Document No. E0433E10 (Ver. 1.0)
Date Published November 2003 (K) Japan
URL: http://www.elpida.com
Elpida Memory,Inc. 2003
PRELIMINARY DATA SHEET
2GB Registered DDR SDRAM DIMM
EBD21RD4ADNA (256M words ×
××
× 72 bits, 2 Ranks)
Description
The EBD21RD4ADNA is a 256M words × 72 bits, 2
ranks Double Data Rate (DDR) SDRAM Module,
mounting 36 pieces of DDR SDRAM sealed in TCP
package. Read and write operations are performed at
the cross points of the CK and the /CK. This high-
speed data transfer is realized by the 2-bit prefetch-
pipelined architecture. Data strobe (DQS) both for
read and write are available for high speed and reliable
data bus design. By setting extended mode register,
the on-chip Delay Locked Loop (DLL) can be set
enable or disable. This module provides high density
mounting without utilizing surface mount technology.
Decoupling capacitors are mounted beside each TCP
on the module board.
Note: Do not push the cover or drop the modules in
order to avoid mechanical defects, which may
result in electrical defects.
Features
184-pin socket type dual in line memory module
(DIMM)
PCB height: 30.48mm
Lead pitch: 1.27mm
2.5V power supply
Data rate: 333Mbps/266Mbps (max.)
2.5 V (SSTL_2 compatible) I/O
Double Data Rate architecture; two data transfers per
clock cycle
Bi-directional, data strobe (DQS) is transmitted
/received with data, to be used in capturing data at
the receiver
Data inputs and outputs are synchronized with DQS
4 internal banks for concurrent operation
(Component)
DQS is edge aligned with data for READs; center
aligned with data for WRITEs
Differential clock inputs (CK and /CK)
DLL aligns DQ and DQS transitions with CK
transitions
Commands entered on each positive CK edge; data
referenced to both edges of DQS
Auto precharge option for each burst access
Programmable burst length: 2, 4, 8
Programmable /CAS latency (CL): 2, 2.5
Refresh cycles: (8192 refresh cycles /64ms)
7.8µs maximum average periodic refresh interval
2 variations of refresh
Auto refresh
Self refresh
1 piece of PLL clock driver, 1 piece of register driver
and 1 piece of serial EEPROM (2k bits EEPROM) for
Presence Detect (PD)
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
2
Ordering Information
Part number
Data rate
Mbps (max.)
Component JEDEC speed bin*1
(CL-tRCD-tRP)
Package
Contact
pad
Mounted devices
EBD21RD4ADNA-6B
EBD21RD4ADNA-7A
EBD21RD4ADNA-7B
333
266
266
DDR333B (2.5-3-3)
DDR266A (2-3-3)
DDR266B (2.5-3-3)
184-pin
DIMM Gold 512M bits DDR
SDRAM TCP*2
Notes: 1. Module /CAS latency = component CL + 1
2. Please refer to 512Mb DDR TSOP product datasheet (E0384E) for electrical characteristics.
Pin Configurations
1 pin Front side
Back side
52 pin53 pin 92 pin
93 pin 144 pin 145 pin 184 pin
Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name
1 VREF 47 DQS8 93 VSS 139 VSS
2 DQ0 48 A0 94 DQ4 140 DM8/DQS17
3 VSS 49 CB2 95 DQ5 141 A10
4 DQ1 50 VSS 96 VDD 142 CB6
5 DQS0 51 CB3 97 DM0/DQS9 143 VDD
6 DQ2 52 BA1 98 DQ6 144 CB7
7 VDD 53 DQ32 99 DQ7 145 VSS
8 DQ3 54 VDD 100 VSS 146 DQ36
9 NC 55 DQ33 101 NC 147 DQ37
10 /RESET 56 DQS4 102 NC 148 VDD
11 VSS 57 DQ34 103 NC 149 DM4/DQS13
12 DQ8 58 VSS 104 VDD 150 DQ38
13 DQ9 59 BA0 105 DQ12 151 DQ39
14 DQS1 60 DQ35 106 DQ13 152 VSS
15 VDD 61 DQ40 107 DM1/DQS10 153 DQ44
16 NC 62 VDD 108 VDD 154 /RAS
17 NC 63 /WE 109 DQ14 155 DQ45
18 VSS 64 DQ41 110 DQ15 156 VDD
19 DQ10 65 /CAS 111 CKE1 157 /CS0
20 DQ11 66 VSS 112 VDD 158 /CS1
21 CKE0 67 DQS5 113 NC 159 DM5/DQS14
22 VDD 68 DQ42 114 DQ20 160 VSS
23 DQ16 69 DQ43 115 A12 161 DQ46
24 DQ17 70 VDD 116 VSS 162 DQ47
25 DQS2 71 NC 117 DQ21 163 NC
26 VSS 72 DQ48 118 A11 164 VDD
27 A9 73 DQ49 119 DM2/DQS11 165 DQ52
28 DQ18 74 VSS 120 VDD 166 DQ53
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
3
Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name
29 A7 75 NC 121 DQ22 167 NC
30 VDD 76 NC 122 A8 168 VDD
31 DQ19 77 VDD 123 DQ23 169 DM6/DQS15
32 A5 78 DQS6 124 VSS 170 DQ54
33 DQ24 79 DQ50 125 A6 171 DQ55
34 VSS 80 DQ51 126 DQ28 172 VDD
35 DQ25 81 VSS 127 DQ29 173 NC
36 DQS3 82 VDDID 128 VDD 174 DQ60
37 A4 83 DQ56 129 DM3/DQS12 175 DQ61
38 VDD 84 DQ57 130 A3 176 VSS
39 DQ26 85 VDD 131 DQ30 177 DM7/DQS16
40 DQ27 86 DQS7 132 VSS 178 DQ62
41 A2 87 DQ58 133 DQ31 179 DQ63
42 VSS 88 DQ59 134 CB4 180 VDD
43 A1 89 VSS 135 CB5 181 SA0
44 CB0 90 NC 136 VDD 182 SA1
45 CB1 91 SDA 137 CK0 183 SA2
46 VDD 92 SCL 138 /CK0 184 VDDSPD
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
4
Pin Description
Pin name Function
A0 to A12
Address input
Row address A0 to A12
Column address A0 to A9, A11, A12
BA0, BA1 Bank select address
DQ0 to DQ63 Data input/output
CB0 to CB7 Check bit (Data input/output)
/RAS Row address strobe command
/CAS Column address strobe command
/WE Write enable
/CS0, /CS1 Chip select
CKE0, CKE1 Clock enable
CK0 Clock input
/CK0 Differential clock input
DQS0 to DQS8 Input and output data strobe
DM0 to DM8/DQS9 to DQS17 Input and output data strobe
SCL Clock input for serial PD
SDA Data input/output for serial PD
SA0 to SA2 Serial address input
VDD Power for internal circuit
VDDSPD Power for serial EEPROM
VREF Input reference voltage
VSS Ground
VDDID VDD identification flag
/RESET Reset pin (forces register inputs low)
NC No connection
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
5
Serial PD Matrix*1
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
0 Number of bytes utilized by module
manufacturer 1 0 0 0 0 0 0 0 80H 128
1 Total number of bytes in serial PD
device 0 0 0 0 1 0 0 0 08H 256 byte
2 Memory type 0 0 0 0 0 1 1 1 07H SDRAM DDR
3 Number of row address 0 0 0 0 1 1 0 1 0DH 13
4 Number of column address 0 0 0 0 1 1 0 0 0CH 12
5 Number of DIMM ranks 0 0 0 0 0 0 1 0 02H 2
6 Module data width 0 1 0 0 1 0 0 0 48H 72 bits
7 Module data width continuation 0 0 0 0 0 0 0 0 00H 0 (+)
8 Voltage interface level of this assembly 0 0 0 0 0 1 0 0 04H SSTL 2.5V
9 DDR SDRAM cycle time, CL = X
-6B 0 1 1 0 0 0 0 0 60H CL = 2.5*3
-7A, -7B 0 1 1 1 0 1 0 1 75H
10 SDRAM access from clock (tAC)
-6B 0 1 1 1 0 0 0 0 70H 0.70ns*3
-7A, -7B 0 1 1 1 0 1 0 1 75H 0.75ns*3
11 DIMM configuration type 0 0 0 0 0 0 1 0 02H ECC
12 Refresh rate/type 1 0 0 0 0 0 1 0 82H 7.8 µs
Self refresh
13 Primary SDRAM width 0 0 0 0 0 1 0 0 04H × 4
14 Error checking SDRAM width 0 0 0 0 0 1 0 0 04H × 4
15
SDRAM device attributes:
Minimum clock delay back-to-back
column access
0 0 0 0 0 0 0 1 01H 1 CLK
16 SDRAM device attributes:
Burst length supported 0 0 0 0 1 1 1 0 0EH 2, 4, 8
17 SDRAM device attributes: Number of
banks on SDRAM device 0 0 0 0 0 1 0 0 04H 4
18 SDRAM device attributes:
/CAS latency 0 0 0 0 1 1 0 0 0CH 2, 2.5
19 SDRAM device attributes:
/CS latency 0 0 0 0 0 0 0 1 01H 0
20 SDRAM device attributes:
/WE latency 0 0 0 0 0 0 1 0 02H 1
21 SDRAM module attributes 0 0 1 0 0 1 1 0 26H Registered
22 SDRAM device attributes: General 1 1 0 0 0 0 0 0 C0H ± 0.2V
23 Minimum clock cycle time at CLX - 0.5
-6B, -7A 0 1 1 1 0 1 0 1 75H CL = 2*3
-7B 1 0 1 0 0 0 0 0 A0H
24
Maximum data access time (tAC) from
clock at CLX - 0.5
-6B
0 1 1 1 0 0 0 0 70H 0.70ns*3
-7A, -7B 0 1 1 1 0 1 0 1 75H 0.75ns*3
25 Minimum clock cycle time at CLX - 1 0 0 0 0 0 0 0 0 00H
26 Maximum data access time (tAC) from
clock at CLX - 1 0 0 0 0 0 0 0 0 00H
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
6
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
27 Minimum row precharge time (tRP)
-6B 0 1 0 0 1 0 0 0 48H 18ns
-7A, -7B 0 1 0 1 0 0 0 0 50H 20ns
28
Minimum row active to row active
delay (tRRD)
-6B
0 0 1 1 0 0 0 0 30H 12ns
-7A, -7B 0 0 1 1 1 1 0 0 3CH 15ns
29 Minimum /RAS to /CAS delay (tRCD)
-6B 0 1 0 0 1 0 0 0 48H 18ns
-7A, -7B 0 1 0 1 0 0 0 0 50H 20ns
30
Minimum active to precharge time
(tRAS)
-6B
0 0 1 0 1 0 1 0 2AH 42ns
-7A, -7B 0 0 1 0 1 1 0 1 2DH 45ns
31 Module rank density 0 0 0 0 0 0 0 1 01H 2 banks
1GB
32
Address and command setup time
before clock (tIS)
-6B
0 1 1 1 0 1 0 1 75H 0.75ns*3
-7A, -7B 1 0 0 1 0 0 0 0 90H 0.9ns*3
33
Address and command hold time after
clock (tIH)
-6B
0 1 1 1 0 1 0 1 75H 0.75ns*3
-7A, -7B 1 0 0 1 0 0 0 0 90H 0.9ns*3
34
Data input setup time before clock
(tDS)
-6B
0 1 0 0 0 1 0 1 45H 0.45ns*3
-7A, -7B 0 1 0 1 0 0 0 0 50H 0.5ns*3
35 Data input hold time after clock (tDH)
-6B 0 1 0 0 0 1 0 1 45H 0.45ns*3
-7A, -7B 0 1 0 1 0 0 0 0 50H 0.5ns*3
36 to 40 Superset information 0 0 0 0 0 0 0 0 00H Future use
41 Active command period (tRC)
-6B 0 0 1 1 1 1 0 0 3CH 60ns*3
-7A, -7B 0 1 0 0 0 0 0 1 41H 65ns*3
42
Auto refresh to active/
Auto refresh command cycle (tRFC)
-6B
0 1 0 0 1 0 0 0 48H 72ns*3
-7A, -7B 0 1 0 0 1 0 1 1 4BH 75ns*3
43 SDRAM tCK cycle max. (tCK max.) 0 0 1 1 0 0 0 0 30H 12ns*3
44 Dout to DQS skew
-6B 0 0 1 0 1 1 0 1 2DH 450ps*3
-7A, -7B 0 0 1 1 0 0 1 0 32H 500ps*3
45 Data hold skew (tQHS)
-6B 0 1 0 1 0 1 0 1 55H 550ps*3
-7A, -7B 0 1 1 1 0 1 0 1 75H 750ps*3
46 to 61 Superset information 0 0 0 0 0 0 0 0 00H Future use
62 SPD revision 0 0 0 0 0 0 0 0 00H Initial
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
7
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
63 Checksum for bytes 0 to 62
-6B 1 1 0 1 0 1 0 0 D4H 212
-7A 1 0 0 0 1 0 1 1 8BH 139
-7B 1 0 1 1 0 1 1 0 B6H 182
64 Manufacturer’s JEDEC ID code 0 1 1 1 1 1 1 1 7FH
65 Manufacturer’s JEDEC ID code 0 1 1 1 1 1 1 1 7FH
66 Manufacturer’s JEDEC ID code 1 1 1 1 1 1 1 0 FEH Elpida Memory
67 to 71 Manufacturer’s JEDEC ID code 0 0 0 0 0 0 0 0 00H
72 Manufacturing location × × × × × × × × ×× *2 (ASCII-8bit
code)
73 Module part number 0 1 0 0 0 1 0 1 45H E
74 Module part number 0 1 0 0 0 0 1 0 42H B
75 Module part number 0 1 0 0 0 1 0 0 44H D
76 Module part number 0 0 1 1 0 0 1 0 32H 2
77 Module part number 0 0 1 1 0 0 0 1 31H 1
78 Module part number 0 1 0 1 0 0 1 0 52H R
79 Module part number 0 1 0 0 0 1 0 0 44H D
80 Module part number 0 0 1 1 0 1 0 0 34H 4
81 Module part number 0 1 0 0 0 0 0 1 41H A
82 Module part number 0 1 0 0 0 1 0 0 44H D
83 Module part number 0 1 0 0 1 1 1 0 4EH N
84 Module part number 0 1 0 0 0 0 0 1 41H A
85 Module part number 0 0 1 0 1 1 0 1 2DH
86 Module part number
-6B 0 0 1 1 0 1 1 0 36H 6
-7A, -7B 0 0 1 1 0 1 1 1 37H 7
87 Module part number
-7A 0 1 0 0 0 0 0 1 41H A
-6B, -7B 0 1 0 0 0 0 1 0 42H B
88 to 90 Module part number 0 0 1 0 0 0 0 0 20H (Space)
91 Revision code 0 0 1 1 0 0 0 0 30H Initial
92 Revision code 0 0 1 0 0 0 0 0 20H (Space)
93 Manufacturing date × × × × × × × × ×× Year code
(HEX)
94 Manufacturing date × × × × × × × × ×× Week code
(HEX)
95 to 98 Module serial number *2
99 to 127 Manufacturer specific data
Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High“.
2. Bytes 95 through 98 are assembly serial number.
3. These specifications are defined based on component specification, not module.
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
8
Block Diagram
DQ
DQS DM
DQ0 to DQ3 4
DQS0 R
S
R
S
/CS
D0
/RCS0
VSS
DQ
DQ8 to DQ11 4
DQS1 R
S
R
S
D1
DQ
DQ16 to DQ19 4
DQS2 R
S
R
S
D2
DQ
DQ24 to DQ27 4
DQS3 R
S
R
S
D3
DQ
DQ32 to DQ35 4
DQS4 R
S
R
S
D4
DQ
DQ40 to DQ43 4
DQS5 R
S
R
S
D5
DQ
DQ48 to DQ51 4
DQS6 R
S
R
S
D6
DQ
DQ56 to DQ59 4
DQS7 R
S
R
S
D7
DQ
CB0 to CB3 4
DQS8 R
S
R
S
D8
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQ
DQS DM
/CS
D18
DQ D19
DQ D20
DQ D21
DQ D22
DQ D23
DQ D24
DQ D25
DQ D26
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQ
DQS DM
DQ4 to DQ7 4
DM0/DQS9 R
S
R
S
/CS
D9
DQ
DQ12 to DQ15 4
DM1/DQS10 R
S
R
S
D10
DQ
DQ20 to DQ23 4
DM2/DQS11 R
S
R
S
D11
DQ
DQ28 to DQ31 4
DM3/DQS12 R
S
R
S
D12
DQ
DQ36 to DQ39 4
DM4/DQS13 R
S
R
S
D13
DQ
DQ44 to DQ47 4
DM5/DQS14 R
S
R
S
D14
DQ
DQ52 to DQ55 4
DM6/DQS15 R
S
R
S
D15
DQ
DQ60 to DQ63 4
DM7/DQS16 R
S
R
S
D16
DQ
CB4 to CB7 4
DM8/DQS17 R
S
R
S
D17
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQ
DQS DM
/CS
D27
DQ D28
DQ D29
DQ D30
DQ D31
DQ D32
DQ D33
DQ D34
DQ D35
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
DQS DM/CS
/RCS1
* D0 to D35: 512M bits DDR SDRAM TCP
U0: 2k bits EEPROM
R
S
: 22(DQ, DQS)
PLL: CDCV857
Register: SSTV32852
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
Serial PD
SDA
A0 A1 A2
SA0 SA1 SA2
SCL SCL U0 SDA
Notes:
1. The SDA pull-up resistor is required due to
the open-drain/open-collector output.
2. The SCL pull-up resistor is recommended
because of the normal SCL line inacitve
"high" state.
VDD
D0 to D35
D0 to D35
D0 to D35
VSS
VREF
VDDID open
/CS0
/CS1
BA0 to BA1
A0 to A12
/RAS
/CAS
CKE0
CKE1
/WE
/RCS0 -> /CS: SDRAMs D0 to D17
/RCS1 -> /CS: SDRAMs D18 to D35
RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D35
RA0 to RA12 -> A0 to A12: SDRAMs D0 to D35
/RRAS -> /RAS: SDRAMs D0 to D35
/RCAS -> /CAS: SDRAMs D0 to D35
RCKE0 -> CKE: SDRAMs D0 to D17
RCKE1 -> CKE: SDRAMs D18 to D35
/RWE -> /WE: SDRAMs D0 to D35
R
E
G
I
S
T
E
R
PCK
/PCK
CK0, /CK0
PLL*
/RESET
Note: Wire per Clock loading table/Wiring diagrams.
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
9
Differential Clock Net Wiring (CK0, /CK0)
120
240
0ns (nominal)
120
120
CK0
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl
be set to 0 ns (nominal).
2. Input, output and feedback clock lines are terminated from line to line as shown, and not
from line to ground.
3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired
in a similar manner.
4. Termination resistors for feedback path clocks are located after the pins of the PLL.
C
/CK0
SDRAM
stack
SDRAM
stack
Register
PLL
Feedback
IN
OUT1
OUT'N'
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
10
Electrical Specifications
All voltages are referenced to VSS (GND).
Absolute Maximum Ratings
Parameter Symbol Value Unit Note
Voltage on any pin relative to VSS VT –1.0 to +3.6 V
Supply voltage relative to VSS VDD –1.0 to +3.6 V
Short circuit output current IOS 50 mA
Power dissipation PT 18 W
Operating ambient temperature TA 0 to +70 °C 1
Storage temperature Tstg –55 to +125 °C
Note:1. DDR SDRAM component specification
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
DC Operating Conditions (TA = 0 to +70°C) (DDR SDRAM Component Specification)
Parameter Symbol min. typ. max. Unit Notes
Supply voltage VDD,VDDQ 2.3 2.5 2.7 V 1
VSS 0 0 0 V
Input reference voltage VREF 0.49 × VDDQ 0.50 × VDDQ 0.51 × VDDQ V
Termination voltage VTT VREF – 0.04 VREF VREF + 0.04 V
Input high voltage VIH (DC) VREF + 0.15 VDDQ + 0.3 V 2
Input low voltage VIL (DC) –0.3 VREF – 0.15 V 3
Input voltage level,
CK and /CK inputs VIN (DC) –0.3 VDDQ + 0.3 V 4
Input differential cross point
voltage, CK and /CK inputs VIX (DC) 0.5 × VDDQ 0.2V 0.5 × VDDQ 0.5 × VDDQ + 0.2V V
Input differential voltage,
CK and /CK inputs VID (DC) 0.36 VDDQ + 0.6 V 5, 6
Notes: 1. VDDQ must be lower than or equal to VDD.
2. VIH is allowed to exceed VDD up to 3.6V for the period shorter than or equal to 5ns.
3. VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns.
4. VIN (DC) specifies the allowable DC execution of each differential input.
5. VID (DC) specifies the input differential voltage required for switching.
6. VIH (CK) min assumed over VREF + 0.18V, VIL (CK) max assumed under VREF 0.18V
if measurement.
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
11
DC Characteristics 1 (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
Parameter Symbol Grade max. Unit Test condition Notes
Operating current (ACTV-PRE) IDD0 -6B
-7A, -7B
4160
3700 mA CKE VIH,
tRC = tRC (min.) 1, 2, 9
Operating current
(ACTV-READ-PRE) IDD1 -6B
-7A, -7B
4880
4330 mA CKE VIH, BL = 4,
CL = 3.5, tRC = tRC (min.) 1, 2, 5
Idle power down standby current IDD2P -6B
-7A, -7B
395
385 mA CKE VIL 4
Floating idle
Standby current IDD2F -6B
-7A, -7B
1370
1180 mA CKE VIH, /CS VIH
DQ, DQS, DM = VREF 4, 5
Quiet idle
Standby current IDD2Q -6B
-7A, -7B
1010
1000 mA CKE VIH, /CS VIH
DQ, DQS, DM = VREF 4, 10
Active power down standby
current IDD3P -6B
-7A, -7B
1010
1000 mA CKE VIL 3
Active standby current IDD3N -6B
-7A, -7B
2630
2260 mA CKE VIH, /CS VIH
tRAS = tRAS (max.) 3, 5, 6
Operating current
(Burst read operation) IDD4R -6B
-7A, -7B
5600
4870 mA CKE VIH, BL = 2,
CL = 3.5 1, 2, 5, 6
Operating current
(Burst write operation) IDD4W -6B
-7A, -7B
5600
4870 mA CKE VIH, BL = 2,
CL = 3.5 1, 2, 5, 6
Auto refresh current IDD5 -6B
-7A, -7B
7220
6670 mA tRFC = tRFC (min.),
Input VIL or VIH
Self refresh current IDD6 -6B
-7A, -7B
430
420 mA Input VDD – 0.2 V
Input 0.2 V
Operating current
(4 banks interleaving) IDD7A -6B
-7A, -7B
10280
8650 mA BL = 4 5, 6, 7
Notes. 1. These IDD data are measured under condition that DQ pins are not connected.
2. One bank operation.
3. One bank active.
4. All banks idle.
5. Command/Address transition once per one cycle.
6. DQ, DM, DQS transition twice per one cycle.
7. 4 banks active. Only one bank is running at tRC = tRC (min.)
8. The IDD data on this table are measured with regard to tCK = tCK (min.) in general.
9. Command/Address transition once per one every two clock cycles.
10. Command/Address stable at VIH or VIL.
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
12
DC Characteristics 2 (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
(DDR SDRAM Component Specification)
Parameter Symbol min. max. Unit Test condition Notes
Input leakage current ILI –2 2 µA VDD VIN VSS
Output leakage current ILO –5 5 µA VDDQ VOUT VSS
Output high current IOH –15.2 mA VOUT = 1.95V
Output low current IOL 15.2 mA VOUT = 0.35V
Pin Capacitance (TA = 25°C, VDD, VDDQ = 2.5V ± 0.2V)
Parameter Symbol Pins max. Unit Notes
Input capacitance CI1 Address, /RAS, /CAS, /WE,
/CS, CKE 20 pF 1, 3
Input capacitance CI2 CK, /CK 20 pF 1, 3
Data and DQS input/output
capacitance CO DQ, DQS, CB, DM 20 pF 1, 2, 3
Notes: 1. These parameters are measured on conditions: f = 100MHz, VOUT = VDDQ/2, VOUT = 0.2V.
2. Dout circuits are disabled.
3. This parameter is sampled and not 100% tested.
AC Characteristics (TA = 0 to +70°
°°
°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
(DDR SDRAM Component Specification)
-6B -7A -7B
Parameter Symbol min. max. min. max min. max. Unit Notes
Clock cycle time
(CL = 2) tCK 7.5 12 7.5 12 10 12 ns 10
(CL = 2.5) tCK 6 12 7.5 12 7.5 12 ns
CK high-level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK low-level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK half period tHP min
(tCH, tCL) min
(tCH, tCL) min
(tCH, tCL) tCK
DQ output access time from CK, /CK tAC –0.7 0.7 –0.75 0.75 –0.75 0.75 ns 2, 11
DQS output access time from CK,
/CK tDQSCK –0.6 0.6 –0.75 0.75 –0.75 0.75 ns 2, 11
DQS to DQ skew tDQSQ 0.45 0.5 0.5 ns 3
DQ/DQS output hold time from DQS tQH tHP – tQHS tHP – tQHS tHP – tQHS ns
Data hold skew factor tQHS 0.55 0.75 0.75 ns
Data-out high-impedance time from
CK, /CK tHZ –0.7 0.7 –0.75 0.75 –0.75 0.75 ns 5, 11
Data-out low-impedance time from
CK, /CK tLZ –0.7 0.7 –0.75 0.75 –0.75 0.75 ns 6, 11
Read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK
Read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
DQ and DM input setup time tDS 0.45 0.5 0.5 ns 8
DQ and DM input hold time tDH 0.45 0.5 0.5 ns 8
DQ and DM input pulse width tDIPW 1.75 1.75 1.75 ns 7
Write preamble setup time tWPRES 0 0 0 ns
Write preamble tWPRE 0.25 0.25 0.25 tCK
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
13
-6B -7A -7B
Parameter Symbol min. max. min. max min. max. Unit Notes
Write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK 9
Write command to first DQS latching
transition tDQSS 0.75 1.25 0.75 1.25 0.75 1.25 tCK
DQS falling edge to CK setup time tDSS 0.2 0.2 0.2 tCK
DQS falling edge hold time from CK tDSH 0.2 0.2 0.2 tCK
DQS input high pulse width tDQSH 0.35 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 0.35 tCK
Address and control input setup time tIS 0.75 0.9 0.9 ns 8
Address and control input hold time tIH 0.75 0.9 0.9 ns 8
Address and control input pulse width tIPW 2.2 2.2 2.2 ns 7
Mode register set command cycle
time tMRD 2 2 2 tCK
Active to Precharge command period tRAS 42 120000 45 120000 45 120000 ns
Active to Active/Auto refresh
command period tRC 60 65 65 ns
Auto refresh to Active/Auto refresh
command period tRFC 72 75 75 ns
Active to Read/Write delay tRCD 18 20 20 ns
Precharge to active command period tRP 18 20 20 ns
Active to Autoprecharge delay tRAP tRCD min. tRCD min. tRCD min. ns
Active to active command period tRRD 12 15 15 ns
Write recovery time tWR 15 15 15 ns
Auto precharge write recovery and
precharge time tDAL (tWR/tCK)+
(tRP/tCK) (tWR/tCK)+
(tRP/tCK) (tWR/tCK)+
(tRP/tCK) tCK 13
Internal write to Read command
delay tWTR 1 1 1 tCK
Average periodic refresh interval tREF 7.8 7.8 7.8 µs
Notes: 1. All the AC parameters listed in this data sheet is component specifications. For AC testing conditions,
refer to the corresponding component data sheet.
2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal
transition is defined to occur when the signal level crossing VTT.
3. The timing reference level is VTT.
4. Output valid window is defined to be the period between two successive transition of data out or DQS
(read) signals. The signal transition is defined to occur when the signal level crossing VTT.
5. tHZ is defined as DOUT transition delay from Low-Z to High-Z at the end of read burst operation. The
timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage
level, but specify when the device output stops driving.
6. tLZ is defined as DOUT transition delay from High-Z to Low-Z at the beginning of read operation. This
parameter is not referred to a specific DOUT voltage level, but specify when the device output begins
driving.
7. Input valid windows is defined to be the period between two successive transition of data input or DQS
(write) signals. The signal transition is defined to occur when the signal level crossing VREF.
8. The timing reference level is VREF.
9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A specific
reference voltage to judge this transition is not given.
10. tCK (max.) is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is not
assured.
11. tCK = tCK (min.) when these parameters are measured. Otherwise, absolute minimum values of these
values are 10% of tCK.
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
14
12. VDD is assumed to be 2.5V ± 0.2V. VDD power supply variation per cycle expected to be less than
0.4V/400 cycle.
13. tDAL = (tWR/tCK)+(tRP/tCK)
For each of the terms above, if not already an integer, round to the next highest integer.
Example: For –7A Speed at CL = 2.5, tCK = 7.5ns, tWR = 15ns and tRP= 20ns,
tDAL = (15ns/7.5ns) + (20ns/7.5ns) = (2) + (3)
tDAL = 5 clocks
Timing Parameter Measured in Clock Cycle for Registered DIMM
Number of clock cycle
tCK 6ns 7.5ns
Parameter Symbol min. min. min. min. Unit
Write to pre-charge command delay (same bank) tWPD 4 + BL/2 3 + BL/2 tCK
Read to pre-charge command delay (same bank) tRPD BL/2 BL/2 tCK
Write to read command delay (to input all data) tWRD 2 + BL/2 2 + BL/2 tCK
Burst stop command to write command delay
(CL = 3) tBSTW 2 tCK
(CL = 3.5) tBSTW 3 3 tCK
Burst stop command to DQ High-Z
(CL = 3) tBSTZ 3 3 tCK
(CL = 3.5) tBSTZ 3.5 3.5 3.5 3.5 tCK
Read command to write command delay
(to output all data)
(CL = 3)
tRWD 2 + BL/2 tCK
(CL = 3.5) tRWD 3 + BL/2 3 + BL/2 tCK
Pre-charge command to High-Z
(CL = 3) tHZP 3 3 tCK
(CL = 3.5) tHZP 3.5 3.5 3.5 3.5 tCK
Write command to data in latency tWCD 2 2 tCK
Write recovery tWR 2 1 tCK
Register set command to active or register set
command tMRD 2 2 tCK
Self refresh exit to non-read command tSNR 12 10 tCK
Self refresh exit to read command tSRD 200 200 tCK
Power down entry tPDEN 1 1 1 1 tCK
Power down exit to command input tPDEX 1 1 tCK
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
15
Pin Functions
CK, /CK (input pin)
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross
point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and
the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK.
/CS (input pin)
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal
operations (bank active, burst operations, etc.) are held.
/RAS, /CAS, and /WE (input pins)
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.
See "Command operation".
A0 to A12 (input pins)
Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the
VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11, AY12) is loaded via theA0 to the
A9, the A11 and the A12 at the cross point of the CK rising edge and the VREF level in a read or a write command
cycle. This column address becomes the starting address of a burst operation.
A10 (AP) (input pin)
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.
BA0, BA1 (input pin)
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See
Bank Select Signal Table)
[Bank Select Signal Table]
BA0 BA1
Bank 0 L L
Bank 1 H L
Bank 2 L H
Bank 3 H H
Remark: H: VIH. L: VIL.
CKE (input pin)
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the
CKE is driven low and exited when it resumes to high.
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold
time tIH.
DQ, CB (input and output pins)
Data are input to and output from these pins.
DQS (input and output pin)
DQS provide the read data strobes (as output) and the write data strobes (as input).
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
16
VDD (power supply pins)
2.5V is applied. (VDD is for the internal circuit.)
VDDSPD (power supply pin)
2.5V is applied (For serial EEPROM).
VSS (power supply pin)
Ground is connected.
/RESET (input pin)
LVCMOS reset input. When /RESET is low, all registers are reset and all outputs are low.
Detailed Operation Part and Timing Waveforms
Refer to the EDD5104ADTA, EDD5108ADTA, EDD5116ADTA datasheet (E0384E). DM pins of component device
fixed to VSS level on the module board. DIMM /CAS latency = component CL + 1 for registered type.
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
17
Physical Outline
Detail A
0.20 ± 0.15
2.50 ± 0.20
1.27 typ
133.35 ± 0.15
128.95
2.30
64.77 49.53
(64.48)
AB
1 92
93
R 2.00
184
1.00 ± 0.05
Unit: mm
Note: Tolerance on all dimensions ± 0.13 unless otherwise specified.
1.27 ± 0.10
3.00 min
4.00 min
10.00
4.00 ± 0.10
17.80
30.48 ± 0.15
4.80
2 – φ 2.50 ± 0.10
Component area
(Front)
Component area
(Back)
(DATUM -A-)
6.35
Detail B
3.80
1.80 ± 0.10
2.175
6.62
R 0.90
(DATUM -A-)
ECA-TS2-0058-01
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
18
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on
these components to prevent damaging them.
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,
which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other.
Modules in contact with other modules may cause excessive mechanical stress, which may damage the
modules.
MDE0202
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to V
DD
or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
EBD21RD4ADNA
Preliminary Data Sheet E0433E10 (Ver. 1.0)
19
M01E0107
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be
used in a non-condensing environment.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.