© 2005 IXYS All rights reserved
VCES = 900 V
IC25 = 64 A
VCE(sat) = 2.7 V
tfi typ = 150 ns
Symbol Test Conditions Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
VGE(th) IC = 250 μA, VCE = VGE 3.0 5.0 V
ICES VCE = VCES TJ = 25°C50μA
VGE = 0 V TJ = 150°C 750 μA
IGES VCE = 0 V, VGE = ±20 V ±100 nA
VCE(sat) IC = IC110, VGE = 15 V 2.2 2.7 V
TJ = 125°C 2.1 V
Symbol Test Conditions Maximum Ratings
VCES TJ= 25°C to 150°C 900 V
VCGR TJ= 25°C to 150°C; RGE = 1 MΩ900 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC= 25°C (limited by leads) 64 A
IC110 TC= 110°C32A
ICM TC= 25°C, 1 ms 200 A
SSOA VGE = 15 V, TVJ = 125°C, RG = 10 Ω ICM = 64 A
(RBSOA) Clamped inductive load @ 600V
PCTC= 25°C 300 W
TJ-55 ... +150 °C
TJM 150 °C
Tstg -55 ... +150 °C
Maximum lead temperature for soldering 300 °C
1.6 mm (0.062 in.) from case for 10 s
Plastic body for 10 s 260 °C
MdMounting torque (TO-247) 1.13/10Nm/lb.in.
Weight TO-247 6 g
TO-268 4 g
DS99384(12/05)
G = Gate, C = Collector,
E = Emitter, TAB = Collector
Features
zHigh frequency IGBT
zHigh current handling capability
zMOS Gate turn-on
- drive simplicity
Applications
zPFC circuits
zUninterruptible power supplies (UPS)
zSwitched-mode and resonant-mode
power supplies
zAC motor speed control
zDC servo and robot drives
zDC choppers
Advantages
zHigh power density
zVery fast switching speeds for high
frequency applications
HiPerFASTTM IGBT IXGH 32N90B2
IXGT 32N90B2
TO-268 (IXGT)
TO-247 (IXGH)
E
G
B2-Class High Speed IGBTs
Advance Technical Information
C (TAB)
GCE
C (TAB)
IXYS reserves the right to change limits, test conditions, and dimensions.
IXGH 32N90B2
IXGT 32N90B2
Symbol Test Conditions Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
gfs IC= IC110 A; VCE = 10 V, 18 28 S
Pulse test, t 300 μs, duty cycle 2 %
Cies 1790 pF
Coes VCE = 25 V, VGE = 0 V, f = 1 MHz 121 pF
Cres 49 pF
Qg89 nC
Qge IC = IC110 , VGE = 15 V, VCE = 0.5 VCES 15 nC
Qgc 34 nC
td(on) 20 ns
tri 22 ns
td(off) 260 400 ns
tfi 150 ns
Eoff 2.6 4.5 mJ
td(on) 20 ns
tri 22 ns
Eon 0.5 mJ
Note 1 3.8 mJ
td(off) 360 ns
tfi 330 ns
Eoff 5.75 mJ
RthJC 0.42 K/W
RthCS (TO-247) 0.25 K/W
Inductive load, TJ = 25°°
°°
°C
IC = IC110 , VGE = 15 V
VCE = 720 V, RG = Roff = 5 Ω
Inductive load, TJ = 125°°
°°
°C
IC = IC110 A, VGE = 15 V
VCE = 720 V, RG = Roff = 5 Ω
TO-247 AD Outline
Dim. Millimeter Inches
Min. Max. Min. Max.
A 4.7 5.3 .185 .209
A12.2 2.54 .087 .102
A22.2 2.6 .059 .098
b 1.0 1.4 .040 .055
b11.65 2.13 .065 .084
b22.87 3.12 .113 .123
C .4 .8 .016 .031
D 20.80 21.46 .819 .845
E 15.75 16.26 .610 .640
e 5.20 5.72 0.205 0.225
L 19.81 20.32 .780 .800
L1 4.50 .177
P 3.55 3.65 .140 .144
Q 5.89 6.40 0.232 0.252
R 4.32 5.49 .170 .216
S 6.15 BSC 242 BSC
e
P
TO-268 Outline
Min. Recommended Footprint
(Dimensions in inches and mm)
Note 1: Eon measured with a DSEP 30-12A ultrafast diode clamp.
IXYS MOSFETs and IGBTs are covered by 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585
one or more of the following U.S. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405B2 6,759,692
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6771478 B2
© 2005 IXYS All rights reserved
Fig. 2. Extended Output Characteristics
@ 25
º
C
0
40
80
120
160
200
240
0 2 4 6 8 101214161820
V
C E
- Volts
I
C
- Amperes
V
GE
= 15V
7V
9V
11V
13V
Fig. 3. Output Characteristics
@ 125
º
C
0
10
20
30
40
50
60
70
00.511.522.533.544.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 15V
13V
11V
9V
7V
5V
Fig. 1. Output Characteristics
@ 25
º
C
0
10
20
30
40
50
60
70
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
V
C E
- Volts
I
C
- Amperes
V
GE
= 15V
13V
11V
9V
5V
7V
Fig. 4. Dependence of V
CE(sat)
on
Temperature
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
-50 -25 0 25 50 75 100 125 150
T
J
- Degrees Centigrade
V
C E (sat)
- Normalized
I
C
= 32A
I
C
= 16A
V
GE
= 15V
I
C
= 64A
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Em itter voltage
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6 7 8 9 10 11 12 13 14 15 16 17
V
G E
- Volts
V
C E
- Volts
T
J
= 25
º
C
I
C
= 64A
32A
16A
Fig. 6. Input Admittance
0
20
40
60
80
100
120
140
45 678 910
V
G E
- Volts
I
C
- Amperes
T
J
= 125
º
C
25
º
C
-40
º
C
IXGH 32N90B2
IXGT 32N90B2
IXYS reserves the right to change limits, test conditions, and dimensions.
IXGH 32N90B2
IXGT 32N90B2
Fig. 7. Transconductance
0
5
10
15
20
25
30
35
0 20 40 60 80 100
I
C
- Amperes
g
f s
- Siemens
T
J =
-40
º
C
25
º
C
12 5
º
C
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 102030405060708090100
Q
G
- nanoCoulombs
V
G E
- Volts
VCE
= 450V
I C
= 32A
I G
= 10mA
Fig. 9. Capacitance
10
100
1000
10000
0 5 10 15 20 25 30 35 40
V
C E
- Volts
Capacitance - p
F
C
ies
C
oes
C
res
f = 1 MHz
Fig. 10. Re ve r s e -Bias Safe
Operating Area
0
10
20
30
40
50
60
70
100 200 300 400 500 600 700 800 900
V
C E
- Volts
I
C
- Amperes
T
J
= 125
º
C
R
G
= 10Ω
dV/dT < 10V/ns
Fig. 11. Maximum Transient Thermal Resistance
0.01
0.1
1
0.1 1 10 100 1000
Pulse Width - milliseconds
R
( t h ) J C
-
ºC / W
© 2005 IXYS All rights reserved
IXGH 32N90B2
IXGT 32N90B2
Fig. 14. Dependence of Turn-off
Energy Loss on Collector Current
0
2
4
6
8
10
12
14
16
10 20 30 40 50 60 70
I C
- Amperes
E
o f f
- MilliJoules
R
G
= 5Ω
V
GE
= 15V
V
CE
= 720V T
J
= 125
º
C
T
J
= 25
º
C
Fig. 16. Dependence of Turn-off
Energy Loss on Temperature
0
2
4
6
8
10
12
14
16
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
E
o f f
- MilliJoules
I
C
= 64A
R
G
= 5Ω
V
GE
= 15V
V
CE
= 720V
I
C
= 32A
I
C
= 16A
Fig. 12. Dependence of Turn-off
Energy Loss on Gate Resistance
0
2
4
6
8
10
12
14
16
18
0 5 10 15 20 25 30 35 40 45 50
R
G
- Ohms
E
o f f
- MilliJoules
I
C
= 64A
T
J
= 125
º
C
V
GE
= 15V
V
CE
= 720V I
C
= 32A
I
C
= 16A
Fig. 13. Dependence of Turn-on
Energy Loss on Gate Resistance
0
2
4
6
8
10
12
14
16
0 5 10 15 20 25 30 35 40 45 50
R
G
- Ohms
E
o n
- MilliJoules
I
C
= 64A
T
J
= 125
º
C
V
GE
= 15V
V
CE
= 720V
I
C
= 32A
I
= 16A
Fig. 15. Dependence of Turn-on
Energy Loss on Collector Current
0
1
2
3
4
5
6
7
8
9
10 20 30 40 50 60 70
I C
- Amperes
E
o n
- MilliJoules
R
G
= 5Ω
V
GE
= 15V
V
CE
= 720V
T
J
= 125
º
C
T
J
= 25
º
C
Fig. 17. Dependence of Turn-on
Energy Loss on Temperature
0
1
2
3
4
5
6
7
8
9
10
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
E
o n
- MilliJoules
I
C
= 64A
R
G
= 5
V
GE
= 15V
V
CE
= 720V
I
C
= 32A
I
C
= 16A
IXYS reserves the right to change limits, test conditions, and dimensions.
IXGH 32N90B2
IXGT 32N90B2
Fig. 18. Dependence of Turn-off
Sw itching Time on Gate Resistance
350
375
400
425
450
475
500
525
550
468101214161820
R
G
- Ohms
t
d ( o f f )
-
Nanoseconds
320
330
340
350
360
370
380
390
400
t
f i
-
Nanoseconds
t
d(off)
t
fi
- - - - -
T
J
= 125ºC, V
GE
= 15V
V
CE
= 720V
I
C
= 32A, 16A
I
C
= 16A, 32A, 64A
Fig. 20. Dependence of Turn-off
Sw itching Tim e
on Collector Current
100
150
200
250
300
350
400
450
500
15 20 25 30 35 40 45 50 55 60 65
I
C
- Amperes
t
d ( o f f )
/
t
f i
- Nanoseconds
t
d(off)
t
fi
- - - - -
R
G
= 5 Ω, V
GE
= 15V
V
CE
= 720V
T
J
= 125
º
C
T
J
= 25
º
C
Fig. 22. Dependence of Turn-off
Sw itching Time on Temperature
100
150
200
250
300
350
400
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
t
d ( o f f )
/
t
f i
- Nanoseconds
t
d(off)
t
fi
- - - - -
R
G
= 5Ω , V
GE
= 15V
V
CE
= 720V
I
C
= 64A, 32A, 16A
I
C
= 64A, 32A, 16A
Fig. 19. Dependence of Turn-on
Switching Time on Gate Resistance
15
20
25
30
35
40
45
468101214161820
R
G
- Ohms
t
d ( o n )
-
Nanoseconds
0
30
60
90
120
150
180
t
r i
-
Nanoseconds
t
d(on)
t
ri
- - - - -
T
J
= 125ºC, V
GE
= 15V
V
CE
= 720V
I
C
= 32A
I
C
= 16A
I
C
= 64A
Fig. 21. Dependence of Turn-on
Switching Time
on Collector Current
10
12
14
16
18
20
22
24
26
28
30
10 20 30 40 50 60 70
I
C
- Amperes
t
d ( o n )
- Nanoseconds
0
10
20
30
40
50
60
70
80
90
10 0
t
r i
- Nanoseconds
t
d(on)
t
ri
- - - -
R
G
= 5 Ω, V
GE
= 15V
V
CE
= 720V
T
J
= 125
º
C
T
J
= 25
º
C
Fig. 23. Dependence of Turn-on
Sw itching Time on Temperature
10
15
20
25
30
35
40
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
t
d ( o n )
- Nanoseconds
0
25
50
75
100
125
150
t
r i
- Nanoseconds
t
d(on)
t
ri
- - - - -
R
G
= 5 Ω , V
GE
= 15V
V
CE
= 720V
I
C
= 32A
I
C
= 64A
I
C
= 1 6A
© 2005 IXYS All rights reserved
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered
are derived from a subjective evaluation of the design, based upon prior knowledge and
experience, and constitute a "considered reflection" of the anticipated objective result.
IXYS reserves the right to change limits, test conditions, and dimensions without notice.