low
output resistance and high-gain characteristics until the output is saturated. In dual-supply operations, the
output stage is free of crossover distortion.
(a) VI(PP) = −1.5 V T O 4.5 V (b) OUTPUT PHASE REVERSAL
EXHIBITED BY LM358 (c) NO PHASE REVERSAL
EXHIBITED BY LT1013
−1
0
1
2
3
4
5
−1
0
1
2
3
4
5
−1
0
1
2
3
4
5
−2
VI(PP) − Input Voltage − V
I(PP)
V
VO − Output Voltage − V
VO
VO − Output Voltage − V
VO
Figure 24. Voltage-Follower Response With Input Exceeding
the Negative Common-Mode Input Voltage Range
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
comparator applications
The single-supply operation of the LT1013 is well suited for use as a precision comparator with TTL-compatible
output. In systems using both operational amplifiers and comparators, the LT1013 can perform multiple duties
(see Figures 25 and 26).
VO − Output Voltage − V
VO
100 mV VCC+ = 5 V
VCC− = 0
TA = 25°C
Overdrive
10 mV 5 mV 2 mV
0 50 100 150 200 250 300 350 400 450
5
4
3
2
1
0
Differential
Input Voltage
t − Time − µs
Figure 25. Low-to-High-Level Output
Response for Various Input Overdrives
VO − Output Voltage − V
VO
2 mV
5 mV
Overdrive
10 mV
0 50 100 150 200 250 300 350 400 450
5
4
3
2
1
0
Differential
Input Voltage
t − Time − µs
VCC+ = 5 V
VCC− = 0
TA = 25°C
100 mV
Figure 26. High-to-Low-Level Output
Response for Various Input Overdrives
low-supply operation
The minimum supply voltage for proper operation of the LT1013 is 3.4 V (three NiCad batteries). Typical supply
current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier.
offset voltage and noise testing
The test circuit for measuring input offset voltage and its temperature coefficient is shown in Figure 30. This
circuit, with supply voltages increased to ±20 V, also is used as the burn-in configuration.
The peak-to-peak equivalent input noise voltage of the LT1013 is measured using the test circuit shown in
Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one
zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as
an additional zero to eliminate noise contribution from the frequency band below 0.1 Hz.
An input noise voltage test is recommended when measuring the noise of a large number of units. A 10-Hz input
noise voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are
determined by the white noise and the location of the 1/f corner frequency.
Current noise is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is
subtracted.
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
10
100 k
0.1 µF
2 k
4.7 µF
AVD = 50,000
+
LT1013 +
LT1001
24.3 k
100 k
0.1 µF
4.3 k
2.2 µF
110 k
22 µFOscilloscope
Rin = 1 M
NOTE A: All capacitor values are for nonpolarized capacitors only.
Figure 27. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit
10 k
100 Vn
LT1013
+
In+[Vno2–(820 nV)2]1ń2
40 MW 100
10 M
10 M
10 M
10 M
Metal-film resistor
Figure 28. Noise-Current Test Circuit
and Formula
50 k
(see Note A)
15 V
−15 V
VO = 1000 VIO
100
50 k
(see Note A)
(see Note A)
+
LT1013
NOTE A: Resistors must have low thermoelectric potential.
Figure 29. Test Circuit for VIO and
aVIO
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
typical applications
5 V
100 pF
2 k
Q4
2N2222
Q3
2N2905
5 V
68
4.3 k
LT1004
1.2 V
4 k
10 k1 k
4-mA
Trim
IN
0 to 4 V
4 mA to 20 mA
to Load
2.2 k Max
100
10 k
10 k
20-mA Trim
100 k
5 V
0.33 µF10 k10 k820
Q2
2N2905
SN74HC04 (6)
820 Q1
2N2905
1N4002 (4)
10 µF
10 µF
T1
0.002 µF
1/2
LT1013
1/2
LT1013
80 k
+
+
+
+
1% film resistor. Match 10-k resistors to within 0.05%.
T1 = PICO-31080
Figure 30. 5-V 4-mA to 20-mA Current-Loop Transmitter With 12-Bit Accuracy
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
To Inverter
Drive
5 V 100 k
10 k
68 k
4.3 k
5 V
LT1004
1.2 V
4 k
2 k
4-mA
Trim IN
0 to 4 V
1 k
20-mA
Trim
301
0.1 T1
10 µF
4 mA to 20 mA
Fully Floating
1N4002 (4)
1/2
LT1013
+
1% film resistor
+
+
1/2
LT1013
Figure 31. Fully Floating Modification to 4-mA to 20-mA Current-Loop Transmitter With 8-Bit Accuracy
IN+
IN+
IN−
IN−
6
18
7
13
11
12 14 R2
R1
OUT B
3
2
1 µF
5
6
5 V
OUT A
R2
R1
0.01 µF
1 µF
1 µF
1 µF1/2
LT1013
1/2
LT1013
+
+
1
7
4
15
1/2 LTC1043
1/2 LTC104358
2
3
8
NOTE A: VIO = 150 µV, AVD = (R1/R2) + 1, CMRR = 120 dB, VICR = 0 to 5 V
Figure 32. 5-V Single-Supply Dual Instrumentation Amplifier
  
   
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
1
LT1013
LT1013
LT1013
LT1013
To Input
Cable Shields
RG (2 kTyp)
200 k10 k
10 k
10 k
10 k
10 k
OUT
5 V
10 k
20 kW
5 V
20 kW
200 k
5 V
IN−
IN+
1 µF
+
+
+
+
2
3
10
9
13
12
14
4
11
7
6
5
8
1% film resistor. Match 10-k resistors to within 0.05%.
For high source impedances, use 2N2222 diodes.
NOTE A: AVD = (400,000/RG) + 1
Figure 33. 5-V Precision Instrumentation Amplifier
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-88760012A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-8876001PA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-88760022A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-8876002PA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
LT1013AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
LT1013AMJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
LT1013AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
LT1013AMP OBSOLETE PDIP P 8 TBD Call TI Call TI
LT1013CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013CDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
LT1013CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
LT1013DD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
LT1013DDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DIDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DIDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
LT1013DIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
LT1013DMD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIM
LT1013DMDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LT1013DP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
LT1013DPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
LT1013IP OBSOLETE PDIP P 8 TBD Call TI Call TI
LT1013MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
LT1013MJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
LT1013MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
LT1013MP OBSOLETE PDIP P 8 TBD Call TI Call TI
LT1013Y OBSOLETE DIESALE Y 0 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 3
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LT1013, LT1013M :
Catalog: LT1013
Military: LT1013M
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0 (mm) B0 (mm) K0 (mm) P1
(mm) W
(mm) Pin1
Quadrant
LT1013CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
LT1013DDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
LT1013DIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 19-Mar-2008
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LT1013CDR SOIC D 8 2500 340.5 338.1 20.6
LT1013DDR SOIC D 8 2500 340.5 338.1 20.6
LT1013DIDR SOIC D 8 2500 340.5 338.1 20.6
PACKAGE MATERIALS INFORMATION
www.ti.com 19-Mar-2008
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic."Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps
DLP®Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connctivity www.ti.com/wirelessconnectivity
TI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright ©2011, Texas Instruments Incorporated