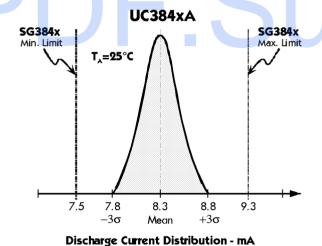


THE INFINITE POWER OF INNOVATION

UC1845.A/2845.A/8845.A

CURRENT MODE PWM CONTROLLER

PRODUCTION DATA SHEET


DESCRIPTION

The UC184xA family of control ICs provides all the necessary features to implement off-line fixed-frequency, current-mode switching power supplies with a minimum of external components. The current mode architecture demonstrates improved load regulation, pulse-by-pulse current limiting and inherent protection of the power supply output switch. The IC includes: A bandgap reference trimmed to ±1% accuracy, an error amplifier, a current sense comparator with internal clamp to 1V, a high current totem pole output stage for fast switching of power

MOSFET's, and an externally programmable oscillator to set frequency and maximum duty cycle. The undervoltage lock-out is designed to operate with 250µA typ. start-up current, allowing an efficient bootstrap supply voltage design. Available options for this family of products, such as start-up voltage hysteresis and duty cycle, are summarized below in the Available Options section. The UC184xA family of control ICs is also available in 14-pin SOIC package which makes the Power Output Stage Collector and Ground pins available.

PRODUCT HIGHLIGHT

COMPARISON OF UC384xA vs. SG384x DISCHARGE CURRENT

KEY FEATURES

- LOW START-UP CURRENT. (0.5mA max.)
- TRIMMED OSCILLATOR DISCHARGE CURRENT. (See Product Highlight)
- OPTIMIZED FOR OFF-LINE AND DC-TO-DC CONVERTERS.
- AUTOMATIC FEED FORWARD COMPENSATION.
- PULSE-BY-PULSE CURRENT LIMITING.
- ENHANCED LOAD RESPONSE CHARACTERISTICS.
- UNDER-VOLTAGE LOCKOUT WITH HYSTERESIS.
- DOUBLE PULSE SUPPRESSION.
- HIGH-CURRENT TOTEM POLE OUTPUT.
- INTERNALLY TRIMMED BANDGAP REFERENCE.
- 500KHz OPERATION.
- LOW R_o ERROR AMPLIFIER.

APPLICATIONS

- ECONOMICAL OFF-LINE FLYBACK OR FORWARD CONVERTERS.
- DC-DC BUCK OR BOOST CONVERTERS.
- LOW COST DC MOTOR CONTROL.

AVAIL	A B L E	е Орт	I O N S
Part #	Start-Up Voltage	Hysteresis	Max. Duty Cycle
UCx842A	16V	6V	<100%
UCx843A	8.4V	0.8V	<100%
UCx844A	16V	6V	<50%
UCx845A	8.4V	0.8V	<50%

	PACK	AGE ORDER IN	IFOR MATION	
T _A (°C)	M Plastic DIP 8-pin	DM Plastic SOIC 8-pin	D Plastic SOIC 14-pin	Y Ceramic DIP 8-pin
0 to 70	UC384xAM	UC384xADM	UC384xAD	_
-40 to 85	UC284xAM	UC284xADM	UC284xAD	UC284xAY
-55 to 125				UC184×AY

Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. UC3842ADMT)

U(01845;4A)/2845;A\/3845;4A

CURRENT MODE PWM CONTROLLER

PRODUCTION DATA SHEET

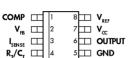
ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (Low Impedance Source) (V _{cc})	30V
Supply Voltage (I _{cc} < 30mA)	
Output Current	±1A
Output Energy (Capacitive Load)	5µJ
Analog Inputs (V _{FB} & I _{SENSE})	0.3V to +6.3V
Error Amp Output Sink Current	
Power Dissipation at T ₄ = 25°C (M Package)	1W
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10 Seconds)	300°C

Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal. Pin numbers refer to DIL packages only.

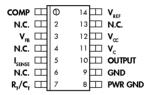

THERMAL DATA

M PACKAGE:


THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{_{\mathrm{JA}}}$	95°C/W
DM PACKAGE:	
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{_{\mathrm{JA}}}$	165°C/W
D PACKAGE:	
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{_{JA}}$	120°C/W
Y PACKAGE:	-
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{_{\mathrm{JA}}}$	130°C/W

Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow

PACKAGE PIN OUTS



M & Y PACKAGE (Top View)

DM PACKAGE

(Top View)

D PACKAGE

(Top View)

PRODUCTION DATA SHEET

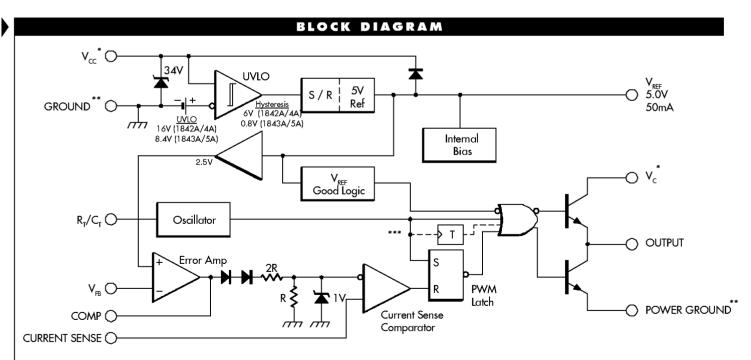
ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for UC384xA with 0°C \leq T_A \leq 70°C, UC284xA with -40°C \leq T_A \leq 85°C, UC184xA with -55°C \leq T_A \leq 125°C; V_{CC}=15V; R_T=10K; C_T=3.3nF. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Test Conditions $T_{j} = 25^{\circ}C, \ l_{i} = 1 \text{mA}$ $12 \le V_{N} \le 25V$ $1 \le l_{O} \le 20 \text{mA}$ Over Line, Load, and Temperature $10 \text{Hz} \le f \le 10 \text{kHz}, \ T_{j} = 25^{\circ}C$ $T_{A} = 125^{\circ}C, \ t = 1000 \text{hrs}$ $T_{j} = 25^{\circ}C$ $12 \le V_{CC} \le 25V$ $T_{MIN} \le T_{A} \le T_{MAX}$ $T_{j} = 25^{\circ}C, \ V_{PIN 4} = 2V$ $V_{PIN 4} = 2V, \ T_{MIN} \le T_{A} \le T_{MAX}$ $V_{PIN 1} = 2.5V$	4.95 4.95 4.9 -30 47 7.8 7.5	5.00 6 6 0.2 50 5 -100 52 0.2 5 1.7 8.3	5.05 20 25 0.4 5.1 25 -180 57 1	4.90 4.82 -30	5.00 6 6 0.2 50 5 -100 52 0.2 5 1.7	5.10 20 25 0.4 5.18 25 -180	V mV mV/°C V µV mA kHz %
$\begin{aligned} &12 \leq V_{N} \leq 25V \\ &1 \leq I_{O} \leq 20 \text{mA} \end{aligned}$ Over Line, Load, and Temperature $10 \text{Hz} \leq f \leq 10 \text{kHz}, T_{J} = 25^{\circ}\text{C}$ $T_{A} = 125^{\circ}\text{C}, t = 1000 \text{hrs}$ $T_{J} = 25^{\circ}\text{C}$ $12 \leq V_{CC} \leq 25V$ $T_{MIN} \leq T_{A} \leq T_{MAX}$ $T_{J} = 25^{\circ}\text{C}, V_{PIN 4} = 2V$ $V_{PIN 4} = 2V, T_{MIN} \leq T_{A} \leq T_{MAX}$	4.9 -30 47 7.8 7.5	6 6 0.2 50 5 -100 52 0.2 5 1.7	20 25 0.4 5.1 25 -180 57 1	4.82 -30	6 0.2 50 5 -100 52 0.2 5	20 25 0.4 5.18 25 -180	mV mV/°C V µV mV mA kHz %
$\begin{aligned} &12 \leq V_{N} \leq 25V \\ &1 \leq I_{O} \leq 20 \text{mA} \end{aligned}$ Over Line, Load, and Temperature $10 \text{Hz} \leq f \leq 10 \text{kHz}, T_{J} = 25^{\circ}\text{C}$ $T_{A} = 125^{\circ}\text{C}, t = 1000 \text{hrs}$ $T_{J} = 25^{\circ}\text{C}$ $12 \leq V_{CC} \leq 25V$ $T_{MIN} \leq T_{A} \leq T_{MAX}$ $T_{J} = 25^{\circ}\text{C}, V_{PIN 4} = 2V$ $V_{PIN 4} = 2V, T_{MIN} \leq T_{A} \leq T_{MAX}$	4.9 -30 47 7.8 7.5	6 6 0.2 50 5 -100 52 0.2 5 1.7	20 25 0.4 5.1 25 -180 57 1	4.82 -30	6 0.2 50 5 -100 52 0.2 5	20 25 0.4 5.18 25 -180	mV mV/°c V μV mV mA kHz %
$1 \le I_{o} \le 20 \text{mA}$ Over Line, Load, and Temperature $10 \text{Hz} \le f \le 10 \text{kHz}, T_{j} = 25^{\circ}\text{C}$ $T_{A} = 125^{\circ}\text{C}, t = 1000 \text{hrs}$ $T_{j} = 25^{\circ}\text{C}$ $12 \le V_{cc} \le 25 \text{V}$ $T_{MIN} \le T_{A} \le T_{MAX}$ $T_{j} = 25^{\circ}\text{C}, V_{PIN 4} = 2 \text{V}$ $V_{PIN 4} = 2 \text{V}, T_{MIN} \le T_{A} \le T_{MAX}$	-30 47 7.8 7.5	50 5 -100 52 0.2 5 1.7	25 0.4 5.1 25 -180 57 1	-30	50 50 5 -100 52 0.2 5	25 0.4 5.18 25 -180	mV/% V μV mV mA kHz %
Over Line, Load, and Temperature $10\text{Hz} \leq f \leq 10\text{kHz}, T_{_J} = 25^{\circ}\text{C}$ $T_{_A} = 125^{\circ}\text{C}, t = 1000\text{hrs}$ $T_{_J} = 25^{\circ}\text{C}$ $12 \leq V_{_{CC}} \leq 25\text{V}$ $T_{_{MIN}} \leq T_{_A} \leq T_{_{MAX}}$ $T_{_J} = 25^{\circ}\text{C}, V_{_{PIN4}} = 2\text{V}$ $V_{_{PIN4}} = 2\text{V}, T_{_{MIN}} \leq T_{_A} \leq T_{_{MAX}}$	-30 47 7.8 7.5	0.2 50 5 -100 52 0.2 5 1.7	0.4 5.1 25 -180 57 1	-30	50 5 -100 52 0.2	0.4 5.18 25 -180	mV/% V μV mV mA kHz %
$\begin{aligned} & 10\text{Hz} \leq f \leq 10\text{kHz}, T_{\text{J}} = 25^{\circ}\text{C} \\ & T_{\text{A}} = 125^{\circ}\text{C}, t = 1000\text{hrs} \end{aligned}$ $\begin{aligned} & T_{\text{J}} = 25^{\circ}\text{C} \\ & 12 \leq V_{\text{CC}} \leq 25\text{V} \\ & T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}} \end{aligned}$ $\begin{aligned} & T_{\text{J}} = 25^{\circ}\text{C}, V_{\text{PIN}} = 2\text{V} \\ & V_{\text{PIN}} = 2\text{V}, T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}} \end{aligned}$	-30 47 7.8 7.5	50 5 -100 52 0.2 5 1.7	5.1 25 -180 57 1	-30	50 5 -100 52 0.2 5	5.18 25 -180	V µV mV mA kHz %
$\begin{aligned} & 10\text{Hz} \leq f \leq 10\text{kHz}, T_{\text{J}} = 25^{\circ}\text{C} \\ & T_{\text{A}} = 125^{\circ}\text{C}, t = 1000\text{hrs} \end{aligned}$ $\begin{aligned} & T_{\text{J}} = 25^{\circ}\text{C} \\ & 12 \leq V_{\text{CC}} \leq 25\text{V} \\ & T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}} \end{aligned}$ $\begin{aligned} & T_{\text{J}} = 25^{\circ}\text{C}, V_{\text{PIN}} = 2\text{V} \\ & V_{\text{PIN}} = 2\text{V}, T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}} \end{aligned}$	-30 47 7.8 7.5	5 -100 52 0.2 5 1.7	25 -180 57 1	-30	5 -100 52 0.2 5	25 -180	μV mV mA kHz %
$T_A = 125$ °C, $t = 1000$ hrs $T_J = 25$ °C $12 \le V_{cc} \le 25V$ $T_{MIN} \le T_A \le T_{MAX}$ $T_J = 25$ °C, $V_{PIN \cdot 4} = 2V$ $V_{PIN \cdot 4} = 2V$, $T_{MIN} \le T_A \le T_{MAX}$	7.8 7.5	5 -100 52 0.2 5 1.7	-180 57 1 8.8	47	5 -100 52 0.2 5	-180 57	mV mA kHz %
$T_{j} = 25^{\circ}C$ $12 \le V_{CC} \le 25V$ $T_{MIN} \le T_{A} \le T_{MAX}$ $T_{j} = 25^{\circ}C, V_{PIN 4} = 2V$ $V_{PIN 4} = 2V, T_{MIN} \le T_{A} \le T_{MAX}$	7.8 7.5	-100 52 0.2 5 1.7	-180 57 1 8.8	47	-100 52 0.2 5	-180 57	mA kHz %
$\begin{aligned} &12 \leq V_{cc} \leq 25V \\ &T_{MIN} \leq T_A \leq T_{MAX} \\ &T_J = 25^{\circ}C, V_{PIN 4} = 2V \\ &V_{PIN 4} = 2V, T_{MIN} \leq T_A \leq T_{MAX} \end{aligned}$	7.8 7.5	52 0.2 5 1.7	57 1 8.8	47	52 0.2 5	57	kHz %
$\begin{aligned} &12 \leq V_{cc} \leq 25V \\ &T_{MIN} \leq T_A \leq T_{MAX} \\ &T_J = 25^{\circ}C, V_{PIN 4} = 2V \\ &V_{PIN 4} = 2V, T_{MIN} \leq T_A \leq T_{MAX} \end{aligned}$	7.8	0.2 5 1.7	8.8		0.2		% %
$\begin{aligned} &12 \leq V_{cc} \leq 25V \\ &T_{MIN} \leq T_A \leq T_{MAX} \\ &T_J = 25^{\circ}C, V_{PIN 4} = 2V \\ &V_{PIN 4} = 2V, T_{MIN} \leq T_A \leq T_{MAX} \end{aligned}$	7.8	0.2 5 1.7	8.8		0.2		% %
$T_{MN} \le T_A \le T_{MAX}$ $T_J = 25^{\circ}C, V_{PIN 4} = 2V$ $V_{PIN 4} = 2V, T_{MIN} \le T_A \le T_{MAX}$	7.5	5 1.7	8.8	7.8	5	1	%
$T_{MN} \le T_A \le T_{MAX}$ $T_J = 25^{\circ}C, V_{PIN 4} = 2V$ $V_{PIN 4} = 2V, T_{MIN} \le T_A \le T_{MAX}$	7.5	1.7		7.8			
$\begin{aligned} &T_{j} = 25^{\circ}\text{C, } V_{\text{PlN 4}} = 2V \\ &V_{\text{PlN 4}} = 2V, T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}} \end{aligned}$	7.5			7.8	1.7		
$V_{PIN.4} = 2V, T_{MIN} \le T_A \le T_{MAX}$	7.5	8.3		7.8			٧
$V_{PIN.4} = 2V, T_{MIN} \le T_A \le T_{MAX}$	 		00	7.0	8.3	8.8	mA
	2.45		0.0	7.6		8.8	mA
$V_{PIN 1} = 2.5V$	2.45						
PIN 1		2.50	2.55	2.42	2.50	2.58	V
		-0.3	-1		-0.3	-2	μA
$2 \le V_O \le 4V$	65	90		65	90		dB
T _i = 25°C	0.7	1		0.7	1		MHz
12 ≤ V _{cc} ≤ 25V	60	70		60	70		dB
$V_{PIN 2} = 2.7V, V_{PIN 1} = 1.1V$	2	6		2	6		mA
	-0.5	-0.8		-0.5	-0.8		mA
	5	6		5	6		٧
V = 9.7V, R ₋ = 15K to V		0.7	1.1		0.7	1.1	٧
PIN 2 - ZVV V, VL I VOIC CO I REF							
	0.85	1 3	3 15	0 85	3	3 15	٧/٧
V - 5V							V V
	0.7	_	1	0.7		1.1	dB
12 3 100 3 231			-10			-10	μA
V = 0 to 9V							ns
YPIN 3 — V CO ZY	_	1.50	1000		150	500	
1 00mA		I 0 1	I 0 4		0.4		
			_				V V
			2.2	42		2.2	
							V V
	12		450	12		450	
							ns
							ns V
	$\begin{split} &V_{\text{PIN 2}} = 2.3 \text{V}, V_{\text{PIN 1}} = 5 \text{V} \\ &V_{\text{PIN 2}} = 2.3 \text{V}, R_{\text{L}} = 15 \text{K to ground} \\ &V_{\text{PIN 2}} = 2.7 \text{V}, R_{\text{L}} = 15 \text{K to V}_{\text{REF}} \\ \\ &V_{\text{PIN 1}} = 5 \text{V} \\ &12 \leq V_{\text{CC}} \leq 25 \text{V} \\ \\ &V_{\text{PIN 3}} = 0 \text{ to } 2 \text{V} \\ \\ &V_{\text{PIN 3}} = 0 \text{ to } 2 \text{V} \\ \\ &I_{\text{SINK}} = 20 \text{mA} \\ &I_{\text{SOURCE}} = 20 \text{mA} \\ &I_{\text{SOURCE}} = 200 \text{mA} \\ &I_{\text{SOURCE}} = 200 \text{mA} \\ &I_{\text{T}} = 25 ^{\circ} \text{C}, C_{\text{L}} = 1 \text{nF} \\ &T_{\text{J}} = 25 ^{\circ} \text{C}, C_{\text{L}} = 1 \text{nF} \end{split}$	$\begin{array}{c} V_{\text{PIN}2} = 2.3 \text{V}, V_{\text{PIN}1} = 5 \text{V} & -0.5 \\ V_{\text{PIN}2} = 2.3 \text{V}, R_{\text{L}} = 15 \text{K to ground} & 5 \\ V_{\text{PIN}2} = 2.7 \text{V}, R_{\text{L}} = 15 \text{K to V}_{\text{REF}} & \\ & \\ & \\ V_{\text{PIN}1} = 5 \text{V} & 0.9 \\ & 12 \leq V_{\text{CC}} \leq 25 \text{V} \\ & \\ V_{\text{PIN}3} = 0 \text{ to } 2 \text{V} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $(Electrical\ Characteristics\ continue\ next\ page.)$

PRODUCTION DATA SHEET

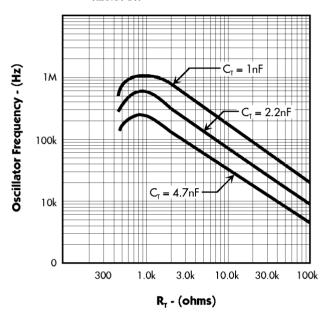

ELECTRICAL CHARACTERISTICS (Con't.)									
Parameter	Symbol	Test Conditions			√284xA p. Max		C384) Typ.		Units
Under-Voltage Lockout Section									
Start Threshold		x842A/4A	1.	5 1	5 17	14.5	16	17.5	٧
		x843A/5A	7.	3 8.	4 9.0	7.8	8.4	9.0	٧
Min. Operation Voltage After Turn-On		x842A/4A	9	1) 11	8.5	10	11.5	٧
		x843A/5A	7.	7.	6 8.2	7.0	7.6	8.2	٧
PWM Section									
Maximum Duty Cycle		x842A/3A	9.	. 9	5 100	94	96	100	%
		x844A/5A	4	7 4.	3 50	47	48	50	%
Minimum Duty Cycle					0			0	%
Total Standby Section			<u> </u>						
Start-Up Current				0.	3 0.5		0.3	0.5	mA
Operating Supply Current	I _{cc}			1	1 17		11	17	mΑ
Zener Voltage	V _z	$I_{cc} = 25mA$	30) 3.	5	30	35		٧

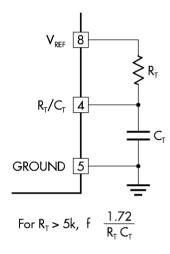
Notes: 2. These parameters, although guaranteed, are not 100% tested in

- 3. Parameter measured at trip point of latch with $V_{VER} = 0$.
- $\text{4. Gain defined as: } A_{\text{VOL}} = \frac{\Delta \, V_{\text{COMP}}}{\Delta \, V_{\text{ISENSE}}} \; \; ; \; \; 0 \leq V_{\text{ISENSE}} \leq 0.8V.$
- 5. Adjust $V_{\rm cc}$ above the start threshold before setting at 15V. 6. Output frequency equals oscillator frequency for the UC1842A and UC1843A. Output frequency is one half oscillator frequency for the UC1844A and UC1845A.
- 7. "Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:

Temp Stability =
$$\frac{V_{\text{REF}} \text{ (max.) - } V_{\text{REF}} \text{ (min.)}}{T_{J} \text{ (max.) - } T_{J} \text{ (min.)}}$$

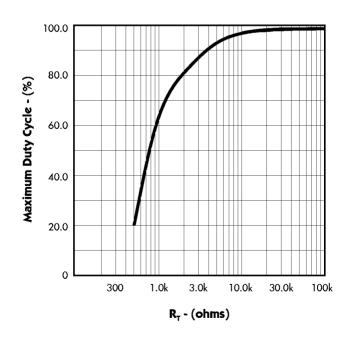
 V_{REF} (max.) & V_{REF} (min.) are the maximum & minimum reference voltage measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature."


- * V_c and V_c are internally connected for 8 pin packages.
- ** POWER GROUND and GROUND are internally connected for 8 pin packages.
- *** Toggle flip flop used only in x844A and x845A series.

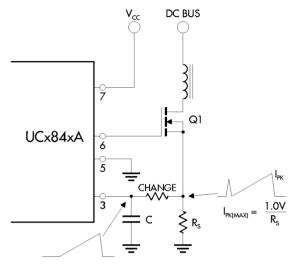


PRODUCTION DATA SHEET

CHARACTERISTIC CURVES


FIGURE 1. — OSCILLATOR FREQUENCY vs. TIMING RESISTOR

Note: Output drive frequency is half the oscillator frequency for the UCx844A/5A devices.


FIGURE 2. — MAXIMUM DUTY CYCLE vs. TIMING RESISTOR

PRODUCTION DATA SHEET

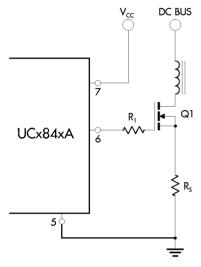

TYPICAL APPLICATION CIRCUITS

FIGURE 3. — CURRENT SENSE SPIKE SUPPRESSION

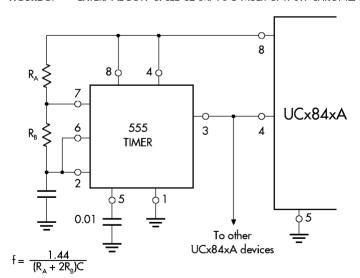
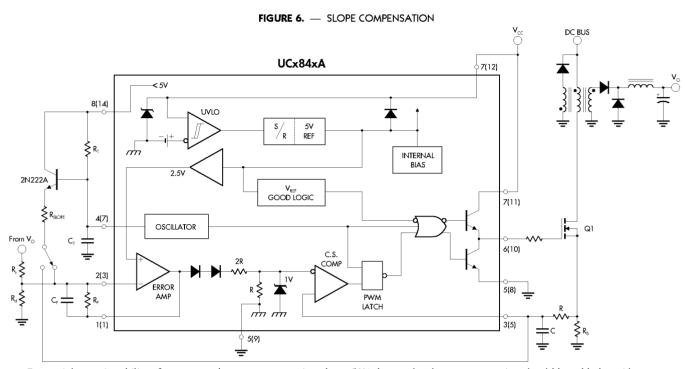
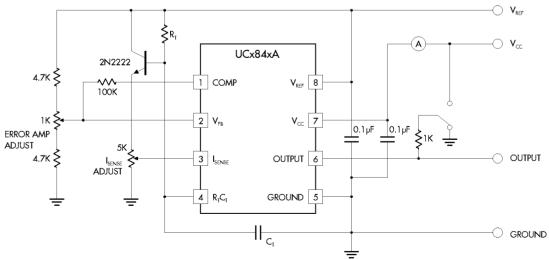

The RC low pass filter will eliminate the leading edge current spike caused by parasitics of Power MOSFET.

FIGURE 4. — MOSFET PARASITIC OSCILLATIONS

A resistor (R_1) in series with the MOSFET gate will reduce overshoot & ringing caused by the MOSFET input capacitance and any inductance in series with the gate drive. (Note: It is very important to have a low inductance ground path to insure correct operation of the I.C. This can be done by making the ground paths as short and as wide as possible.)

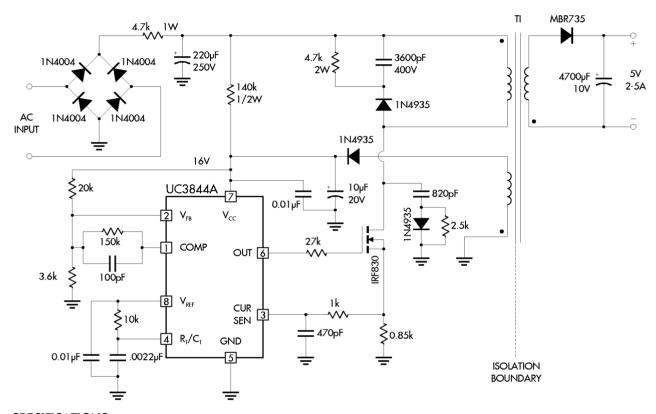

FIGURE 5. — EXTERNAL DUTY CYCLE CLAMP AND MULTI-UNIT SYNCHRONIZATION

 $f = \frac{R_{B}}{R_{A} + 2R_{B}}$ Precision duty cycle limiting as well as synchronizing several parts is possible with the above circuitry.


PRODUCTION DATA SHEET

TYPICAL APPLICATION CIRCUITS (continued)

Due to inherent instability of current mode converters running above 50% duty cycle, slope compensation should be added to either the current sense pin or the error amplifier. Figure 6 shows a typical slope compensation technique.


High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

PRODUCTION DATA SHEET

TYPICAL APPLICATION CIRCUITS (continued)

FIGURE 8. — OFF-LINE FLYBACK REGULATOR

SPECIFICATIONS

Input line voltage: 90VAC to 130VAC Input frequency: 50 or 60Hz
Switching frequency: 40KHz ±10%
Output power: 25W maximum
Output voltage: 5V +5%

Output voltage: 5V +5%
Output current: 2 to 5A
Line regulation: 0.01%/V
Load regulation: 8%/A*

Efficiency @ 25 Watts,

 $V_{IN} = 90VAC:$ 70% $V_{IN} = 130VAC:$ 65%

Output short-circuit current: 2.5Amp average

* This circuit uses a low-cost feedback scheme in which the DC voltage developed from the primary-side control winding is sensed by the UC3844A error amplifier. Load regulation is therefore dependent on the coupling between secondary and control windings, and on transformer leakage inductance.

