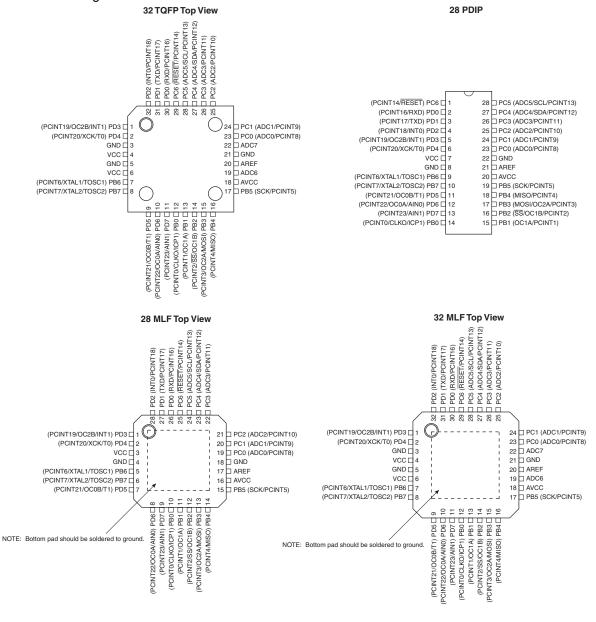


Atmel 8-bit Microcontroller with 4/8/16/32KBytes In-System Programmable Flash

ATmega48A; ATmega48PA; ATmega88A; ATmega88PA; ATmega168A; ATmega168PA; ATmega328; ATmega328P

SUMMARY

Features


- High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller Family
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 4/8/16/32KBytes of In-System Self-Programmable Flash program memory
 - 256/512/512/1KBytes EEPROM
 - 512/1K/1K/2KBytes Internal SRAM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Programming Lock for Software Security
- Atmel[®] QTouch[®] library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix® acquisition
 - Up to 64 sense channels
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Six PWM Channels
 - 8-channel 10-bit ADC in TQFP and QFN/MLF package Temperature Measurement
 - 6-channel 10-bit ADC in PDIP Package
 Temperature Measurement
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby

- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
 - 1.8 5.5V
- Temperature Range:
 - -40°C to 85°C
- · Speed Grade:
 - 0 4MHz@1.8 5.5V, 0 10MHz@2.7 5.5.V, 0 20MHz @ 4.5 5.5V
- Power Consumption at 1MHz, 1.8V, 25°C
 - Active Mode: 0.2mA
 - Power-down Mode: 0.1µA
 - Power-save Mode: 0.75µA (Including 32kHz RTC)

1. Pin Configurations

Figure 1-1. Pinout ATmega48A/PA/88A/PA/168A/PA/328/P

Table 1-1. 32UFBGA - Pinout ATmega48A/48PA/88A/88PA/168A/168PA

	1	2	3	4	5	6
Α	PD2	PD1	PC6	PC4	PC2	PC1
В	PD3	PD4	PD0	PC5	PC3	PC0
С	GND	GND			ADC7	GND
D	VDD	VDD			AREF	ADC6
E	PB6	PD6	PB0	PB2	AVDD	PB5
F	PB7	PD5	PD7	PB1	PB3	PB4

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7...6 is used as TOSC2...1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 83 and "System Clock and Clock Options" on page 26.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5...0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 29-12 on page 310. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 86.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 89.

1.1.7 AV_{CC}

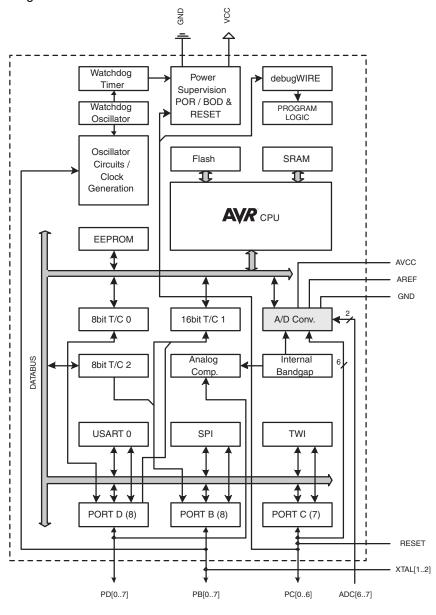
 AV_{CC} is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6...4 use digital supply voltage, V_{CC} .

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.



2. Overview

The ATmega48A/PA/88A/PA/168A/PA/328/P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48A/PA/88A/PA/168A/PA/328/P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48A/PA/88A/PA/168A/PA/328/P provides the following features: 4K/8Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512/1Kbytes EEPROM, 512/1K/1K/2Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

Atmel® offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR® microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS™) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48A/PA/88A/PA/168A/PA/328/P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48A/PA/88A/PA/168A/PA/328/P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison Between Processors

The ATmega48A/PA/88A/PA/168A/PA/328/P differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the devices.

Table 2-1. Memory Size Summary

Device	Flash	EEPROM	RAM	Interrupt Vector Size
ATmega48A	4KBytes	256Bytes	512Bytes	1 instruction word/vector
ATmega48PA	4KBytes	256Bytes	512Bytes	1 instruction word/vector
ATmega88A	8KBytes	512Bytes	1KBytes	1 instruction word/vector
ATmega88PA	8KBytes	512Bytes	1KBytes	1 instruction word/vector
ATmega168A	16KBytes	512Bytes	1KBytes	2 instruction words/vector
ATmega168PA	16KBytes	512Bytes	1KBytes	2 instruction words/vector
ATmega328	32KBytes	1KBytes	2KBytes	2 instruction words/vector
ATmega328P	32KBytes	1KBytes	2KBytes	2 instruction words/vector

ATmega48A/PA/88A/PA/168A/PA/328/P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega 48A/48PA there

is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

6. Capacitive Touch Sensing

The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR® microcontrollers. The QTouch Library includes support for the Atmel QTouch and Atmel QMatrix® acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from Atmel website.

7. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	_	_	_	-	-	-	_	-	-
(0xFE)	Reserved	_	_	_	_	_	_	_	_	
(0xFD)	Reserved	_	_	_	_	_	_	_	_	
(0xFC)	Reserved	_	_	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	_	-	-	-	-	
(0xF9)	Reserved	_	_	_	-		_	-	-	
(0xF8)	Reserved	_	_	-	_	-	-	-	_	
(0xF7) (0xF6)	Reserved Reserved	_	_	_	_	_	_	_	_	
(0xF5)	Reserved		-			_		_		
(0xF4)	Reserved	_	_	_	_	_	_	_	_	
(0xF3)	Reserved	-	-	-	=	-	-	=	=	
(0xF2)	Reserved	_	_	_	-	-	_	-	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(0xF0)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	Reserved	_	_	-	-	-	-	-	-	
(0xEE)	Reserved	_	_	-	_	_	-	_	-	
(0xED)	Reserved	-	-	_	_	_	-	=	_	
(0xEC) (0xEB)	Reserved Reserved	_	_	_	_	_	_	_	-	
(0xEA)	Reserved	_	_	_	_	_	_	_	_	
(0xE9)	Reserved	_	_	_	_	_	_	_	_	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-	-	-	-	_	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	_	_	-	-	-	-	-	-	
(0xE4)	Reserved	_	_	_	_	_	_	_	-	
(0xE3)	Reserved	-	-	-	_	-	_	_	_	
(0xE2) (0xE1)	Reserved Reserved	_	_	_				_	_	
(0xE0)	Reserved	_	_	_	_	_	_	_	_	
(0xDF)	Reserved	_	_	-	_	-	-	-	_	
(0xDE)	Reserved	_	_	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	-	-	-	_	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	_	_	_	=	=	_	=	-	
(0xD9) (0xD8)	Reserved Reserved	_	_	_	=	_	_	_	_	
(0xD8)	Reserved	_	_				_		_	
(0xD6)	Reserved	_	_	_	_	_	_	_	_	
(0xD5)	Reserved	_	_	_	_	_	_	_	_	
(0xD4)	Reserved	_	_	-	_	-	-	-	_	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	_	-	-	-	_	
(0xD0) (0xCF)	Reserved Reserved		_	-		_	_	_	_	
(0xCF)	Reserved	-	-	_	_	_	-	_	_	
(0xCD)	Reserved	_	_	_	_	_	_	_	_	
(0xCC)	Reserved	-	-	-	=	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	_	
(0xCA)	Reserved	-	=	=	=	=	=	=	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)	Reserved	-	-	-	-	_	-	-	-	
(0xC7)	Reserved	-	-	-	- HOADT 1/0	- Data Danistan	-	-	-	40.1
(0xC6)	UDR0				USART I/O	Data Register	LICADT David D	loto Bogister I I'		194
(0xC5) (0xC4)	UBRR0H UBRR0L				LISART Roud P	Late Register Low		late Register High	ı	198 198
(0xC4)	Reserved	_	-	=	–	ale Register Low	-	=	_	130
(0xC2)	UCSR0C	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /UDORD0	UCSZ00 / UCPHA0	UCPOL0	196/207
(0xC1)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	195
(0xC0)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	194
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	=	-	-	-	-	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
									Dit 0	
(0xBD) (0xBC)	TWAMR TWCR	TWAM6 TWINT	TWAM5 TWEA	TWAM4 TWSTA	TWAM3 TWSTO	TWAM2 TWWC	TWAM1 TWEN	TWAM0	TWIE	237 235
(0xBC)	TWDR	I WIIN I	IVVEA	IWSIA	2-wire Serial Inter			=	IVVIE	235
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	237
(0xB4)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	236
(0xB8)	TWBR				2-wire Serial Interfa		ster			235
(0xB7)	Reserved	-		-	-	-	_	=	_	
(0xB6)	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	160
(0xB5)	Reserved	-	-	_	-	_	-	-	-	
(0xB4)	OCR2B			Tir	mer/Counter2 Outpo	ut Compare Regis	ster B			159
(0xB3)	OCR2A			Ti	mer/Counter2 Outp		ster A			159
(0xB2)	TCNT2			ı	Timer/Cou	nter2 (8-bit)				159
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	158
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	_	-	WGM21	WGM20	155
(0xAF) (0xAE)	Reserved Reserved	_	_	-	_	_	_	_	_	
(0xAL)	Reserved	_	_	_	_	_	_		_	
(0xAC)	Reserved	_	_	_	_	_	_	_	_	
(0xAB)	Reserved	_	_	_	_	_	_	_	_	
(0xAA)	Reserved	=	=	-	-	=	-	=	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	_	-	-	-	-	·
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	_	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	_	-	_	_	_	-	
(0xA3)	Reserved	-	-	-	-	_	_	_	-	
(0xA2)	Reserved Reserved	_	_	_	-	_	-	_	-	
(0xA1) (0xA0)	Reserved	_	_		_				_	
(0xA0) (0x9F)	Reserved	_			_				_	
(0x9E)	Reserved	_	_	_	_	_	_	_	_	
(0x9D)	Reserved	_	_	_	_	_	_	_	_	
(0x9C)	Reserved	-	-	_	-	_	-	-	_	
(0x9B)	Reserved	-	-	-	-	_	-	-	-	
(0x9A)	Reserved	-	-	_	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	_	-	
(0x98)	Reserved	-	-	-	-	-	-	_	-	
(0x97)	Reserved	_	_	_	-	_	_	_	-	
(0x96)	Reserved	_	_	_	-	_	-	_	-	
(0x95) (0x94)	Reserved Reserved	_	_		_				_	
(0x93)	Reserved	_			_				_	
(0x92)	Reserved	_	_	_	_	_	_	_	_	
(0x91)	Reserved	_	_	_	_	_	_	_	_	
(0x90)	Reserved	_	_	_	_	_	_	_	_	
(0x8F)	Reserved	-	-	-	-	-	-	=	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	_	=	-	
(0x8C)	Reserved	-	-	-	-	_	-	-	-	
(0x8B)	OCR1BH				ounter1 - Output Co					136
(0x8A)	OCR18L				ounter1 - Output Co					136
(0x89) (0x88)	OCR1AH OCR1AL	1			ounter1 - Output Co					136
(0x88) (0x87)	ICR1H				Counter1 - Output Co					136
(0x87)	ICR1L				r/Counter1 - Input C					136
(0x85)	TCNT1H				ner/Counter1 - Cou		•			135
(0x84)	TCNT1L				mer/Counter1 - Cou		•			135
(0x83)	Reserved	-	-	-	-	=	_	=	-	
(0x82)	TCCR1C	FOC1A	FOC1B	=	-	=	-	=	-	135
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	134
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	132
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D	241
(0x7E)	DIDR0	-	-	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	257
(0x7D)	Reserved	- DEEC1	- DEECO	- ADLAR	-	- MIIV2	- MILVO	- MUV1	- MUYO	054
(0x7C) (0x7B)	ADMUX ADCSRB	REFS1	REFS0 ACME	ADLAR -	-	MUX3	MUX2 ADTS2	MUX1 ADTS1	MUX0 ADTS0	254 257
(0x7B) (0x7A)	ADCSRB	ADEN	ADSC	ADATE	ADIF	ADIE	ADTS2 ADPS2	ADTS1 ADPS1	ADPS0	255
(0.77.7)	ADOUNA	VALIA	ADGO	APAIL	אטוו	ADIL	ADFOL	ADEGI	ADI-00	233

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x79)	ADCH		I		ADC Data Reg	ister High byte			l	256
(0x78)	ADCL				ADC Data Rec	gister Low byte				256
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	_	-	_	-	-	-	-	
(0x75)	Reserved	-	-	-	_	-	-	-	-	
(0x74) (0x73)	Reserved Reserved	_	_	_	_	-		_	_	
(0x73) (0x72)	Reserved									
(0x71)	Reserved	_	_	_	_	_	_	_	_	
(0x70)	TIMSK2	-	-	-	_	-	OCIE2B	OCIE2A	TOIE2	159
(0x6F)	TIMSK1	-	_	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	136
(0x6E)	TIMSK0	=	-	-	-	=	OCIE0B	OCIE0A	TOIE0	110
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	75
(0x6C)	PCMSK1	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	75
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	75
(0x6A)	Reserved	-	_	_	_	-	-	-	-	70
(0x69) (0x68)	EICRA PCICR	_	-	_	_	ISC11	ISC10 PCIE2	ISC01 PCIE1	ISC00 PCIE0	72
(0x67)	Reserved	_	_	_			-	-	- CILO	
(0x66)	OSCCAL				Oscillator Calib	ration Register				36
(0x65)	Reserved	=	=	=	-	-	=	_	_	
(0x64)	PRR	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	PRUSART0	PRADC	41
(0x63)	Reserved	_	_	-	-	-	-	_	-	
(0x62)	Reserved	-	-	-	_	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	36
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	54
0x3F (0x5F) 0x3E (0x5E)	SREG SPH	I	T -	Н	S _	V	N (SP10) ^{5.}	Z SP9	C SP8	9 12
0x3E (0x5E) 0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	(SP10) ** SP2	SP9 SP1	SP0	12
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	12
0x3B (0x5B)	Reserved	_	_	_	_	_	_	-	_	
0x3A (0x5A)	Reserved	-	_	-	-	-	-	-	_	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ^{5.}	SIGRD	(RWWSRE) ^{5.}	BLBSET	PGWRT	PGERS	SPMEN	283
0x36 (0x56)	Reserved	=	- PODO(6)	- PODOE(6)	- DUD	=		-	-	44/00/00
0x35 (0x55) 0x34 (0x54)	MCUCR MCUSR	_	BODS ⁽⁶⁾	BODSE ⁽⁶⁾	PUD -	- WDRF	BORF	IVSEL EXTRF	IVCE PORF	44/69/92 54
0x33 (0x53)	SMCR	_	_	_		SM2	SM1	SM0	SE	39
0x32 (0x52)	Reserved	_	_	_	_	-	-	-	-	
0x31 (0x51)	Reserved	-	-	-	_	-	-	-	-	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	240
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	_	
0x2E (0x4E)	SPDR		1	1	SPI Data	Register			1	171
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	170
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	169
0x2B (0x4B)	GPIOR2					e I/O Register 2				25
0x2A (0x4A) 0x29 (0x49)	GPIOR1 Reserved	_	_	_	General Purpos	e i/O Register 1		_		25
0x29 (0x49) 0x28 (0x48)	OCR0B				mer/Counter0 Outp	ut Compare Regi	ster B	_	_	
0x27 (0x47)	OCR0A				mer/Counter0 Outpo					
0x26 (0x46)	TCNT0					nter0 (8-bit)				
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	=	-	WGM02	CS02	CS01	CS00	
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	-	-	_	-	-	PSRASY	PSRSYNC	141/161
0x22 (0x42)	EEARH			(1	EEPROM Address F					21
0x21 (0x41)	EEARL				EEPROM Address		te			21
0x20 (0x40) 0x1F (0x3F)	EEDR EECR	_	_	EEPM1	EEPROM D EEPM0	ata Register EERIE	EEMPE	EEPE	EERE	21 21
0x1F (0x3F)	GPIOR0			LLF IVI I		e I/O Register 0	LLIVIF'E	LLFE	LLNE	25
0x1D (0x3D)	EIMSK	_	-	-	–		-	INT1	INT0	73
0x1C (0x3C)	EIFR	_	_	_	_	_	_	INTF1	INTF0	73
0x1B (0x3B)	PCIFR	-	-	-	_	I	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	=	-	=	=	=	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	_	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	_	-	OCF2B	OCF2A	TOV2	160
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	137

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x15 (0x35)	TIFR0	_	_	_	_	_	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	_	-	-	-	_	_	-	_	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	_	-	-	
0x11 (0x31)	Reserved	_	-	-	-	_	_	-	_	
0x10 (0x30)	Reserved	_	_	_	_	_	_	_	_	
0x0F (0x2F)	Reserved	_	_	_	_	_	_	_	_	
0x0E (0x2E)	Reserved	_	_	_	_	_	_	_	_	
0x0D (0x2D)	Reserved	_	_	_	-	-	_	_	_	
0x0C (0x2C)	Reserved	_	_	_	_	_	_	_	_	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	93
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	93
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	93
0x08 (0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	92
0x07 (0x27)	DDRC	_	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	92
0x06 (0x26)	PINC	_	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	92
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	92
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	92
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	92
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0x01 (0x21)	Reserved	_	_	-	_	-	_	_	_	
0x0 (0x20)	Reserved	-	_	-	_	-	_	-	_	

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48A/PA/88A/PA/168A/PA/328/P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- 5. Only valid for ATmega88A/88PA/168A/168PA/328/328P.
- 6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA/328P

8. Instruction Set Summary

APPLICATION COMES NETTWINSTERNIST ADD Ref. Rr And from Registers Ref Ref. + Rr C Z.C.N.VH 1	Mnemonics	Operands	Description	Operation	Flags	#Clocks
Acc Ref. Pr. Act less Registers Ref. Ref. Pr. Z.C.N.V.H	ARITHMETIC AND L	OGIC INSTRUCTIONS	·	•		<u>l</u>
ACC				Rd ← Rd + Rr	Z,C,N,V,H	1
State Stat	ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUBSIDER PRURE Subtrest Contract in from Progresses Paul Rev Pro C ZCAN y 1 1 1 1 1 1 1 1 1	ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
BBC Ric K Subtreat with Cerry from Registers Ric Fine J. Pro. C 2.C.N.V.M 1	SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SECI R.K. Subseave (Carry Constant from Reg. Risk Risk Risk C Z.C.N.V.S 2	SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBM	SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
MAD Right Linger AMD Registers Right Right	SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
OR Rd /r Logout OR Registers Re- Res VR ZAV 1 ORI Rd /r Expect OR Registers Re- Res VR ZAV 1 EOR Rd /r Decision OR Registers Re- Res VR ZAV 1 COM Rd More Comprehence Re- Double-Red ZCN.V/H 1 NEG Rd Two Comprehence Re- Double-Red ZCN.V/H 1 SBR RdX Ste Billion In Register Re- Red VR ZCN.V/H 1 DRC Rd Docement Re- Red VR ZAV 1 DRC Rd Res Tested Zero confluence Red Red VR ZAV 1 DRC Rd Res Tested Zero confluence Red Red VR Red Red VR ZAV 1 DRC	AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
OFI Rd, K Logard OF Register and Constant Red - R8 s F M ZNV 1 COM Rd One's Complement Red - Galf F - R8 ZCNV y 1 NGG Rd One's Complement Red - Galf F - R8 ZCNV y 1 SBR Rd See Bits in Register Red - R8 s K ZNV 1 SBR RdK See Bits in Register Red - R8 s K ZNV 1 SBR RdK See Bits in Register Red - R8 s K ZNV 1 NCC Rd Decement Red - R8 s L ZNV 1 NCC Rd Decement Red - R8 s L ZNV 1 TST Rd Coce Register Red - R8 s R ZNV 1 SER Rd See Register Red - R8 s R ZNV 1 SER Rd See Register Red - R8 s R ZNV 1 SER Rd Mulloy Uniqued RETRO- R4 s R ZC 2 MULS Rd fr	ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
EOR	OR	Rd, Rr		$Rd \leftarrow Rd v Rr$	Z,N,V	1
COM RG One's Correlement Rd - OutF - Rd ZC,NV 1 NRG Rg RG NG 2,CNV 1 SRR RGK Set Bills (in Register) Rd - Rd v K 2,NV 1 CRR RG Clear Bills (in Register) Rd - Rd + Rd + Rd 2,NV 1 DCC RG Decrement Rd - Rd + Rd - 1 2,NV 1 TST RG RG Test for Zero or Minus Rd - Rd + Rd 2,NV 1 CLR RG Clear Register Rd - Rd + Rd 2,NV 1 SER RG RG Set Register Rd - DEF None 1 MULS RG, RR MulloyU Signed RT RD - RBx Rr Z,C 2 2 MULSU RG, RR MulloyU Signed with Unsigned RT RD - (RBx Rr) × 1 Z,C 2 2 FMULS RG, RR Procinciant Multiply Unsigned RT RD - (RBx Rr) × 1 Z,C 2 2 FMULS RG, RR Procinciant	ORI		Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	
NEG Rol Two Sconpierment Re - 000 − Rd Z.N.V 1 SBR Rol Class Rill(s) in Register Re - Ret «(poff + K) Z.N.V 1 INC Re Red Class Rill(s) in Register Red - Red + 1 Z.N.V 1 INC Re Decrement Red - Red + 1 Z.N.V 1 DEC Ref Decrement Red - Red + Red + Red Z.N.V 1 TST Re Decrement Red - Red + Red + Red Z.N.V 1 URL Red Clear Register Red - Red + Red Z.N.V 1 SER Rel Clear Register Red - Red + Red Z.N.V 1 MUL Rel Ref Mall Mull Mel Register Red - Red + Red Z.N.V 1 MUL Rel Ref Mall Mull Mel Register Red - Red + Red + Red Z.N.V 2 MULS Rel Ref Mel Mull Mull Mull Red Red + Red + Red + Red Z.N.V 1 MULS Rel Red Ne <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td>			,			
SBR RgK Sea Bills (in Register Rg ← Rg × K Z,NV 1 CGB Rg K Clear Bilts) in Register Rg ← Rg + T Z,NV 1 DCC Rg Increment Rg ← Rg + T Z,NV 1 DCC Rg Decrement Rg ← Rg + Rg Z,NV 1 TST Rg Test for Zaro or Minus Rg + Rg + Rg Z,NV 1 CLP Rg Test for Zaro or Minus Rg + Rg + Rg Z,NV 1 SER Rg Rg Rg Mills Gg Rg +						
CRIA Clase Table) in Register Re - Re + Re + F(s) Z.N.V 1 NRC R6 Increment Re - Re - 1 2.N.V 1 DEC R6 Decrement Re - Re - 1 2.N.V 1 TST R6 Decrement Re - Re - 1 2.N.V 1 CR R6 Clear Feagleter Re - Re - 1e 2.N.V 1 SER R6 Clear Feagleter Re - Re - 1e 2.N.V 1 MUL R6, R7 Mallogy Signed RT 180 ← Risk 7e Z.C 2 MULS R6, R7 Mallogy Signed with Unsigned RT 180 ← Risk 7e Z.C 2 MULS R6, R7 Featonal Mullogy Signed RT 180 ← Risk 7e Z.C 2 PMUL R6, R7 Featonal Mullogy Signed RT 180 ← Risk 7e Z.C 2 PMULS R6, R7 Featonal Mullogy Signed with Unsigned RT 180 ← Risk 7e Z.C 2 PMULS R6, R7 Featonal Mullogy Signed with Unsigned RT 180 ← Risk 7e Z.C			·			
NO Bit		· · · · · · · · · · · · · · · · · · ·			· ' '	
DEC Rd				, ,		
TST Bd Test for Zeno or Minus Rd - Rd + Rd Z,N/V 1 CLR Bd Clear Register Rd - Bd Bd Z,N/V 1 SER Rd Set Register Rd - OuFF None 1 MULL Pd, Rr Multiply Unsigned R180 - Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed R180 - Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R180 - Rd x Rr Z,C 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R180 - (Rd x R) <1 Z,C 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R180 - (Rd x R) <1 Z,C 2 FMULSU RD, Rr Fractional Multiply Signed with Unsigned R180 - (Rd x R) <1 Z,C 2 BALL RB Refeative Jump PC - PC + k + 1 None 2 BALL RB Refeative Jump PC - PC + k + 1 None 2 LIMP In Indirect Call on Indirect Call						
CLR Rd Clear Register Rd - Go F Rd Z.N.V 1 MUL Rd 1r Multiply Unsigned R1:10 - Rd x Rr Z.C 2 MULS Rd 1r Multiply Unsigned R1:10 - Rd x Rr Z.C 2 MULS Rd 1r Multiply Signed R1:10 - Rd x Rr Z.C 2 MULS Rd 1r Multiply Signed with Unsigned R1:10 - Rd x Rr Z.C 2 FMULS Rd 1r Fractional Multiply Signed R1:10 - Rd x Rr <-1						
SER Rd Set Register Rd - OuFF None 1						
MULS Rd. fir Multiply Unsigned R1:90 − Bd x Fir ZC 2 2 MULSU Rd. Fir Multiply Signed R1:90 − Bd x Fir ZC 2 2 MULSU Rd. Fir Multiply Signed with Unsigned R1:90 − Bd x Fir ZC 2 2 MULSU Rd. Fir Multiply Signed with Unsigned R1:90 − Rd x Fir ZC 2 2 FMUL Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed with Unsigned R1:90 − (Fd x Ri) × 1 ZC 2 2 FMULSU Rd. Fir Fractional Multiply Signed With Unsigned R1:90 − (Fd x Ri) × 1			-			
MULSU Rd, Rr Multiply Signed Rt 190 ← Rd x Rr Z.C 2			· · · · · · · · · · · · · · · · · · ·		1	
MULSU Rd, Rr					· '	
FMULL Rd, Rr						
FMULSU Rd, Rr					· '	
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:80 ← (Rd x Rr) ← < 1 Z.C 2				, ,		
RJMP				, ,		
RMP			Fractional Multiply Signed with Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
LMP Indirect Jump to (Z) PC ← Z None 2 JMPTO k Direct Jump PC ← R None 3 RGALL k Direct Jump PC ← PC + k + 1 None 3 ICALL l Indirect Call to (Z) PC ← Z None 3 ICALL k Direct Subroutine Call PC ← R None 4 RET Subroutine Return PC ← STACK None 4 RET Interrupt Return PC ← STACK I 4 CPSE Rd Ar Compare RG PR PC ← PC + 2 or 3 None 1/23 CPSE Rd Ar Compare Rd – Rr Z, N.V.C.H 1 1 CPC Rd Ar Compare with Carry Rd – Rr Z, N.V.C.H 1 1 2 CPI Rd Ar Compare Register with Immediate Ra – K Z, N.V.C.H 1 1 2 N.V.C.H 1 1 2 N.V.C.H 1 2 N.V.C.H 1			D. C. C.	T 00 00 1 1	L	1 .
MPK**		K	•			
RCALL K Relative Subroutine Call PC ← PC + k + 1 None 3					1	
ICALL Indirect Call to (Z)						
CALL ⁽¹⁾ k Direct Subroutine Call PC ← k None 4 RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I 4 CPSE Rd.Rr Compare, Skip it Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3 CP Rd.Rr Compare With Carry Rd – Rr – C Z, N.V.C.H 1 CPC Rd.Rr Compare with Carry Rd – Rr – C Z, N.V.C.H 1 CPI Rd.K Compare Register with Immediate Rd – Kr – C Z, N.V.C.H 1 CPI Rd.K Compare Register with Immediate Rd – Kr – C Z, N.V.C.H 1 SBRC Rr. b Skip if Bit in Register is Set if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr. b Skip if Bit in In Register is Set if (Rr(b)=1) PC ~ PC + 2 or 3 None 1/2/3 SBIS P. b Skip if Bit in In In Register is Set if (Rr(b)=1) PC ~ PC + 2 or 3 None 1/2/3 SBRS S. k </td <td></td> <td>К</td> <td></td> <td></td> <td></td> <td></td>		К				
RET		k				
RETI		K				
CPSE Rd,Rr Compare, Skip if Equal If (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3 CP Rd,Rr Compare Rd − Rr 2, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C 2, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K 2, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared If (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in I/O Register Set If (RR(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Gleared If (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Set If (RP(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Set If (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Set If (RP(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Set					None	
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Pr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared If (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in I/O Register Cleared If (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Cleared If (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Cleared If (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Cleared If (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Cleared If (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BBBS s, k Branch if Satus Flag Set If (RSEG(s) = 1) then PC ← PC + k + 1 None 1/2 BRC k Branch if Not Equal<		Dd Dr			None	
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K 2, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 11/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=0) PC ← PC + 2 or 3 None 11/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=1) PC ← PC + 2 or 3 None 11/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 11/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 11/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 11/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 11/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 11/2 BRBC						
CPI Rd,K Compare Register with Immediate Rd - K Z, N, V, C, H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in No Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in NO Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in IVO Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in IVO Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in IVO Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BRBC k Branch if Status Flag Set if (Z = 1) then PC ← PC + k + 1 None 1/2 BR			•			
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS S, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1/2/2 BRBC S, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BRBC S, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BRBC S, k Branch if Status Flag Cleared if (Z = 1) then PC ← PC + k + 1 None 1/2 BREQ k Branch if Not Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRC k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 <th< td=""><td></td><td></td><td>•</td><td></td><td></td><td></td></th<>			•			
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SEG(s)= 1) then PC ← PC+k+1 None 1/2 BRBC s, k Branch if Status Flag Set if (SEG(s)= 0) then PC ← PC+k+1 None 1/2 BREQ k Branch if Equal if (Z=0) then PC ← PC+k+1 None 1/2 BRNE k Branch if Not Equal if (Z=0) then PC ← PC+k+1 None 1/2 BRC k Branch if Not Equal if (C=0) then PC ← PC+k+1 None 1/2 BRSH k Branch if Sa		· · · · · · · · · · · · · · · · · · ·				
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS S, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BREQ k Branch if Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 0) then PC ← PC + k + 1 None 1/2 BRC k Branch if Geared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRILO k Branch if Blus						
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k+1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k+1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (Z = 1) then PC←PC+k+1 None 1/2 BREQ k Branch if Not Equal if (Z = 0) then PC←PC+k+1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC←PC+k+1 None 1/2 BRCS k Branch if Carry Set if (C = 0) then PC←PC+k+1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ←PC+k+1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ←PC+k+1 None 1/2 BRH k Branch if Minus if (C = 0) then PC ←PC+k+1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ←PC+k+1 <						
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k+1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k+1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 0) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Greater or Equal, Signed if (N = 0) then PC ← PC + k + 1 None 1/2 BRIT k Branch if Jess Than Zero, Signed if (N ⊕			,	· · · · ·		
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k+1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k+1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k+1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k+1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k+1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k+1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k+1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k+1 None 1/2 BRPL k Branch if Minus if (N = 0) then PC ← PC + k+1 None 1/2 BRIC k Branch if Greater or Equal, Signed if (N = 0) then PC ← PC + k+1 None 1/2 BRIC k Branch if Less Than Zero, Signed if (N = 0) then PC ← PC + k+1						
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Same or Higher if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Greater or Equal, Signed if (N = 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Cleared if (N						
BRNE k Branch if Not Equal if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRCS k Branch if Carry Set if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRCC k Branch if Carry Cleared if $(C = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRSH k Branch if Same or Higher if $(C = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRLO k Branch if Lower if $(C = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRMI k Branch if Minus if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRPL k Branch if Minus if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRPL k Branch if Plus if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRGE k Branch if Greater or Equal, Signed if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRLT k Branch if Less Than Zero, Signed if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHS k Branch if Half Carry Flag Set if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHC k Branch if Tag Set if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2 BRTS k Branch if Tag Cleared if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2 BRTC k Branch if Tag Cleared if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2 BRYS k Branch if Tag Cleared if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2 BRYS k Branch if Overflow Flag is Set if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2 BRYC k Branch if Overflow Flag is Set if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2 BRYC k Branch if Interrupt Enabled if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2 BRIE k Branch if Interrupt Enabled if $(C = 1)$ then $C \leftarrow PC + k + 1$ None 1/2		·	,			
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 0) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (C = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N = 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if T Flag Set if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRYS k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRYS k Branch if Overflow Flag is Set if (T = 0) then PC ← PC + k + 1 None 1/2 BRYS k Branch if Overflow Flag is Set if (V = 0) then PC ← PC + k + 1 None 1/2 BRYS k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRYS k Branch if Interrupt Enabled if (V = 0) then PC ← PC + k + 1 None 1/2			•			
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Talg Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTS k Branch if Talg Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRYS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 BRYC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2				` '		
BRSH k Branch if Same or Higher if $(C = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRLO k Branch if Lower if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRMI k Branch if Minus if $(N = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRPL k Branch if Plus if $(N = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRGE k Branch if Greater or Equal, Signed if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRLT k Branch if Less Than Zero, Signed if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHS k Branch if Half Carry Flag Set if $(H = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHC k Branch if Half Carry Flag Cleared if $(H = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRTS k Branch if T Flag Set if $(T = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRTC k Branch if T Flag Cleared if $(T = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRVS k Branch if Overflow Flag is Set if $(V = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRVC k Branch if Interrupt Enabled if $(V = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2			•	` '		
BRLO k Branch if Lower if $(C = 1)$ then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if $(N = 1)$ then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if $(N = 0)$ then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Set if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRTS k Branch if Talg Set if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRTS k Branch if Talg Set if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRTC k Branch if Talg Set if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRVS k Branch if Talg Cleared if $(N \oplus V = 0)$ then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if $(V = 0)$ then PC ← PC + k + 1 None 1/2 BRIC k Branch if Overflow Flag is Cleared if $(V = 0)$ then PC ← PC + k + 1 None 1/2 BRIC k Branch if Overflow Flag is Cleared if $(V = 0)$ then PC ← PC + k + 1 None 1/2 BRIC k Branch if Interrupt Enabled if $(V = 0)$ then PC ← PC + k + 1 None 1/2						
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None $1/2$ BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None $1/2$ BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None $1/2$ BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None $1/2$ BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None $1/2$ BRHC k Branch if T Flag Set if (T = 0) then PC ← PC + k + 1 None $1/2$ BRTS k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None $1/2$ BRTC k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None $1/2$ BRVS k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None $1/2$ BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None $1/2$				` '		
BRPLkBranch if Plusif (N = 0) then PC ← PC + k + 1None $1/2$ BRGEkBranch if Greater or Equal, Signedif (N ⊕ V = 0) then PC ← PC + k + 1None $1/2$ BRLTkBranch if Less Than Zero, Signedif (N ⊕ V = 1) then PC ← PC + k + 1None $1/2$ BRHSkBranch if Half Carry Flag Setif (H = 1) then PC ← PC + k + 1None $1/2$ BRHCkBranch if Half Carry Flag Clearedif (H = 0) then PC ← PC + k + 1None $1/2$ BRTSkBranch if T Flag Setif (T = 1) then PC ← PC + k + 1None $1/2$ BRTCkBranch if T Flag Clearedif (T = 0) then PC ← PC + k + 1None $1/2$ BRVSkBranch if Overflow Flag is Setif (V = 1) then PC ← PC + k + 1None $1/2$ BRVCkBranch if Overflow Flag is Clearedif (V = 0) then PC ← PC + k + 1None $1/2$ BRIEkBranch if Interrupt Enabledif (I = 1) then PC ← PC + k + 1None $1/2$				` '		
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None $1/2$ BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None $1/2$ BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None $1/2$ BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None $1/2$ BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None $1/2$ BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None $1/2$ BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None $1/2$ BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None $1/2$ BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None $1/2$						
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None $1/2$ BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None $1/2$ BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None $1/2$ BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None $1/2$ BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None $1/2$ BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None $1/2$ BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None $1/2$ BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None $1/2$				` '		
BRHS k Branch if Half Carry Flag Set if $(H = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHC k Branch if Half Carry Flag Cleared if $(H = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRTS k Branch if T Flag Set if $(T = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRTC k Branch if T Flag Cleared if $(T = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRVS k Branch if Overflow Flag is Set if $(V = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRVC k Branch if Overflow Flag is Cleared if $(V = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRIE k Branch if Interrupt Enabled if $(V = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2						
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None $1/2$ BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None $1/2$ BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None $1/2$ BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None $1/2$ BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None $1/2$ BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None $1/2$,		
BRTSkBranch if T Flag Setif $(T=1)$ then PC \leftarrow PC + k + 1None1/2BRTCkBranch if T Flag Clearedif $(T=0)$ then PC \leftarrow PC + k + 1None1/2BRVSkBranch if Overflow Flag is Setif $(V=1)$ then PC \leftarrow PC + k + 1None1/2BRVCkBranch if Overflow Flag is Clearedif $(V=0)$ then PC \leftarrow PC + k + 1None1/2BRIEkBranch if Interrupt Enabledif $(I=1)$ then PC \leftarrow PC + k + 1None1/2						
BRTCkBranch if T Flag Clearedif $(T = 0)$ then PC \leftarrow PC + k + 1None1/2BRVSkBranch if Overflow Flag is Setif $(V = 1)$ then PC \leftarrow PC + k + 1None1/2BRVCkBranch if Overflow Flag is Clearedif $(V = 0)$ then PC \leftarrow PC + k + 1None1/2BRIEkBranch if Interrupt Enabledif $(I = 1)$ then PC \leftarrow PC + k + 1None1/2				` '		
BRVSkBranch if Overflow Flag is Setif $(V = 1)$ then PC \leftarrow PC + k + 1None1/2BRVCkBranch if Overflow Flag is Clearedif $(V = 0)$ then PC \leftarrow PC + k + 1None1/2BRIEkBranch if Interrupt Enabledif $(I = 1)$ then PC \leftarrow PC + k + 1None1/2						
BRVCkBranch if Overflow Flag is Clearedif $(V = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRIEkBranch if Interrupt Enabledif $(I = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$						
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2			,	` '		
				1 1		
	BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BIT AND BIT-TEST	INSTRUCTIONS		1	1	1
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	S	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	S	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	T	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	1←1	<u> </u>	1
CLI		Global Interrupt Disable	1←0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I		<u> </u>			-
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	Rd ← (Z)	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
	I D.	Push Register on Stack	STACK ← Rr	None	2
PUSH	Rr	,			
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
POP MCU CONTROL INS	Rd	Pop Register from Stack	Rd ← STACK	1	2
POP	Rd	,	Rd ← STACK	None	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note: 1. These instructions are only available in ATmega168PA and ATmega328P.

9. Ordering Information

9.1 ATmega48A

Speed (MHz)	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20 ⁽³⁾	1.8 - 5.5	ATmega48A-AU ATmega48A-AUR(5) ATmega48A-CCU ATmega48A-CCUR(5) ATmega48A-MMH(4) ATmega48A-MMHR(4)(5) ATmega48A-MU ATmega48A-MU ATmega48A-MUR(5) ATmega48A-PU	32A 32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 308.
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel.

	Package Type
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
32CC1	32-ball, 4 x 4 x 0.6 mm package, ball pitch 0.5 mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)

9.2 ATmega48PA

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega48PA-AU ATmega48PA-AUR ⁽⁵⁾ ATmega48PA-CCU ATmega48PA-CCUR ⁽⁵⁾ ATmega48PA-MMH ⁽⁴⁾ ATmega48PA-MMHR ⁽⁴⁾⁽⁵⁾ ATmega48PA-MU ATmega48PA-MU ATmega48PA-PU	32A 32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)
	1.8 - 5.5	ATmega48PA-AN ATmega48PA-ANR ⁽⁴⁾ ATmega48PA-MMN ATmega48PA-MMNR ⁽⁴⁾ ATmega48PA-MN ATmega48PA-MNR ⁽⁴⁾ ATmega48PA-PN	32A 32A 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 105°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 308.
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel.

	Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)				
32CC1	32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)				
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				

9.3 ATmega88A

Speed (MHz)	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20 ⁽³⁾	1.8 - 5.5	ATmega88A-AU ATmega88A-CCU ATmega88A-CCUR ⁽⁵⁾ ATmega88A-CCUR ⁽⁵⁾ ATmega88A-MMH ⁽⁴⁾ ATmega88A-MMHR ⁽⁴⁾⁽⁵⁾ ATmega88A-MU ATmega88A-MUR ⁽⁵⁾ ATmega88A-PU	32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 308.
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel.

	Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)				
32CC1	32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)				
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				

9.4 ATmega88PA

Speed (MHz) ⁽³⁾	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	20 1.8 - 5.5	ATmega88PA-AU ATmega88PA-CCU ATmega88PA-CCUR ⁽⁵⁾ ATmega88PA-CCUR ⁽⁵⁾ ATmega88PA-MMH ⁽⁴⁾ ATmega88PA-MMHR ⁽⁴⁾⁽⁵⁾ ATmega88PA-MU ATmega88PA-MUR ⁽⁵⁾ ATmega88PA-PU	32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)
		ATmega88PA-AN ATmega88PA-ANR ⁽⁵⁾ ATmega88PA-MMN ATmega88PA-MMNR ⁽⁵⁾ ATmega88PA-MN ATmega88PA-MNR ⁽⁵⁾ ATmega88PA-PN	32A 32A 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 105°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 308.
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel.

	Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)				
32CC1	32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5 mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)				
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				

9.5 ATmega168A

Speed (MHz) ⁽³⁾	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega168A-AU ATmega168A-CU ATmega168A-CCU ATmega168A-CCUR ⁽⁵⁾ ATmega168A-MMH ⁽⁴⁾ ATmega168A-MMHR ⁽⁴⁾⁽⁵⁾ ATmega168A-MU ATmega168A-MU ATmega168A-PU	32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 308
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel.

	Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)				
32CC1	32-ball, 4 x 4 x 0.6 mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)				
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				

9.6 ATmega168PA

Speed (MHz) ⁽³⁾	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega168PA-AU ATmega168PA-AUR ⁽⁵⁾ ATmega168PA-CCU ATmega168PA-CCUR ⁽⁵⁾ ATmega168PA-MMH ⁽⁴⁾ ATmega168PA-MMHR ⁽⁴⁾⁽⁵⁾ ATmega168PA-MU ATmega168PA-MUR ⁽⁵⁾ ATmega168PA-PU	32A 32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)
20	1.8 - 5.5	ATmega168PA-AN ATmega168PA-ANR ⁽⁵⁾ ATmega168PA-MN ATmega168PA-MNR ⁽⁵⁾ ATmega168PA-PN	32A 32A 32M1-A 32M1-A 28P3	Industrial (-40°C to 105°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 308.
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel.

	Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)				
32CC1	32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)				
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				

9.7 ATmega328

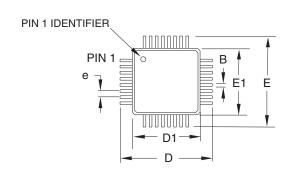
Speed (MHz)	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20 ⁽³⁾	1.8 - 5.5	ATmega328-AU ATmega328-AUR ⁽⁵⁾ ATmega328-MMH ⁽⁴⁾ ATmega328-MMHR ⁽⁴⁾⁽⁵⁾ ATmega328-MU ATmega328-MUR ⁽⁵⁾ ATmega328-PU	32A 32A 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)

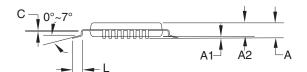
- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See Figure 29-1 on page 308.
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel

Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)			
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)			
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)			

9.8 ATmega328P

Speed (MHz) ⁽³⁾	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega328P-AU ATmega328P-AUR ⁽⁵⁾ ATmega328P-MMH ⁽⁴⁾ ATmega328P-MMHR ⁽⁴⁾⁽⁵⁾ ATmega328P-MU ATmega328P-MUR ⁽⁵⁾ ATmega328P-PU	32A 32A 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)
		ATmega328P-AN ATmega328P-ANR ⁽⁵⁾ ATmega328P-MN ATmega328P-MNR ⁽⁵⁾ ATmega328P-PN	32A 32A 32M1-A 32M1-A 28P3	Industrial (-40°C to 105°C)


- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See Figure 29-1 on page 308.
- 4. NiPdAu Lead Finish.
- 5. Tape & Reel.


Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)			
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)			
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)			

10. Packaging Information

10.1 32A

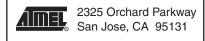
COMMON DIMENSIONS

(Unit of measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
Е	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е	0.80 TYP			

Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

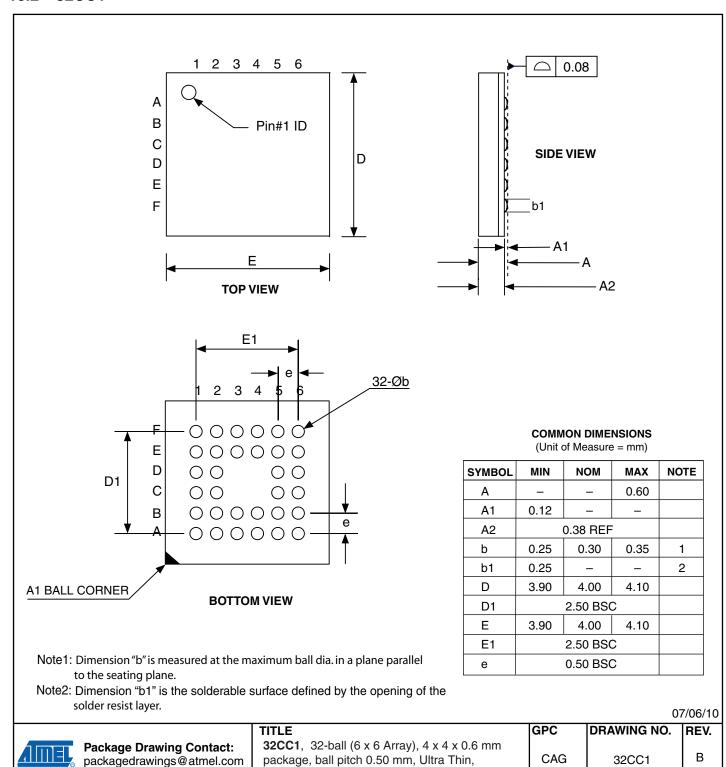

TITLE

3. Lead coplanarity is 0.10mm maximum.

2010-10-20

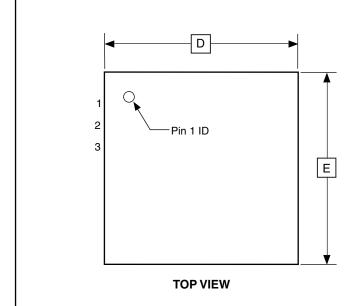
REV.

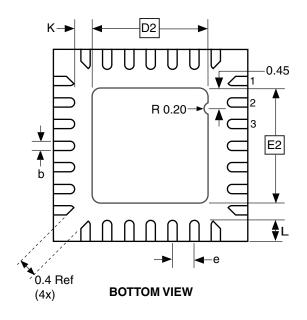
С


32A , 32-lead, 7 x 7mm body size, 1.0mm body thickness,
0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

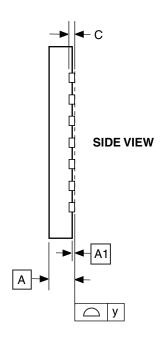
DRAWING NO.

32A


10.2 32CC1



Fine-Pitch Ball Grid Array (UFBGA)



10.3 28M1

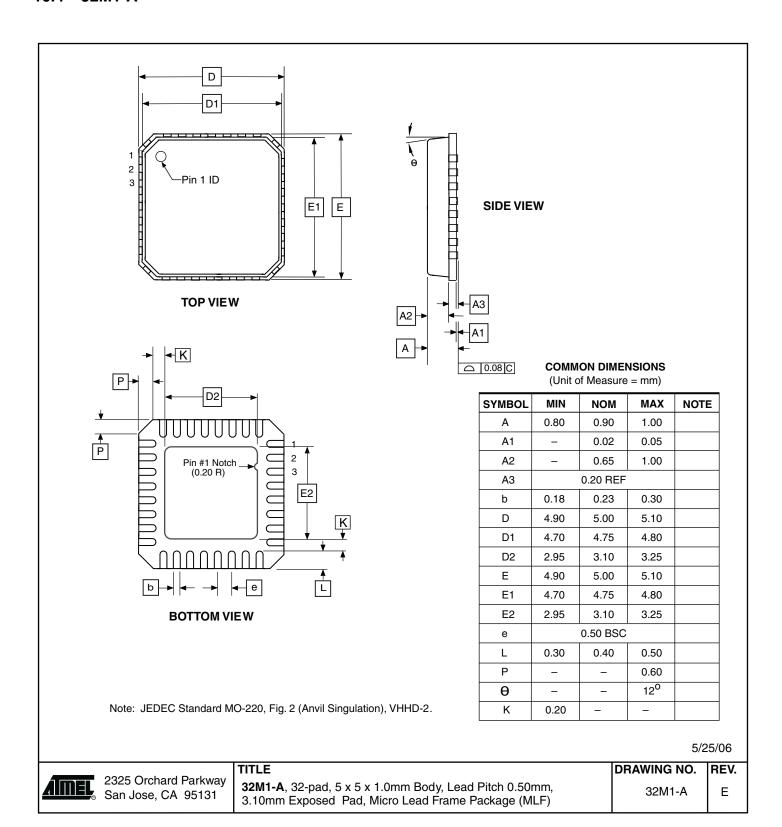
Note: The terminal #1 ID is a Laser-marked Feature.

COMMON DIMENSIONS

(Unit of Measure = mm)

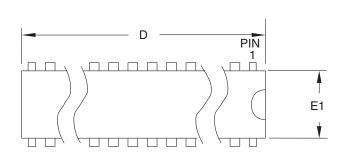
SYMBOL	MIN	NOM	MAX	NOTE
Α	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.17	0.22	0.27	
С	0.20 REF			
D	3.95	4.00	4.05	
D2	2.35	2.40	2.45	
Е	3.95	4.00	4.05	
E2	2.35	2.40	2.45	
е	0.45			
L	0.35	0.40	0.45	
у	0.00	_	0.08	
K	0.20	_	_	

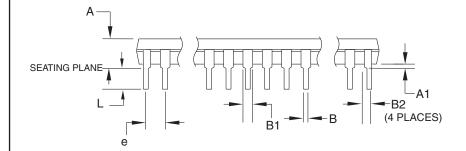
10/24/08

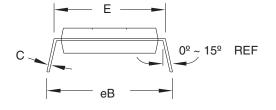


28M1, 28-pad, 4 x 4 x 1.0mm Body, Lead Pitch 0.45mm, 2.4 x 2.4mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN)

GPC		DRAWING NO.	REV.
	ZBV	28M1	В




10.4 32M1-A



10.5 28P3

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.

Mold Flash or Protrusion shall not exceed 0.25mm (0.010").

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	МАХ	NOTE
Α	_	_	4.5724	
A1	0.508	_	_	
D	34.544	_	34.798	Note 1
E	7.620	_	8.255	
E1	7.112	_	7.493	Note 1
В	0.381	_	0.533	
B1	1.143	_	1.397	
B2	0.762	_	1.143	
L	3.175	_	3.429	
С	0.203	_	0.356	
eВ	_	_	10.160	
е	2.540 TYP			

09/28/01

2325 Orchard Parkway San Jose, CA 95131 **TITLE 28P3**, 28-lead (0.300"/7.62mm Wide) Plastic Dual Inline Package (PDIP)

DRAWING NO. REV. 28P3 B

11. Errata

11.1 Errata ATmega48A

The revision letter in this section refers to the revision of the ATmega48A device.

11.1.1 Rev. D

- Analog MUX can be turned off when setting ACME bit
- · TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.2 Errata ATmega48PA

The revision letter in this section refers to the revision of the ATmega48PA device.

11.2.1 Rev. D

- . Analog MUX can be turned off when setting ACME bit
- · TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.3 Errata ATmega88A

The revision letter in this section refers to the revision of the ATmega88A device.

11.3.1 Rev. F

- . Analog MUX can be turned off when setting ACME bit
- TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.4 Errata ATmega88PA

The revision letter in this section refers to the revision of the ATmega88PA device.

11.4.1 Rev. F

- Analog MUX can be turned off when setting ACME bit
- TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.5 Errata ATmega168A

The revision letter in this section refers to the revision of the ATmega168A device.

11.5.1 Rev. E

- . Analog MUX can be turned off when setting ACME bit
- TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.6 Errata ATmega168PA

The revision letter in this section refers to the revision of the ATmega168PA device.

11.6.1 Rev E

- Analog MUX can be turned off when setting ACME bit
- TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.7 Errata ATmega328

The revision letter in this section refers to the revision of the ATmega328 device.

11.7.1 Rev D

- . Analog MUX can be turned off when setting ACME bit
- TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.7.2 Rev C

Not sampled.

11.7.3 Rev B

- Analog MUX can be turned off when setting ACME bit
- Unstable 32kHz Oscillator

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None.

11.7.4 Rev A

- Analog MUX can be turned off when setting ACME bit
- Unstable 32kHz Oscillator

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None.

11.8 Errata ATmega328P

The revision letter in this section refers to the revision of the ATmega328P device.

11.8.1 Rev D

- Analog MUX can be turned off when setting ACME bit
- · TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.8.2 Rev C

Not sampled.

11.8.3 Rev B

- Analog MUX can be turned off when setting ACME bit
- Unstable 32kHz Oscillator

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None.

11.8.4 Rev A

• Unstable 32kHz Oscillator

1. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None.

12. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. 8271E - 07/2012

- 1. Updated Figure 1-1 on page 2. Overlined "RESET" in 28 MLF top view and in 32 MLF top view.
- 2. Added EEAR9 bit to the "EEARH and EEARL The EEPROM Address Register" on page 21 and updated the all bit descriptions accordingly.
- 3. Added a footnote "EEAR9 and EEAR8 are unused bits in ATmega 48A/48PA and must always be written to zero" to "EEARH and EEARL The EEPROM Address Register" on page 21.
- 4. Updated Table 18-8 on page 157, "Waveform Generation Mode Bit Description". WGM2, WGM1 and WGM0 changed to WGM22, WGM21 and WGM20 respectively.
- 5. Updated "TCCR2B Timer/Counter Control Register B" on page 158. bit 2 (CS22) and bit 3 (WGM22) changed from R (read only) to R/W (read/write).
- 6. Updated the definition of **fosc** on page 174. **fosc** is the system clock frequency (not XTAL pin frequency)
- 7. Updated "SPMCSR Store Program Memory Control and Status Register" on page 267. Bit 0 renamed SPMEN and added bit 5 "SIGRD".
- 8. Replaced "SELFPRGEN" by "SPMEN" throughout the whole datasheet including in the "code examples", except in "Program And Data Memory Lock Bits" on page 285 and in "Fuse Bits" on page 286.
- Updated "Register Summary" on page 518 to include the bits: SIGRD and SPMEN in the SMPCSR register.
- 10. Updated the Table 29-1 on page 303. Removed the footnote.
- 11. Updated the footnote of the Table 29-14 on page 311. Removed the footnote "Note 2".
- 12. Updated "Errata" on page 538. Added "Errata" TWI Data setup time can be too short

12.2 Rev. 8271D - 05/11

- 1. Added Atmel QTouch Sensing Capablity Feature
- 2. Updated "Register Description" on page 92 with PINxn as R/W.
- 3. Added a footnote to the PINxn, page 92.
- 4. Updated "Ordering Information","ATmega328" on page 531. Added "ATmega328-MMH" and "ATmega328-MMHR".
- 5. Updated "Ordering Information", "ATmega328P" on page 532. Added "ATmega328P-MMH" and "ATmega328P-MMHR".
- 6. Added "Ordering Information" for ATmega48PA/88PA/168PA/328P @ 105°C
- 7. Updated "Errata ATmega328" on page 541 and "Errata ATmega328P" on page 542
- 8. Updated the datasheet according to the Atmel new brand style guide.

12.3 Rev. 8271C - 08/10

- 1. Added 32UFBGA Pinout, Table 1-1 on page 3.
- Updated the "SRAM Data Memory", Figure 8-3 on page 18.
- Updated "Ordering Information" on page 525 with CCU and CCUR code related to "32CC1" Package drawing.
- 4. "32CC1" Package drawing added on "Packaging Information" on page 533.

12.4 Rev. 8271B - 04/10

- 1. Updated Table 9-8 with correct value for timer oscilliator at xtal2/tos2
- 2. Corrected use of SBIS instructions in assembly code examples.
- Corrected BOD and BODSE bits to R/W in Section 10.11.2 on page 44, Section 12.5 on page 69 and Section 14.4 on page 92
- 4. Figures for bandgap characterization added, Figure 30-34 on page 336, Figure 30-81 on page 361, Figure 30-128 on page 386, Figure 30-175 on page 411, Figure 30-222 on page 436, Figure 30-269 on page 461, Figure 30-316 on page 486 and Figure 30-363 on page 510.
- Updated "Packaging Information" on page 533 by replacing 28M1 with a correct corresponding package.

12.5 Rev. 8271A - 12/09

- New datasheet 8271 with merged information for ATmega48PA, ATmega88PA, ATmega168PA and ATmega48A, ATmega88A and ATmega168A. Also included information on ATmega328 and ATmega328P
- 2 Changes done:
 - New devices added: ATmega48A/ATmega88A/ATmega168A and ATmega328
 - Updated Feature Description
 - Updated Table 2-1 on page 6
 - Added note for BOD Disable on page 39.
 - Added note on BOD and BODSE in "MCUCR MCU Control Register" on page 92 and "Register Description" on page 283
 - Added limitation informatin for the application "Boot Loader Support Read-While-Write Self-Programming" on page 269
 - Added limitiation information for "Program And Data Memory Lock Bits" on page 285
 - Added specified DC characteristics
 - Added typical characteristics
 - Removed exception information in "Address Match Unit" on page 216.

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA

Tel: (+1) (408) 441-0311 **Fax:** (+1) (408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG

Tel: (+852) 2245-6100 **Fax:** (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4

D-85748 Garching b. Munich

GERMANY

Tel: (+49) 89-31970-0 **Fax:** (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku

Tokyo 141-0032

JAPAN

Tel: (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 8271ES-AVR-07/2012

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.