GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc - 5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Features RoHS Compliant Compliant to RoHS EU Directive 2011/65/EU (-Z versions) Compliant to RoHS EU Directive 2011/65/EU under exemption 7b (Lead solder exemption). Exemption 7b will expire after June 1, 2016 at which time this product will no longer be RoHS compliant (non-Z versions) Delivers up to 5A output current High efficiency - 94% at 3.3V full load (VIN = 5.0V) Small size and low profile: 22.9 mm x 10.2 mm x 6.66 mm (0.9 in x 0.4 in x 0.262 in) Applications Distributed power architectures Intermediate bus voltage applications Telecommunications equipment Servers and storage applications Low output ripple and noise High Reliability: Calculated MTBF = 19M hours at 25oC Full-load Output voltage programmable from 0.75 Vdc to 3.63Vdc via external resistor Networking equipment Line Regulation: 0.3% (typical) Enterprise Networks Load Regulation: 0.4% (typical) Latest generation IC's (DSP, FPGA, ASIC) and Microprocessor powered applications Temperature Regulation: 0.4 % (typical) Remote On/Off Output overcurrent protection (non-latching) Wide operating temperature range (-40C to 85C) UL* 60950-1Recognized, CSA C22.2 No. 60950-103 Certified, and VDE 0805:2001-12 (EN60950-1) Licensed ISO** 9001 and ISO 14001 certified manufacturing facilities Description Austin MicroLynxTM SIP (single in-line package) power modules are non-isolated dc-dc converters that can deliver up to 5A of output current with full load efficiency of 94% at 3.63V output. These modules provide precisely regulated output voltage programmable via external resistor from 0.75Vdc to 3.63Vdc over a wide range of input voltage (VIN = 3.0 - 5.5V). Their open-frame construction and small footprint enable designers to develop cost- and space-efficient solutions. Standard features include remote On/Off, programmable output voltage and overcurrent protection. * UL is a registered trademark of Underwriters Laboratories, Inc. CSA is a registered trademark of Canadian Standards Association. VDE is a trademark of Verband Deutscher Elektrotechniker e.V. ** ISO is a registered trademark of the International Organization of Standards September 25, 2015 (c)2015 General Electric Company. All rights reserved. GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability. Parameter Device Symbol Min Max Unit All VIN -0.3 5.8 Vdc All TA -40 85 C All Tstg -55 125 C Input Voltage Continuous Operating Ambient Temperature (see Thermal Considerations section) Storage Temperature Electrical Specifications Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. Parameter Device Symbol Min Typ 3.0 - Max Unit Operating Input Voltage All VIN Maximum Input Current All IIN,max 5.5 Vdc 5.0 Adc VO,set = 0.75 Vdc IIN,No load 20 mA VO,set = 3.3Vdc IIN,No load 45 mA All IIN,stand-by 0.6 mA Inrush Transient All I2t Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 1H source impedance; VIN, min to VIN, max, IO= IOmax ; See Test configuration section) All 35 Input Ripple Rejection (120Hz) All 30 (VIN= VIN, min to VIN, max, IO=IO, max ) Input No Load Current (VIN = VIN, nom, Io = 0, module enabled) Input Stand-by Current (VIN = VIN, nom, module disabled) 0.04 A 2s mAp-p dB CAUTION: This power module is not internally fused. An input line fuse must always be used. This power module can be used in a wide variety of applications, ranging from simple standalone operation to being part of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast-acting fuse with a maximum rating of 6 A (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse manufacturer's data sheet for further information. September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 2 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Electrical Specifications (continued) Parameter Output Voltage Set-point Device Symbol Min Typ Max Unit All VO, set -2.0 VO, set +2.0 % VO, set All VO, set -3% +3.% % VO, set All VO 0.7525 3.63 Vdc (VIN=IN, min, IO=IO, max, TA=25C) Output Voltage (Over all operating input voltage, resistive load, and temperature conditions until end of life) Adjustment Range Selected by an external resistor Output Regulation Line (VIN=VIN, min to VIN, max) All 0.3 % VO, set Load (IO=IO, min to IO, max) All 0.4 % VO, set Temperature (Tref=TA, min to TA, max) All 0.4 % VO, set RMS (5Hz to 20MHz bandwidth) All 10 15 mVrms Peak-to-Peak (5Hz to 20MHz bandwidth) All 40 50 mVpk-pk F Output Ripple and Noise on nominal output (VIN=VIN, nom and IO=IO, min to IO, max Cout = 1F ceramic//10Ftantalum capacitors) External Capacitance ESR 1 m All CO, max 1000 3000 F 5 Adc ESR 10 m All CO, max Output Current All Io 0 Output Current Limit Inception (Hiccup Mode ) All IO, lim 220 % Io All IO, s/c 2 Adc VIN= VIN, nom, TA=25C VO,set = 0.75Vdc VO, set = 1.2Vdc 85.0 % IO=IO, max , VO= VO,set VO,set = 1.5Vdc 87.0 % VO,set = 1.8Vdc 88.5 % VO,set = 2.5Vdc 92.0 % VO,set = 3.3Vdc 94.0 % All fsw 300 kHz All Vpk 130 mV Settling Time (Vo<10% peak deviation) All ts 25 s (dIo/dt=2.5A/s; VIN = VIN, nom; TA=25C) Load Change from Io= 100% to 50%of Io,max: 1F ceramic// 10 F tantalum All Vpk 130 mV All ts 25 s (VO= 90% of VO, set) Output Short-Circuit Current (VO250mV) ( Hiccup Mode ) Efficiency Switching Frequency 79.0 % Dynamic Load Response (dIo/dt=2.5A/s; VIN = VIN, nom; TA=25C) Load Change from Io= 50% to 100% of Io,max; 1F ceramic// 10 F tantalum Peak Deviation Peak Deviation Settling Time (Vo<10% peak deviation) September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 3 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Electrical Specifications (continued) Parameter Device Symbol Min Typ Max Unit All Vpk 50 mV Settling Time (Vo<10% peak deviation) All ts 50 s (dIo/dt=2.5A/s; VIN = VIN, nom; TA=25C) Load Change from Io= 100% to 50%of Io,max: Co = 2x150 F polymer capacitors Peak Deviation All Vpk 50 mV Settling Time (Vo<10% peak deviation) All ts 50 s Dynamic Load Response (dIo/dt=2.5A/s; V VIN = VIN, nom; TA=25C) Load Change from Io= 50% to 100% of Io,max; Co = 2x150 F polymer capacitors Peak Deviation General Specifications Parameter Min Calculated MTBF (IO=IO, max, TA=25C) Weight September 25, 2015 Typ Max 19,000,000 2.8 (0.1) (c)2015 General Electric Company. All rights reserved. Unit Hours g (oz.) Page 4 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Feature Specifications Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information. Parameter Device Symbol Min Typ Max Unit Von/Off All VIL 0.4 V Ion/Off All IIL 10 A Von/Off All VIH VIN, max V Ion/off All IIH 1 mA Case 1: On/Off input is set to Logic Low (Module ON) and then input power is applied (delay from instant at which VIN =VIN, min until Vo=10% of Vo,set) Case 2: Input power is applied for at least one second and then the On/Off input is set to logic Low (delay from instant at which Von/Off=0.3V until Vo=10% of Vo, set) All Tdelay 3.9 msec All Tdelay 3.9 msec Output voltage Rise time (time for Vo to rise from 10% of Vo,set to 90% of Vo, set) All Trise 4.2 8.5 msec 1 % VO, set 150 C Remote On/Off Signal interface (VIN=VIN, min to VIN, max; Open collector pnp or equivalent Compatible, Von/off signal referenced to GND See feature description section) Logic Low (On/Off Voltage pin open - Module ON) Logic High (Von/Off > 2.5V - Module Off) Turn-On Delay and Rise Times (IO=IO, max , VIN = VIN, nom, TA = 25 oC, ) Output voltage overshoot - Startup IO= IO, max; VIN = 3.0 to 5.5Vdc, TA = 25 C o Overtemperature Protection All Tref (See Thermal Consideration section) Input Undervoltage Lockout Turn-on Threshold All 2.2 V Turn-off Threshold All 2.0 V September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 5 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Characteristic Curves The following figures provide typical characteristics for the Austin MicroLynxTM SIP modules at 25C. 88 95 90 82 EFFICIENCY, (%) EFFICIENCY, (%) 85 79 Vin = 3.0V 76 Vin = 5.0V 73 85 Vin = 3.0V 80 Vin = 5.0V 75 Vin = 5.5V Vin = 5.5V 70 0 1 2 3 4 70 5 0 1 OUTPUT CURRENT, IO (A) 3 5 Figure 4. Converter Efficiency versus Output Current (Vout = 1.8Vdc). 95 100 95 EFFICIENCY, (%) 90 85 Vin = 3.0V 80 Vin = 5.0V 75 90 85 Vin = 3.0V 80 Vin = 5.0V 75 Vin = 5.5V Vin = 5.5V 70 70 0 1 2 3 4 0 5 1 OUTPUT CURRENT, IO (A) 2 3 4 5 OUTPUT CURRENT, IO (A) Figure 2. Converter Efficiency versus Output Current (Vout = 1.2Vdc). Figure 5. Converter Efficiency versus Output Current (Vout = 2.5Vdc). 95 100 95 EFFICIENCY, (%) 90 EFFICIENCY, (%) 4 OUTPUT CURRENT, IO (A) Figure 1. Converter Efficiency versus Output Current (Vout = 0.75Vdc). EFFICIENCY, (%) 2 85 Vin = 3.0V 80 Vin = 5.0V 75 Vin = 5.5V 90 85 Vin = 4.5V 80 Vin = 5.0V 75 Vin = 5.5V 70 70 0 1 2 3 4 5 OUTPUT CURRENT, IO (A) Figure 3. Converter Efficiency versus Output Current (Vout = 1.5Vdc). September 25, 2015 0 1 2 3 4 5 OUTPUT CURRENT, IO (A) Figure 6. Converter Efficiency versus Output Current (Vout = 3.3Vdc). (c)2015 General Electric Company. All rights reserved. Page 6 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Characteristic Curves (continued) The following figures provide typical characteristics for the MicroLynxTM SIP modules at 25C. 6 1.5 2.5 3.5 4.5 INPUT VOLTAGE, VIN (V) Figure 7. Input voltage vs. Input Current TIME, t (2s/div) TIME, t (2s/div) Figure 9. Typical Output Ripple and Noise (Vin = 5V dc, Vo = 3.3 Vdc, Io=5A). September 25, 2015 TIME, t (5 s/div) Figure 11. Transient Response to Dynamic Load Change from 100% to 50% of full load (Vo = 3.3 Vdc). OUTPUT CURRENT, OUTPUT VOLTAGE VO (V) (20mV/div) OUTPUT VOLTAGE Figure 8. Typical Output Ripple and Noise (Vin = 5V dc, Vo = 0.75 Vdc, Io=5A). TIME, t (5 s/div) Figure 10. Transient Response to Dynamic Load Change from 50% to 100% of full load (Vo = 3.3Vdc). OUTPUT CURRENT, OUTPUT VOLTAGE VO (V) (20mV/div) OUTPUT VOLTAGE (Vout = 2.5Vdc). 5.5 IO (A) (2A/div) 0.5 OUTPUT CURRENT, OUTPUT VOLTAGE 0 VO (V) (100mV/div) 1 IO (A) (2A/div) 2 VO (V) (50mV/div) Io=5A 3 IO (A) (2A/div) INPUT CURRENT, IIN (A) Io=2.5A 4 VO (V) (100mV/div) Io=0A 5 TIME, t (10s/div) Figure 12. Transient Response to Dynamic Load Change from 50% to 100% of full load (Vo = 3.3 Vdc, Cext = 2x150 F Polymer Capacitors). (c)2015 General Electric Company. All rights reserved. Page 7 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Characteristic Curves (continued) OUTPUT VOLTAGE, INPUT VOLTAGE (1V/div) VIN (V) (2V/div) OUTPUT VOLTAGE TIME, t (2 ms/div) VOn/off (V) (2V/div) TIME, t (2 ms/div) Figure 17 Typical Start-Up using Remote On/off with Prebias (Vin = 3.3Vdc, Vo = 1.8Vdc, Io = 1A, Vbias =1.0 Vdc). OUTPUT CURRENT, VOn/off (V) (2V/div) VOV) (1V/div) OUTPUT VOLTAGE On/Off VOLTAGE Figure 14. Typical Start-Up Using Remote On/Off (Vin = 5Vdc, Vo = 3.3Vdc, Io = 5.0A). TIME, t (2 ms/div) TIME, t (20ms/div) Figure 15. Typical Start-Up Using Remote On/Off with Low- ESR external capacitors (7x150uF Polymer) (Vin = 5Vdc, Vo = 3.3Vdc, Io = 5.0A, Co = 1050F). September 25, 2015 Figure 16. Typical Start-Up with application of Vin with (Vin = 5.0Vdc, Vo = 3.3Vdc, Io = 5A). On/Off VOLTAGE VOn/off (V) (52V/div) VOV) (1V/div) OUTPUT VOLTAGE On/Off VOLTAGE Figure 13. Transient Response to Dynamic Load Change from 100% of 50% full load (Vo = 3.3 Vdc, Cext = 2x150 F Polymer Capacitors). TIME, t (2 ms/div) VOV) (1V/div) TIME, t (10s/div) IO (A) (5A/div) OUTPUT CURRENT OUTPUTVOLTAGE VO (V) (50mV/div) IO (A) (2A/div) Vo (V) The following figures provide typical characteristics for the Austin MicroLynxTM SIP modules at 25C. Figure 18. Output short circuit Current (Vin = 5Vdc, Vo = 0.75Vdc). (c)2015 General Electric Company. All rights reserved. Page 8 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Characteristic Curves (continued) 6 6 5 5 OUTPUT CURRENT, Io (A) OUTPUT CURRENT, Io (A) The following figures provide thermal derating curves for the Austin MicroLynxTM SIP modules. 4 3 NC 2 0.5m/s (100 LFM) 1 1.0m/s (200 LFM) 0 4 3 NC 2 0.5m/s (100 LFM) 1 1.0m/s (200 LFM) 0 20 30 40 50 60 80 70 90 AMBIENT TEMPERATURE, TA OC 20 30 40 50 60 70 80 90 AMBIENT TEMPERATURE, TA OC Figure 19. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 5.0Vdc, Vo=3.3Vdc). Figure 22. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 3.3Vdc, Vo=0.75 Vdc). 6 OUTPUT CURRENT, Io (A) 5 4 3 NC 2 0.5m/s (100 LFM) 1 1.0m/s (200 LFM) 0 20 30 40 50 60 70 80 90 AMBIENT TEMPERATURE, TA OC Figure 20. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 5.0Vdc, Vo=0.75 Vdc). 6 OUTPUT CURRENT, Io (A) 5 4 3 NC 2 0.5m/s (100 LFM) 1 1.0m/s (200 LFM) 0 20 30 40 50 60 70 AMBIENT TEMPERATURE, T AO 80 90 C Figure 21. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 3.3Vdc, Vo=2.5 Vdc). September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 9 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Test Configurations Design Considerations Input Filtering CURRENT PROBE TO OSCILLOSCOPE The Austin MicroLynxTM SIP module should be connected to a low-impedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pin of the module, to minimize input ripple voltage and ensure module stability. LTEST VIN(+) BATTERY 1H CIN CS 1000F Electrolytic 2x100F Tantalum E.S.R.<0.1 @ 20C 100kHz COM NOTE: Measure input reflected ripple current with a simulated source inductance (LTEST) of 1H. Capacitor CS offsets possible battery impedance. Measure current as shown above. Figure 23. Input Reflected Ripple Current Test Setup. To minimize input voltage ripple, low-ESR polymer and ceramic capacitors are recommended at the input of the module. Figure 26 shows the input ripple voltage (mVp-p) for various outputs with 1x150 F polymer capacitors (Panasonic p/n: EEFUE0J151R, Sanyo p/n: 6TPE150M) in parallel with 1 x 47 F ceramic capacitor (Panasonic p/n: ECJ-5YB0J476M, TaiyoYuden p/n: CEJMK432BJ476MMT) at full load. Figure 27 shows the input ripple with 2x150 F polymer capacitors in parallel with 2 x 47 F ceramic capacitor at full load. COPPER STRIP 120 VO (+) 1uF . 10uF Input Ripple Voltage (mVp-p) RESISTIVE LOAD SCOPE COM GROUND PLANE NOTE: All voltage measurements to be taken at the module terminals, as shown above. If sockets are used then Kelvin connections are required at the module terminals to avoid measurement errors due to socket contact resistance. Figure 24. Output Ripple and Noise Test Setup. 100 80 60 40 Vin = 3.3V 20 Vin = 5.0V 0 0 Rcontact Rcontact VIN(+) Rcontact Rdistribution COM NOTE: All voltage measurements to be taken at the module terminals, as shown above. If sockets are used then Kelvin connections are required at the module terminals to avoid measurement errors due to socket contact resistance. Figure 25. Output Voltage and Efficiency Test Setup. VO. IO Efficiency September 25, 2015 = VIN. IIN 4 Output Voltage (Vdc) Figure 26. Input ripple voltage for various output with 1x150 F polymer and 1x47 F ceramic capacitors at the input (full load) 100 80 60 40 Vin = 3.3V 20 Vin = 5.0V 0 0 x 3 120 Rcontact COM 2 RLOAD VO VIN Rdistribution Rdistribution VO Input Ripple Voltage (mVp-p) Rdistribution 1 100 % 1 2 3 4 Output Voltage (Vdc) Figure 27. Input ripple voltage for various output with 2x150 F polymer and 2x47 F ceramic capacitors at the input (full load) (c)2015 General Electric Company. All rights reserved. Page 10 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Design Considerations (continued) Output Filtering The Austin MicroLynxTM SIP module is designed for low output ripple voltage and will meet the maximum output ripple specification with 1 F ceramic and 10 F polymer capacitors at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change. Safety Considerations For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL 60950-1, CSA C22.2 No. 60950-1-03, and VDE 0850:2001-12 (EN60950-1) Licensed. For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. The input to these units is to be provided with a fast-acting fuse with a maximum rating of 6A in the positive input lead. To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR polymer and ceramic capacitors are recommended to improve the dynamic response of the module. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table. September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 11 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Feature Description Overcurrent Protection Remote On/Off The Austin MicroLynxTM SIP power modules feature an On/Off pin for remote On/Off operation of the module. If not using the remote On/Off pin, leave the pin open (module will be On). The On/Off pin signal (Von/Off) is referenced to ground. To switch module on and off using remote On/Off, connect an open collector pnp transistor between the On/Off pin and the VIN pin (See Figure 28). When the transistor Q1 is in the OFF state, the power module is ON (Logic Low on the On/Off pin of the module) and the maximum Von/off of the module is 0.4 V. The maximum allowable leakage current of the transistor when Von/off = 0.4V and VIN = VIN,max is 10A. During a logic-high when the transistor is in the active state, the power module is OFF. During this state VOn/Off =10 - 14V and the maximum IOn/Off = 1mA. VIN(+) Lynx-series Module To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range. The typical average output current during hiccup is 2A. Input Undervoltage Lockout At input voltages below the input undervoltage lockout limit, module operation is disabled. The module will begin to operate at an input voltage above the undervoltage lockout turn-on threshold. Overtemperature Protection To provide over temperature protection in a fault condition, the unit relies upon the thermal protection feature of the controller IC. The unit will shutdown if the thermal reference point Tref2, (see Figure 31) exceeds 150oC (typical), but the thermal shutdown is not intended as a guarantee that the unit will survive temperatures beyond its rating. The module will automatically restarts after it cools down. IOn/Off On/Off Pin Enable 20k Css GND 20k Figure 28. Remote On/Off Implementation Remote On/Off can also be implemented using open-collector logic devices with an external pull-up resistor. Figure 28a shows the circuit configuration using this approach. Pull-up resistor, Rpull-up, for the configuration should be 5k (+/-5%) for proper operation of the module over the entire temperature range. VIN+ MODULE Rpull-up I ON/OFF ON/OFF + VON/OFF PWM Enable R1 Q2 CSS Q1 R2 GND _ Figure 28a. Remote On/Off Implementation using logic-level devices and an external pull-up resistor September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 12 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Feature Descriptions (continued) Output Voltage Programming V O(+) V IN(+) The output voltage of the Austin MicroLynxTM can be programmed to any voltage from 0.75Vdc to 3.63Vdc by connecting a resistor (shown as Rtrim in Figure 29) between Trim and GND pins of the module. Without an external resistor between Trim and GND pins, the output of the module will be 0.7525Vdc. To calculate the value of the trim resistor, Rtrim for a desired output voltage, use the following equation: 21070 Rtrim = - 5110 Vo - 0 . 7525 ON/OFF LOAD TRIM + - Vtrim GND Figure 30. Circuit Configuration for programming Output voltage using external voltage source Rtrim is the external resistor in Vo is the desired output voltage For example, to program the output voltage of the Austin MicroLynxTM module to 1.8V, Rtrim is calculated as follows: 21070 - 5110 - 7525 . 0 8 . 1 Rtrim = Table 1 provides Rtrim values for most common output voltages. Table 2 provides values of external voltage source, Vtrim for various output voltage. Table 1 VO, set (V) Rtrim = 9.024k 0.7525 Open 1.2 41.973 1.5 23.077 1.8 15.004 2.5 6.947 3.3 3.160 VO, set (V) Vtrim (V) 0.7525 Open 1.2 0.6240 1.5 0.5731 1.8 0.5221 2.5 0.4033 3.3 0.2670 V O(+) V IN(+) ON/OFF LOAD TRIM Table 2 R trim GND Figure 29. Circuit configuration to program output voltage using an external resistor Austin MicroLynxTM can also be programmed by applying a voltage between TRIM and GND pins (Figure 30). The following equation can be used to determine the value of Vtrim needed to obtain a desired output voltage Vo: Vtrim = (0.7 - 0.1698 x {Vo - 0.7525}) For example, to program the output voltage of a MicroLynxTM module to 3.3 Vdc, Vtrim is calculated as follows: Vtrim = (0.7 - 0.1698 x {3.3 - 0.7525}) Vtrim = 0.2670V September 25, 2015 Rtrim (K) Using 1% tolerance trim resistor, set point tolerance of 2% is achieved as specified in the electrical specification. The POL Programming Tool, available at www.gecriticalpower.com under the Design Tools section, helps determine the required external trim resistor needed for a specific output voltage. (c)2015 General Electric Company. All rights reserved. Page 13 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Feature Descriptions (continued) The amount of power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using the trim feature, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power (Pmax = Vo,set x Io,max). Voltage Margining Output voltage margining can be implemented in the Austin MicroLynxTM modules by connecting a resistor, Rmargin-up, from Trim pin to ground pin for margining-up the output voltage and by connecting a resistor, Rmargin-down, from Trim pin to Output pin. Figure 31 shows the circuit configuration for output voltage margining The POL Programming Tool, available at www.gecriticalpower.com under the Design Tools section, also calculates the values of Rmargin-up and Rmargin-down for a specific output voltage and % margin. Please consult your local GE technical representative for additional details Vo Rmargin-down Austin Lynx or Lynx II Series Q2 Trim Rmargin-up Rtrim Q1 GND Figure 31. Circuit Configuration for margining Output voltage. September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 14 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Thermal Considerations Power modules operate in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation. Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel. The test set-up is shown in Figure 33. Note that the airflow is parallel to the long axis of the module as shown in figure 32. The derating data applies to airflow in either direction of the module's long axis. 25.4_ (1.0) Wind Tunnel PWBs Power Module 76.2_ (3.0) x 7.24_ (0.285) Probe Location for measuring airflow and ambient temperature Air flow Figure 33. Thermal Test Set-up. Heat Transfer via Convection Increased airflow over the module enhances the heat transfer via convection. Thermal derating curves showing the maximum output current that can be delivered by various module versus local ambient temperature (TA) for natural convection and up to 1m/s (200 ft./min) are shown in the Characteristics Curves section. Layout Considerations Copper paths must not be routed beneath the power module. For additional layout guide-lines, refer to FLTR100V10 application note. Figure 32. Tref Temperature measurement location. The thermal reference point, Tref 1 used in the specifications of thermal derating curves is shown in Figure 32. For reliable operation this temperature should not exceed 125oC. The output power of the module should not exceed the rated power of the module (Vo,set x Io,max). Please refer to the Application Note "Thermal Characterization Process For Open-Frame Board-Mounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures. September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 15 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Post solder Cleaning and Drying Considerations Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to Board Mounted Power Modules: Soldering and Cleaning Application Note. Through-Hole Lead-Free Soldering Information They are designed to be processed through single or dual wave soldering machines. The pins have an RoHS-compliant finish that is compatible with both Pb and Pb-free wave soldering processes. A maximum preheat rate of 3C/s is suggested. The wave preheat process should be such that the temperature of the power module board is kept below 210C. For Pb solder, the recommended pot temperature is 260C, while the Pb-free solder pot is 270C max. Not all RoHS-compliant through-hole products can be processed with paste-through-hole Pb or Pbfree reflow process. If additional information is needed, please consult with your GE technical representative for more details. The RoHS-compliant through-hole products use the SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant components. September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 16 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Mechanical Outline Dimensions are in millimeters and (inches). Tolerances: x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated] x.xx mm 0.25 mm (x.xxx in 0.010 in.) September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 17 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Recommended Pad Layout Dimensions are in millimeters and (inches). Tolerances: x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated] x.xx mm 0.25 mm (x.xxx in 0.010 in.) September 25, 2015 (c)2015 General Electric Company. All rights reserved. Page 18 GE Data Sheet Austin MicroLynxTM: SIP Non-Isolated DC-DC Power Modules 3Vdc -5.5Vdc input; 0.75Vdc to 3.63Vdc output; 5A Output Current Ordering Information Please contact your GE Sales Representative for pricing, availability and optional features. Table 3. Device Codes Device Code Input Voltage Range Output Voltage Output Current Efficiency 3.3V@ 5A On/Off Logic Connector Type Comcodes AXH005A0XZ 3.0 - 5.5Vdc 0.75 - 3.63Vdc 5A 94.0% Negative SIP CC109104881 AXH005A0X 3.0 - 5.5Vdc 0.75 - 3.63Vdc 5A 94.0% Negative SIP 108979675 -Z refers to RoHS compliant Versions Contact Us For more information, call us at USA/Canada: +1 877 546 3243, or +1 972 244 9288 Asia-Pacific: +86.021.54279977*808 Europe, Middle-East and Africa: +49.89.878067-280 www.gecriticalpower.com GE Critical Power reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. September 25, 2015 (c)2015 General Electric Company. All International rights reserved. Version 1.35