_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
General Description
The MAX2044 single, high-linearity upconversion/down-
conversion mixer provides +32.5dBm input IP3, 8.5dB
noise figure, and 7.7dB conversion loss for 2300MHz
to 4000MHz LTE, WiMAXK, and MMDS wireless infra-
structure applications. With an ultra-wide 2600MHz to
4300MHz LO frequency range, the MAX2044 can be
used in either low-side or high-side LO injection archi-
tectures for virtually all 2.5GHz and 3.5GHz applications.
In addition to offering excellent linearity and noise
performance, the MAX2044 also yields a high level of
component integration. This device includes a double-
balanced passive mixer core, an LO buffer, and on-chip
baluns that allow for single-ended RF and LO inputs.
The MAX2044 requires a nominal LO drive of 0dBm,
and supply current is typically 138mA at VCC = 5.0V or
121mA at VCC = 3.3V.
The MAX2044 is pin similar with the MAX2029/MAX2031
650MHz to 1000MHz mixers and the MAX2039/MAX2041/
MAX2042 1700MHz to 3000MHz mixers, making this
entire family of up/downconverters ideal for applica-
tions where a common PCB layout is used for multiple
frequency bands.
The MAX2044 is available in a compact 20-pin thin QFN
(5mm x 5mm) package with an exposed pad. Electrical
performance is guaranteed over the extended -40NC to
+85NC temperature range.
Applications
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
S 2300MHz to 4000MHz RF Frequency Range
S 2600MHz to 4300MHz LO Frequency Range
S 50MHz to 500MHz IF Frequency Range
S 7.7dB Conversion Loss
S 8.5dB Noise Figure
S +32.5dBm Typical Input IP3
S 21dBm Typical Input 1dB Compression Point
S 68dBc Typical 2RF - 2LO Spurious Rejection at
PRF = -10dBm
S Integrated LO Buffer
S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive
S Pin Similar with the MAX2029/MAX2031 Series
of 650MHz to 1000MHz Mixers and the MAX2039/
MAX2041/MAX2042 Series of 1700MHz to
3000MHz Mixers
S Single 5.0V or 3.3V Supply
S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/Reduced-
Performance Mode
19-5002; Rev 0; 10/09
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
WiMAX is a trademark of WiMAX Forum.
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX2044ETP+ -40NC to +85NC20 Thin QFN-EP*
MAX2044ETP+T -40NC to +85NC20 Thin QFN-EP*
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
2 ______________________________________________________________________________________
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
VCC to GND ..........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V)
RF, LO Input Power .......................................................+20dBm
RF, LO Current (RF and LO is DC shorted
to GND through a balun)................................... .............50mA
Continuous Power Dissipation (Note 1) .................................5W
BJA (Notes 2, 3) ............................................................ +38NC/W
BJC (Notes 1, 3) ............................................................ +13NC/W
Operating Case Temperature
Range (Note 4) ..................................... TC = -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical
values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.)
ABSOLUTE MAXIMUM RATINGS
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical
values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.)
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 4.75 5.0 5.25 V
Supply Current ICC 138 155 mA
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 3.0 3.3 3.6 V
Supply Current ICC Total supply current, VCC = 3.3V 121 135 mA
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range fRF
Typical Application Circuit with C1 = 3.3nH
and C12 = 0.3pF, see Table 1 for details
(Note 5)
2300 3000
MHz
Typical Application Circuit with C1 = 8.2pF
and C12 not installed, see Table 1 for
details (Note 5)
3000 4000
LO Frequency fLO (Note 5) 2600 4300 MHz
IF Frequency fIF
Using an M/A-Com MABAES0029 1:1
transformer as defined in the Typical
Application Circuit, IF matching
components affect the IF frequency range
(Note 5)
50 500 MHz
LO Drive PLO (Note 5) -3 0 +3 dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
_______________________________________________________________________________________ 3
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz,
TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss LCTC = +25NC (Notes 7, 8) 7.2 7.7 8.5 dB
Loss Variation vs. Frequency DLC
fRF = 3100MHz to 3900MHz, over any
100MHz band 0.15
dB
fRF = 3100MHz to 3900MHz, over any
200MHz band 0.25
Conversion Loss Temperature
Coefficient TCCL fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC0.01 dB/NC
Input Compression Point IP1dB (Note 9) 21 dBm
Third-Order Input Intercept
Point IIP3
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone
(Note 7, 8) 28.3 32.5
dBm
fRF = 3500MHz, fRF1 - fRF2 = 1MHz,
PRF = 0dBm per tone. TC = +25NC
(Notes 7, 8)
30.0 32.5
Third-Order Input Intercept
Point Variation Over
Temperature
fRF = 3100MHz to 3900MHz, fIF = 300MHz,
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC
±0.5 dBm
Noise Figure NFSSB
Single sideband, no blockers present
(Notes 7, 10) 8.5 10
dB
Single sideband, no blockers present,
TC = +25NC (Notes 7, 10) 8.5 9.2
Noise Figure Temperature
Coefficient TCNF Single sideband, no blockers present,
TC = -40NC to +85NC0.018 dB/NC
Noise Figure Under Blocking
Conditions NFB
+8dBm blocker tone applied to RF port,
fBLOCKER = 3750MHz, fRF = 3500MHz,
fLO = 3200MHz, PLO = 0dBm, VCC = 5.0V,
TC = +25NC (Notes 7, 10, 11)
17.5 20 dB
2RF - 2LO Spurious Rejection 2 x 2
fSPUR = fLO +
150MHz,
TC = +25NC
PRF = -10dBm
(Notes 7, 10) 62 68
dBc
PRF = 0dBm (Notes 7, 8) 52 58
fSPUR = fLO +
150MHz
PRF = -10dBm
(Notes 7, 10) 60 68
PRF = 0dBm (Notes 7, 8) 50 58
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
4 ______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz,
TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
3RF - 3LO Spurious Rejection 3 x 3
fSPUR = fLO +
100MHz,
TC = +25NC
PRF = -10dBm
(Notes 7, 10) 82 89
dBc
PRF = 0dBm (Notes 7, 8) 62 69
fSPUR = fLO +
100MHz
PRF = -10dBm
(Notes 7, 10) 81 89
PRF = 0dBm (Notes 7, 8) 61 69
RF Input Return Loss RLRF LO on and IF terminated into a matched
impedance 16 dB
LO Input Return Loss RLLO RF and IF terminated into a matched
impedance 14 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 50 I
IF Output Return Loss RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
16 dB
RF-to-IF Isolation fRF = 3500MHz, PLO = +3dBm (Note 8) 33 42 dB
LO Leakage at RF Port fLO = 2500MHz to 4000MHz, PLO = +3dBm
(Notes 7, 8) -31 dBm
2LO Leakage at RF Port PLO = +3dBm -35 dBm
LO Leakage at IF Port PLO = +3dBm (Note 8) -28 dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
_______________________________________________________________________________________ 5
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are at VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.)
(Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss LC7.7 dB
Loss Variation vs. Frequency DLCfRF = 3100MHz to 3900MHz, over any
100MHz band 0.1 dB
Conversion Loss Temperature
Coefficient TCCL fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC0.009 dB/NC
Input Compression Point IP1dB (Note 9) 19.5 dBm
Third-Order Input Intercept
Point IIP3 fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone 29.5 dBm
Third-Order Input Intercept
Variation Over Temperature
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC±0.2 dB
Noise Figure NFSSB Single sideband, no blockers present 8.5 dB
Noise Figure Temperature
Coefficient TCNF Single sideband, no blockers present,
TC = -40NC to +85NC0.018 dB/NC
2RF - 2LO Spurious Rejection 2 x 2 fSPUR = fLO +
150MHz
PRF = -10dBm 69 dBc
PRF = 0dBm 64
3RF - 3LO Spurious Rejection 3 x 3 fSPUR = fLO +
100MHz
PRF = -10dBm 73.3 dBc
PRF = 0dBm 63.3
RF Input Return Loss RLRF LO on and IF terminated into a matched
impedance 18 dB
LO Input Return Loss RLLO RF and IF terminated into a matched
impedance 19 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 50 I
IF Output Return Loss RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
14.5 dB
RF-to-IF Isolation fRF = 3100MHz to 3900MHz,
PLO = +3dBm 41 dB
LO Leakage at RF Port fLO = 2800MHz to 3600MHz,
PLO = +3dBm -30 dBm
2LO Leakage at RF Port fLO = 2800MHz to 3600MHz,
PLO = +3dBm -25.6 dBm
LO Leakage at IF Port fLO = 2800MHz to 3600MHz,
PLO = +3dBm -27 dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
6 ______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.)
(Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss LC8.1 dB
Loss Variation vs. Frequency DLCfRF = 2300MHz to 2900MHz, over any
100MHz band 0.15 dB
Conversion Loss Temperature
Coefficient TCCL fRF = 2300MHz to 2900MHz,
TC = -40NC to +85NC0.008 dB/NC
Third-Order Input Intercept
Point IIP3 fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone 34 dBm
Third-Order Input Intercept
Variation Over Temperature
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC±0.2 dB
2LO - 2RF Spurious Rejection 2 x 2 fSPUR = fLO - 150MHz PRF = -10dBm 67 dBc
PRF = 0dBm 62
3LO - 3RF Spurious Rejection 3 x 3 fSPUR = fLO - 100MHz PRF = -10dBm 79 dBc
PRF = 0dBm 69
RF Input Return Loss RLRF LO on and IF terminated into a matched
impedance 23 dB
LO Input Return Loss RLLO RF and IF terminated into a matched
impedance 17 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 50 I
IF Output Return Loss RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
13.6 dB
RF-to-IF Isolation fRF = 2300MHz to 2900MHz,
PLO = +3dBm 39 dB
LO Leakage at RF Port fLO = 2600MHz to 3200MHz,
PLO = +3dBm -29.5 dBm
2LO Leakage at RF Port fLO = 2600MHz to 3200MHz,
PLO = +3dBm -43 dBm
LO Leakage at IF Port fLO = 2600MHz to 3200MHz,
PLO = +3dBm -28.6 dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
_______________________________________________________________________________________ 7
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.)
(Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss LC7.8 dB
Loss Variation vs. Frequency DLCfRF = 3100MHz to 3900MHz, over any
100MHz band 0.15 dB
Conversion Loss Temperature
Coefficient TCCL fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC0.008 dB/NC
Third-Order Input Intercept
Point IIP3 fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone 31.5 dBm
Third-Order Input Intercept
Variation Over Temperature
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC±0.2 dB
2LO - 2RF Spurious Rejection 2 x 2 fSPUR = fLO - 150MHz PRF = -10dBm 67 dBc
PRF = 0dBm 62
3LO - 3RF Spurious Rejection 3 x 3 fSPUR = fLO - 100MHz PRF = -10dBm 76.7 dBc
PRF = 0dBm 66.7
RF Input Return Loss RLRF LO on and IF terminated into a matched
impedance 17.7 dB
LO Input Return Loss RLLO RF and IF terminated into a matched
impedance 16.3 dB
IF Output Impedance ZIF Nominal differential impedance at the IC’s
IF outputs 50 I
IF Output Return Loss RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
15 dB
RF-to-IF Isolation fRF = 3100MHz to 3900MHz,
PLO = +3dBm 41 dB
LO Leakage at RF Port fLO = 3400MHz to 4200MHz,
PLO = +3dBm -30 dBm
2LO Leakage at RF Port fLO = 3400MHz to 4200MHz,
PLO = +3dBm -21 dBm
LO Leakage at IF Port fLO = 3400MHz to 4200MHz,
PLO = +3dBm -27.2 dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
8 ______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = 5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3300MHz, fIF = 200MHz, unless otherwise noted.)
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss LC7.7 dB
Conversion Loss Variation vs.
Frequency DLC
fRF = 3100MHz to 3900MHz, over any
100MHz band 0.2
dB
fRF = 3100MHz to 3900MHz, over any
200MHz band 0.25
Conversion Loss Temperature
Coefficient TCCL TC = -40NC to +85NC0.01 dB/NC
Input Third-Order Intercept Point IIP3 fIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone 33.5 dBm
IIP3 Variation with TCfIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone, TC = -40NC to +85NC±0.2 dB
LO ± 2IF Spur 1 x 2 LO - 2IF 61.6 dBc
LO + 2IF 60.2
LO ± 3IF Spur 1 x 3 LO - 3IF 78.2 dBc
LO + 3IF 80.3
Output Noise Floor POUT = 0dBm (Note 11) -165 dBm/Hz
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss LC8 dB
Conversion Loss Variation vs.
Frequency DLC
fRF = 3100MHz to 3900MHz, over any
100MHz band 0.2
dB
fRF = 3100MHz to 3900MHz, over any
200MHz band 0.25
Conversion Loss Temperature
Coefficient TCCL TC = -40NC to +85NC0.01 dB/NC
Input Third-Order Intercept Point IIP3 fIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone 29.5 dBm
IIP3 Variation with TCfIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone, TC = -40NC to +85NC±0.2 dB
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
_______________________________________________________________________________________ 9
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.)
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 6: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance trans-
former. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 7: Guaranteed by design and characterization.
Note 8: 100% production tested for functional performance.
Note 9: Maximum reliable continuous input power applied to the RF or IF port of this device is +20dBm from a 50I source.
Note 10: Not production tested.
Note 11: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
LO ± 2IF Spur 1 x 2 LO - 2IF 58.9 dBc
LO + 2IF 57.8
LO ± 3IF Spur 1 x 3 LO - 3IF 69.4 dBc
LO + 3IF 69.5
Output Noise Floor POUT = 0dBm (Note 11) -165 dBm/Hz
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc01
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
TC = +85°C TC = +25°C
TC = -40°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc02
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc03
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
VCC = 4.75V, 5.0V, 5.25V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
10 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc04
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
29
31
33
35
37
27
3000 4000
TC = +85°C
TC = +25°C
TC = -40°C
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc05
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
29
31
33
35
37
27
3000 4000
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc06
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
38003600340032003000 4000
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
PRF = 0dBm/TONE
29
31
33
35
37
27
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2044 toc07
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
3800360034003200
55
60
65
70
75
50
3000 4000
PRF = 0dBm
TC = +85°C
TC = +25°C
TC = -40°C
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2044 toc08
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
3800360034003200
55
60
65
70
75
50
3000 4000
PRF = 0dBm
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2044 toc09
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
3800360034003200
55
60
65
70
75
50
3000 4000
PRF = 0dBm
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2044 toc10
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
3800360034003200
65
75
85
55
3000 4000
TC = +85°C
TC = +25°C
TC = -40°C
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2044 toc11
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
3800360034003200
65
75
85
55
3000 4000
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2044 toc12
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
3800360034003200
65
75
85
55
3000 4000
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
PRF = 0dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 11
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
NOISE FIGURE vs. RF FREQUENCY
MAX2044 toc13
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
8
9
10
11
5
38003600340032003000 4000
TC = +85°C TC = +25°C
TC = -40°C
NOISE FIGURE vs. RF FREQUENCY
MAX2044 toc14
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
8
9
10
11
5
38003600340032003000 4000
PLO = -3dBm, 0dBm, +3dBm
NOISE FIGURE vs. RF FREQUENCY
MAX2044 toc15
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
8
9
10
11
5
38003600340032003000 4000
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
INPUT P1dB vs. RF FREQUENCY
MAX2044 toc16
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
3800360034003200
19
21
23
25
17
3000 4000
TC = +85°C
TC = +25°C
TC = -40°C
MAX2044 toc17
RF FREQUENCY (MHz)
3800360034003200
19
21
23
25
17
3000 4000
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
INPUT P1dB vs. RF FREQUENCY
INPUT P1dB (dBm)
MAX2044 toc18
RF FREQUENCY (MHz)
3800360034003200
19
21
23
25
17
3000 4000
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
INPUT P1dB vs. RF FREQUENCY
INPUT P1dB (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc19
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
3500330031002900
-30
-20
-10
-40
2700 3700
TC = +85°C
TC = +25°C
TC = -40°C
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc20
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
3500330031002900
-30
-20
-10
-40
2700 3700
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc21
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
3500330031002900
-30
-20
-10
-40
2700 3700
VCC = 4.75V, 5.0V, 5.25V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
12 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc22
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
TC = -40°C TC = +25°C
TC = +85°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc23
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc24
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc25
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
TC = -40°C
TC = +25°C
TC = +85°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc26
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc27
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
VCC = 4.75V, 5.0V, 5.25V
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc28
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
TC = +85°C
TC = +25°C
TC = -40°C
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc29
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc30
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 13
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
25
20
15
10
5
0
30
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2044 toc31
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
38003600340032003000 4000
PLO = -3dBm, 0dBm, +3dBm
fIF = 300MHz
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2044 toc33
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
3000 3500
20
10
0
30
2500 4000
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
25
20
15
10
5
0
30
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc32
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
41032023014050 500
VCC = 4.75V, 5.0V, 5.25V
fLO = 3200MHz
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2044 toc34
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
125
130
135
140
145
150
120
603510-15-40 85
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
14 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc35
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
TC = -40°C
TC = +85°C TC = +25°C
VCC = 3.3V
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc36
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc37
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
VCC = 3.0V, 3.3V, 3.6V
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc38
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
26
28
30
32
34
24
3000 4000
TC = -40°C
TC = +25°C
TC = +85°C
VCC = 3.3V
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc39
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
26
28
30
32
34
24
3000 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc40
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
38003600340032003000 4000
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
PRF = 0dBm/TONE
26
28
30
32
34
24
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2044 toc41
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
3800360034003200
60
70
80
50
3000 4000
TC = +85°C
TC = +25°C TC = -40°C
VCC = 3.3V
PRF = 0dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2044 toc42
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
3800360034003200
60
70
80
50
3000 4000
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
VCC = 3.3V
PRF = 0dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2044 toc43
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
3800360034003200
60
70
80
50
3000 4000
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
PRF = 0dBm
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 15
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2044 toc44
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
3800360034003200
55
65
75
45
3000 4000
TC = +25°C
TC = -40°C TC = +85°C
VCC = 3.3V
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2044 toc45
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
3800360034003200
55
65
75
45
3000 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2044 toc46
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE (dBc)
3800360034003200
55
65
75
45
3000 4000
PRF = 0dBm
VCC = 3.0V
VCC = 3.6V
VCC = 3.3V
NOISE FIGURE vs. RF FREQUENCY
MAX2044 toc47
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
8
9
10
11
5
38003600340032003000 4000
TC = +85°C
TC = +25°C
VCC = 3.3V
TC = -40°C
NOISE FIGURE vs. RF FREQUENCY
MAX2044 toc48
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
8
9
10
11
5
38003600340032003000 4000
PLO = -3dBm PLO = 0dBm
VCC = 3.3V
PLO = +3dBm
NOISE FIGURE vs. RF FREQUENCY
MAX2044 toc49
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
8
9
10
11
5
38003600340032003000 4000
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
INPUT P1dB vs. RF FREQUENCY
MAX2044 toc50
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
38003600340032003000 4000
TC = +85°C
TC = +25°C
TC = -40°C
VCC = 3.3V
17
19
21
23
15
INPUT P1dB vs. RF FREQUENCY
MAX2044 toc51
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
3800360034003200
17
19
21
23
15
3000 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
INPUT P1dB vs. RF FREQUENCY
MAX2044 toc52
RF FREQUENCY (MHz)
INPUT P1dB (dBm)
3800360034003200
17
19
21
23
15
3000 4000
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
16 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc53
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
3500330031002900
-30
-20
-10
-40
2700 3700
TC = +85°C
TC = +25°C
TC = -40°C
VCC = 3.3V
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc54
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
3500330031002900
-30
-20
-10
-40
2700 3700
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc55
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
3500330031002900
-30
-20
-10
-40
2700 3700
VCC = 3.0V, 3.3V, 3.6V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc56
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
TC = -40°C TC = +25°C
TC = +85°C
VCC = 3.3V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc57
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc58
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
VCC = 3.0V, 3.3V, 3.6V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc59
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
TC = -40°C, +25°C, +85°C
VCC = 3.3V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc60
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc61
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3000 3500
-40
-30
-20
-50
2500 4000
VCC = 3.0V, 3.3V, 3.6V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 17
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc62
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
35003000
-45
-35
-25
-15
-55
2500 4000
TC = -40°C
TC = +25°C
TC = +85°C
VCC = 3.3V
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc63
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
35003000
-45
-35
-25
-15
-55
2500 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc64
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
35003000
-45
-35
-25
-15
-55
2500 4000
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
25
20
15
10
5
0
30
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2044 toc65
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
38003600340032003000 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
fIF = 300MHz
25
20
15
10
5
0
30
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc66
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
41032023014050 500
VCC = 3.0V, 3.3V, 3.6V
fLO = 3200MHz
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2044 toc67
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
3000 3500
20
10
0
30
2500 4000
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
VCC = 3.3V
SUPPLY CURRENT
vs.TEMPERATURE (TC)
MAX2044 toc68
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
110
115
120
125
130
135
105
603510-15-40 85
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
18 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc69
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
275026002450
7
8
9
10
6
2300 2900
TC = +25°C
TC = +85°C
TC = -40°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc70
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
275026002450
7
8
9
10
6
2300 2900
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc71
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
275026002450
7
8
9
10
6
2300 2900
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc72
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
275026002450
29
31
33
35
37
27
2300 2900
TC = +25°C
TC = -40°C
TC = +85°C
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc73
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
275026002450
29
31
33
35
37
27
2300 2900
PLO = +3dBm
PRF = 0dBm/TONE
PLO = -3dBm
PLO = 0dBm
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc74
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
275026002450
29
31
33
35
37
27
2300 2900
PRF = 0dBm/TONE
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc75
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
275026002450
60
70
80
50
2300 2900
PRF = 0dBm
TC = +85°C
TC = -40°C
TC = +25°C
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc76
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
275026002450
60
70
80
50
2300 2900
PRF = 0dBm
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc77
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
275026002450
60
70
80
50
2300 2900
PRF = 0dBm
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 19
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc78
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
275026002450
65
75
85
55
2300 2900
PRF = 0dBm
TC = +85°C
TC = +25°C
TC = -40°C
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc79
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
275026002450
65
75
85
55
2300 2900
PRF = 0dBm
PLO = +3dBm
PLO = 0dBm PLO = -3dBm
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc80
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
275026002450
65
75
85
55
2300 2900
PRF = 0dBm
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc81
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
305029002750
-35
-30
-25
-20
-40
2600 3200
TC = +25°C
TC = +85°C
TC = -40°C
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc82
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
305029002750
-35
-30
-25
-20
-40
2600 3200
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc83
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
305029002750
-35
-30
-25
-20
-40
2600 3200
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc84
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
275026002450
30
40
50
60
20
2300 2900
TC = +85°C
TC = +25°C
TC = -40°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc85
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
275026002450
30
40
50
60
20
2300 2900
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc86
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
275026002450
30
40
50
60
20
2300 2900
VCC = 4.75V, 5.0V, 5.25V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
20 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc87
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
357531502725
-40
-30
-20
-50
2300 4000
TC = +85°C
TC = +25°C
TC = -40°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc88
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
357531502725
-40
-30
-20
-50
2300 4000
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc89
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
357531502725
-40
-30
-20
-50
2300 4000
VCC = 4.75V, 5.0V, 5.25V
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc90
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
357531502725
-50
-40
-30
-20
-60
2300 4000
TC = +25°C
TC = -40°C
TC = +85°C
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc91
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
357531502725
-50
-40
-30
-20
-60
2300 4000
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc92
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
357531502725
-50
-40
-30
-20
-60
2300 4000
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 21
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2044 toc93
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
275026002450
25
20
15
10
5
0
30
2300 2900
PLO = -3dBm, 0dBm, +3dBm
fIF = 300MHz
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc94
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
410320230140
25
20
15
10
5
0
30
50 500
fLO = 2600MHz fLO = 2900MHz
fLO = 3200MHz
VCC = 4.75V, 5.0V, 5.25V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2044 toc95
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
35003000
30
20
10
0
40
2500 4000
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2044 toc96
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
603510-15
125
130
135
140
145
150
120
-40 85
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
22 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc100
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
29
31
33
35
37
27
3000 4000
TC = -40°C
TC = +85°C
TC = +25°C
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc101
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
29
31
33
35
37
27
3000 4000
PRF = 0dBm/TONE
PLO = +3dBm
PLO = -3dBm PLO = 0dBm
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc102
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
29
31
33
35
37
27
3000 4000
PRF = 0dBm/TONE
VCC = 5.0V VCC = 5.25V
VCC = 4.75V
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc103
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
3800360034003200
60
70
80
50
3000 4000
TC = +85°C
TC = -40°C TC = +25°C
PRF = 0dBm
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc104
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
3800360034003200
60
70
80
50
3000 4000
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
PRF = 0dBm
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc105
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
3800360034003200
60
70
80
50
3000 4000
PRF = 0dBm
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc97
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
TC = +85°C TC = +25°C
TC = -40°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc98
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc99
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
VCC = 4.75V, 5.0V, 5.25V
MAX2044
______________________________________________________________________________________ 23
SiGe, High-Linearity, 3000MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc106
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
3800360034003200
65
75
85
55
3000 4000
PRF = 0dBm
TC = -40°C
TC = +85°C
TC = +25°C
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc107
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
3800360034003200
65
75
85
55
3000 4000
PRF = 0dBm
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc108
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE (dBc)
3800360034003200
65
75
85
55
3000 4000
PRF = 0dBm
VCC = 5.0V
VCC = 5.25V
VCC = 4.75V
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc109
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
4100390037003500
-30
-20
-10
-40
3300 4300
TC = -40°C
TC = +85°C
TC = +25°C
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc110
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
4100390037003500
-30
-20
-10
-40
3300 4300
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc111
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
4100390037003500
-30
-20
-10
-40
3300 4300
VCC = 4.75V, 5.0V, 5.25V
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc112
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
TC = +25°C, +85°C
TC = -40°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc113
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2044 toc114
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
3800360034003200
30
40
50
60
20
3000 4000
VCC = 4.75V, 5.0V, 5.25V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
24 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc115
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3500 4000
-40
-30
-20
-50
3000 4500
TC = +85°C
TC = +25°C
TC = -40°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc116
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3500 4000
-40
-30
-20
-50
3000 4500
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc117
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3500 4000
-40
-30
-20
-50
3000 4500
VCC = 4.75V, 5.0V, 5.25V
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc118
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
38003400
-40
-30
-20
-10
-50
3000 4200
TC = -40°C
TC = +25°C
TC = +85°C
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc119
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
38003400
-40
-30
-20
-10
-50
3000 4200
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc120
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
38003400
-40
-30
-20
-10
-50
3000 4200
VCC = 4.75V
VCC = 5.25V
VCC = 5.0V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 25
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2044 toc121
RF FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
3800360034003200
25
20
15
10
5
0
30
3000 4000
fIF = 300MHz
PLO = -3dBm, 0dBm, +3dBm
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc122
IF FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
410320230140
25
20
15
10
5
0
30
50 500
fLO = 3800MHz
VCC = 4.75V, 5.0V, 5.25V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2044 toc123
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
40003500
40
30
20
10
0
50
3000 4500
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2044 toc124
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
603510-15
125
130
135
140
145
150
120
-40 85
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
26 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc125
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
TC = +85°C TC = +25°C
TC = -40°C
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc126
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc127
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc128
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
30
32
34
36
28
3000 4000
TC = -40°C
PIF = 0dBm/TONE
TC = +25°C
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc129
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
30
32
34
36
28
3000 4000
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
PIF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX2044 toc130
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
3800360034003200
30
32
34
36
28
3000 4000
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
PIF = 0dBm/TONE
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc131
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
TC = +85°C TC = +25°C
TC = -40°C
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc132
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc133
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
VCC = 5.0V
VCC = 5.25V
VCC = 4.75V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 27
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc134
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
TC = +85°C TC = +25°C
TC = -40°C
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc135
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc136
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc137
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
3800360034003200
70
80
90
100
60
3000 4000
PIF = 0dBm
TC = +85°C
TC = -40°C
TC = +25°C
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc138
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
3800360034003200
70
80
90
100
60
3000 4000
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc139
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
3800360034003200
70
80
90
100
60
3000 4000
PIF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc140
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
3800360034003200
70
80
90
100
60
3000 4000
PIF = 0dBm
TC = +85°C
TC = -40°C
TC = +25°C
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc141
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
3800360034003200
70
80
90
100
60
3000 4000
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc142
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
3800360034003200
70
80
90
100
60
3000 4000
PIF = 0dBm
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
28 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc143
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3600340032003000
-35
-30
-25
-20
-40
2800 3800
TC = -40°C
TC = +85°C TC = +25°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc144
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3600340032003000
-35
-30
-25
-20
-40
2800 3800
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc145
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3600340032003000
-35
-30
-25
-20
-40
2800 3800
VCC = 4.75V, 5.0V, 5.25V
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT (dBm)
-90
-80
-70
-60
-50
-100
MAX2044 toc146
LO FREQUENCY (MHz)
36003400320030002800 3800
TC = -40°C
TC = +85°C
TC = +25°C
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT (dBm)
-90
-80
-70
-60
-50
-100
MAX2044 toc147
LO FREQUENCY (MHz)
36003400320030002800 3800
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT (dBm)
-90
-80
-70
-60
-50
-100
MAX2044 toc148
LO FREQUENCY (MHz)
36003400320030002800 3800
VCC = 5.25V
VCC = 4.75VVCC = 5.0V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 29
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2044 toc149
RF PORT RETURN LOSS (dB)
25
20
15
10
5
0
30
RF FREQUENCY (MHz)
38003600340032003000 4000
PLO = -3dBm, 0dBm, +3dBm
fIF = 200MHz
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc150
IF PORT RETURN LOSS (dB)
25
20
15
10
5
0
30
IF FREQUENCY (MHz)
41032023014050 500
fLO = 3200MHz
VCC = 4.75V, 5.0V, 5.25V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2044 toc151
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
35003000
25
20
15
10
5
0
30
2500 4000
PLO = 0dBm
PLO = -3dBm
PLO = +3dBm
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2044 toc152
SUPPLY CURRENT (mA)
125
130
135
140
145
150
120
TEMPERATURE (°C)
603510-15-40 85
VCC = 5.25V VCC = 5.0V
VCC = 4.75V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
30 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc153
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
TC = +85°C TC = +25°C
TC = -40°C
VCC = 3.3V
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc154
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
CONVERSION LOSS vs. RF FREQUENCY
MAX2044 toc155
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
3800360034003200
7
8
9
10
6
3000 4000
VCC = 3.0V, 3.3V, 3.6V
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 (dBm)
26
28
30
32
34
24
MAX2044 toc156
RF FREQUENCY (MHz)
38003600340032003000 4000
VCC = 3.3V
PIF = 0dBm/TONE
TC = -40°C
TC = +25°C
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 (dBm)
26
28
30
32
34
24
MAX2044 toc157
RF FREQUENCY (MHz)
38003600340032003000 4000
VCC = 3.3V
PIF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 (dBm)
26
28
30
32
34
24
MAX2044 toc158
RF FREQUENCY (MHz)
38003600340032003000 4000
PIF = 0dBm/TONE
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc159
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
TC = +25°C
TC = -40°C
VCC = 3.3V
PIF = 0dBm
TC = +85°C
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc160
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
VCC = 3.3V
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc161
RF FREQUENCY (MHz)
LO - 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
VCC = 3.0V
VCC = 3.6V
VCC = 3.3V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 31
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc162
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
VCC = 3.3V
PIF = 0dBm
TC = +85°C
TC = +25°C
TC = -40°C
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc163
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
VCC = 3.3V
PIF = 0dBm
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2044 toc164
RF FREQUENCY (MHz)
LO + 2IF RESPONSE (dBc)
3800360034003200
55
65
75
85
45
3000 4000
PIF = 0dBm
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc165
LO - 3IF RESPONSE (dBc)
60
70
80
50
RF FREQUENCY (MHz)
38003600340032003000 4000
VCC = 3.3V
PIF = 0dBm
TC = +85°C
TC = +25°C
TC = -40°C
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc166
LO - 3IF RESPONSE (dBc)
60
70
80
50
RF FREQUENCY (MHz)
38003600340032003000 4000
VCC = 3.3V
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc167
LO - 3IF RESPONSE (dBc)
60
70
80
50
RF FREQUENCY (MHz)
38003600340032003000 4000
PIF = 0dBm
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc168
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
3800360034003200
60
70
80
90
50
3000 4000
TC = -40°C
TC = +25°C
TC = +85°C
VCC = 3.3V
PIF = 0dBm
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc169
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
3800360034003200
60
70
80
90
50
3000 4000
VCC = 3.3V
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc170
RF FREQUENCY (MHz)
LO + 3IF RESPONSE (dBc)
3800360034003200
60
70
80
90
50
3000 4000
PIF = 0dBm
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
32 _____________________________________________________________________________________
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc171
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3600340032003000
-35
-30
-25
-20
-40
2800 3800
VCC = 3.3V
TC = +85°C
TC = +25°C TC = -40°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc172
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3600340032003000
-35
-30
-25
-20
-40
2800 3800
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc173
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT (dBm)
3600340032003000
-35
-30
-25
-20
-40
2800 3800
VCC = 3.0V, 3.3V, 3.6V
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc174
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
3600340032003000
-90
-80
-70
-60
-100
2800 3800
VCC = 3.3V
TC = -40°C
TC = +25°C TC = +85°C
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc175
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
3600340032003000
-90
-80
-70
-60
-100
2800 3800
VCC = 3.3V
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc176
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
3600340032003000
-90
-80
-70
-60
-100
2800 3800
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 33
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
MAX2044 toc177
RF PORT RETURN LOSS (dB)
25
20
15
10
5
0
30
RF FREQUENCY (MHz)
38003600340032003000 4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
fIF = 200MHz
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc178
IF PORT RETURN LOSS (dB)
25
20
15
10
5
0
30
IF FREQUENCY (MHz)
41032023014050 500
fLO = 3200MHz
VCC = 3.0V, 3.3V, 3.6V
LO PORT RETURN LOSS
vs. LO FREQUENCY
MAX2044 toc179
LO FREQUENCY (MHz)
LO PORT RETURN LOSS (dB)
35003000
25
20
15
10
5
0
30
2500 4000
PLO = -3dBm
PLO = 0dBmPLO = +3dBm
VCC = 3.3V
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2044 toc180
SUPPLY CURRENT (mA)
110
115
120
125
130
135
105
TEMPERATURE (°C)
603510-15-40 85
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
34 _____________________________________________________________________________________
Pin Configuration/Functional Diagram
Pin Description
MAX2044
TOP VIEW
+
11
12
13
14
15
5
4
3
2
1
*EXPOSED PAD
LOBIAS
GND
GND
VCC
6 7 8 9 10
16171819
20
VCC
RF
GND
GND
VCC
GND
IF+
IF-
GND
GND
GND
VCC
GND
GND
LO
GND
EP*
PIN NAME FUNCTION
1, 6, 8, 14 VCC Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
2 RF Single-Ended 50I RF Input/Output. Internally matched and DC shorted to GND through a balun.
Provide an input DC-blocking capacitor if required.
3, 9, 13, 15 GND Ground. Not internally connected. Pins can be grounded.
4, 5, 10,
12, 17 GND Ground. Internally connected to the exposed pad (EP). Connect all ground pins and the exposed
pad together.
7 LOBIAS LO Output Bias Resistor for LO Buffer. Connect a 698I 1% resistor (138mA bias condition) from
LOBIAS to ground.
11 LO Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking
capacitor.
16, 20 GND Ground. Connect pins to ground.
18, 19 IF-, IF+ Mixer Differential IF Output/Input. Provide DC-blocking capacitors if required. These ports are
internally biased to VCC/2.
EP
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These
multiple via grounds are also required to achieve the noted RF performance.
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 35
Detailed Description
The MAX2044 is a high-linearity passive mixer targeting
2.5GHz and 3.5GHz wireless infrastructure applications.
With an ultra-wide 2600MHz to 4300MHz LO frequency
range, the MAX2044 can be used in either low-side or
high-side LO injection architectures for virtually all WiMAX,
LTE, and MMDS receive and transmit applications.
When used as a low-side LO injection downconverting
mixer in the 3000MHz to 4000MHz band, the MAX2044
provides +32.5dBm of input IP3, with typical conversion
loss and noise figure values of only 7.7dB and 8.5dB,
respectively. The integrated baluns and matching cir-
cuitry allow for 50I single-ended interfaces to the RF
and the LO port. The integrated LO buffer provides
a high drive level to the mixer core, reducing the LO
drive required at the MAX2044’s input to a -3dBm to
+3dBm range. The IF port incorporates a differential
output, which is ideal for providing enhanced 2RF - 2LO
or 2LO - 2RF performance.
Specifications are guaranteed over broad frequency ranges
to allow for use in WiMAX, LTE, and MMDS base stations.
The MAX2044 is specified to operate over a 2300MHz
to 4000MHz RF input range, a 2600MHz to 4300MHz
LO range, and a 50MHz to 500MHz IF range. Operation
beyond these ranges is possible (see the Typical Operating
Characteristics for additional information).
RF Input and Balun
The MAX2044 RF input provides a 50I match when
combined with a series DC-blocking capacitor. This
DC-blocking capacitor is required as the input is inter-
nally DC shorted to ground through the on-chip balun.
When using an 8.2pF DC-blocking capacitor, the RF
port input return loss is typically better than 13dB over
the 3300MHz to 3900MHz RF frequency range. A return
loss of 15dB over the 2400MHz to 2700MHz range is
achievable by changing the input matching components
per Tables 1 and 2. Other combinations of C1 and C12
can be used to optimize RF return loss in the 2300MHz
to 4000MHz band.
LO Inputs, Buffer, and Balun
With a broadband LO drive circuit spanning 2600MHz to
4300MHz, the MAX2044 can be used in either low-side
or high-side LO injection architectures for virtually all
2.5GHz and 3.5GHz applications. The LO input is inter-
nally matched to 50I, requiring only a 2pF DC-blocking
capacitor. A two-stage internal LO buffer allows for a
-3dBm to +3dBm LO input power range. The on-chip
low-loss balun, along with an LO buffer, drives the
double-balanced mixer. All interfacing and matching
components from the LO inputs to the IF outputs are
integrated on-chip.
High-Linearity Mixer
The core of the MAX2044 is a double-balanced, high-
performance passive mixer. Exceptional linearity is pro-
vided by the large LO swing from the on-chip LO buffer.
IIP3, 2RF - 2LO rejection, and noise figure performance
are typically +32.5dBm, 68dBc, and 8.5dB, respectively.
Differential IF Output
The MAX2044 has a 50MHz to 500MHz IF frequency
range, where the low-end frequency depends on the
frequency response of the external IF components.
The MAX2044’s differential ports are ideal for provid-
ing enhanced 2RF - 2LO and 2LO - 2RF performance.
Single-ended IF applications require a 1:1 (impedance
ratio) balun to transform the 50I differential IF imped-
ance to a 50I single-ended system. An MABAES0029
1:1 transformer is used to characterize the part and its
loss is included in the data presented in this data sheet.
The user can connect a differential IF amplifier or SAW
filter to the mixer IF port, but a DC block is required on
both IF+/IF- ports to keep external DC from entering the
IF ports of the mixer. Capacitors C4 and C7 are required
DC blocks since the IF+ and IF- terminals are internally
biased to VCC/2.
Applications Information
Input and Output Matching
The RF input provides a 50I match when combined with
a series DC-blocking capacitor. Use an 8.2pF capaci-
tor value for RF frequencies ranging from 3000MHz to
4000MHz. See Tables 1 and 2 for alternative compo-
nents that provide an excellent match over the 2300MHz
to 3000MHz band. The LO input is internally matched to
50I; use a 2pF DC-blocking capacitor to cover opera-
tions spanning the 2600MHz to 4300MHz range. The
IF output impedance is 50I (differential). For evalua-
tion, an external low-loss 1:1 (impedance ratio) balun
transforms this impedance down to a 50I single-ended
output (see the Typical Application Circuit).
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
36 _____________________________________________________________________________________
Reduced-Power Mode
The MAX2044 has one pin (LOBIAS) that allows an
external resistor to set the internal bias current. Nominal
values for this resistor are shown in Tables 1 and 2.
Larger value resistors can be used to reduce power
dissipation at the expense of some performance loss. If
Q1% resistors are not readily available, substitute with
Q5% resistors.
Significant reductions in power consumption can also
be realized by operating the mixer at a supply voltage
of 3.3V. Doing so reduces the overall power consump-
tion by typically 42%. See the 3.3V Supply AC Electrical
Characteristics table and the relevant 3.3V curves in the
Typical Operating Characteristics section to evaluate the
power vs. performance trade-offs.
Layout Considerations
A properly designed PCB is an essential part of any RF/
microwave circuit. Keep RF signal lines as short as pos-
sible to reduce losses, radiation, and inductance. The
load impedance presented to the mixer must be such
that any capacitance from both IF- and IF+ to ground
does not exceed several picofarads. For the best per-
formance, route the ground pin traces directly to the
exposed pad under the package. The PCB exposed pad
MUST be connected to the ground plane of the PCB. It is
suggested that multiple vias be used to connect this pad
to the lower level ground planes. This method provides a
good RF/thermal-conduction path for the device. Solder
the exposed pad on the bottom of the device package
to the PCB.
Power-Supply Bypassing
Proper voltage supply bypassing is essential for high-
frequency circuit stability. Bypass each VCC pin with the
capacitors shown in the Typical Application Circuit and
see Table 1.
Table 1. Downconverter Mode Component Values
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1 1
3.3nH microwave inductor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.Coilcraft, Inc.
8.2pF microwave capacitor (0402). Use for RF
frequencies ranging from 3000MHz to 4000MHz.Murata Electronics North America, Inc.
C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc.
C3, C9 0 Not installed, microwave capacitors (0402)
C4, C7 2 470pF microwave capacitors (0402) Murata Electronics North America, Inc.
C5 0 Not installed, microwave capacitor (0402)
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C12
10.3pF microwave capacitor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.Murata Electronics North America, Inc.
0Microwave capacitor (0402) not installed for RF
frequencies ranging from 3000MHz to 4000MHz.
R1 1
698I ±1% resistor (0402). Use for VCC = +5.0V
applications. Digi-Key Corp.
698I ±1% resistor (0402). Use for VCC = +3.3V
applications. Digi-Key Corp.
T1 1 1:1 IF balun MABAES0029 M/A-Com
U1 1 MAX2044 IC (20 TQFN) Maxim Integrated Products, Inc.
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
______________________________________________________________________________________ 37
Table 2. Upconverter Mode Component Values
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2044’s 20-pin thin
QFN package provides a low thermal-resistance path
to the die. It is important that the PCB on which the
MAX2044 is mounted be designed to conduct heat from
the EP. In addition, provide the EP with a low-inductance
path to electrical ground. The EP MUST be soldered to
a ground plane on the PCB, either directly or through an
array of plated via holes.
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1 1
3.3nH microwave inductor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.Coilcraft, Inc.
8.2pF microwave capacitor (0402). Use for RF
frequencies ranging from 3000MHz to 4000MHz.Murata Electronics North America, Inc.
C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc.
C3, C9 0 Not installed, microwave capacitors (0402)
C4, C7 2 470pF microwave capacitors (0402) Murata Electronics North America, Inc.
C5 0 Not installed, microwave capacitor (0402)
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C12
10.3pF microwave capacitor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.Murata Electronics North America, Inc.
0Microwave capacitor (0402) not installed for RF
frequencies ranging from 3000MHz to 4000MHz.
R1 1
698I ±1% resistor (0402). Use for VCC = +5.0V
applications. Digi-Key Corp.
698I ±1% resistor (0402). Use for VCC = +3.3V
applications. Digi-Key Corp.
T1 1 1:1 IF balun MABAES0029 M/A-Com
U1 1 MAX2044 IC (20 TQFN) Maxim Integrated Products, Inc.
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
38 _____________________________________________________________________________________
Typical Application Circuit
NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT
THESE PINS TO GROUND TO IMPROVE ISOLATION.
PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
*C12 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS.
1920 18 17
76 8
RF
GND
GND
9
VCC 1
2
4
5
15
14
12
11
LOBIAS
VCC
VCC
GND
GND
GND 313
16
10
VCC
GND
GND
LO
GND
IF+
IF-
GND
GND
GND
R1
C10
C8
C9
C11
LO
INPUT
C6
C1
RF
VCC
VCC
1:1
C5
C4 C7
IF
T1
5
41
2
N.C.
3
C3 C2
VCC
C12*
MAX2044
EP
U1
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 39
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land pat-
terns, go to www.maxim-ic.com/packages. Note that
a “+”, “#”, or “-” in the package code indicates RoHS
status only. Package drawings may show a different suf-
fix character, but the drawing pertains to the package
regardless of RoHS status.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 TQFN-EP T2055+3 21-0140