© by SEMIKRON 0898 B 6 143
Absolute Maximum Ratings Values
Symbol Conditions 1) Units
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
RGE = 20 k
Tcase = 25/65 °C
Tcase = 25/65 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
1200
1200
190 / 150
380 / 300
± 20
800
–40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
°C
V
Inverse Diode
IF = –IC
IFM = –ICM
IFSM
I2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
150 / 100
380 / 300
1100
6000
A
A
A
A2s
Characteristics
Symbol Conditions 1) min. typ. max. Units
V(BR)CES
VGE(th)
ICES
IGES
VCEsat
VCEsat
gfs
VGE = 0, IC = 4 mA
VGE = VCE, IC = 4 mA
VGE = 0 Tj = 25 °C
VCE = VCES Tj = 125 °C
VGE = 20 V, VCE = 0
IC = 100 A VGE = 15 V;
IC = 150 A Tj = 25 (125) °C
VCE = 20 V, IC = 100 A
VCES
4,5
54
5,5
0,2
9
2,1(2,4)
2,6(3,1)
6,5
2
1
2,45(2,85)
V
V
mA
mA
µA
V
V
S
CCHC
Cies
Coes
Cres
LCE
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
6,5
1000
500
700
8,5
1500
600
20
pF
nF
pF
pF
nH
td(on)
tr
td(off)
tf
Eon5)
Eoff5)
VCC = 600 V
VGE = –15 V / +15 V3)
IC = 100 A, ind. load
RGon = RGoff = 8
Tj = 125 °C
50
35
420
60
12
13
ns
ns
ns
ns
mWs
mWs
Inverse Diode 8)
VF = VEC
VF = VEC
VTO
rt
IRRM
Qrr
IF = 100 A VGE = 0 V;
IF = 150 A Tj = 25 (125) °C
Tj = 125 °C 2)
Tj = 125 °C 2)
IF = 100 A; Tj = 125 °C2)
IF = 100 A; Tj = 125 °C2)
2,0(1,8)
2,25(2,1)
1,1
58
12
2,5
1,2
11
V
V
V
m
A
µC
Thermal character isti c s
Rthjc
Rthjc
Rthch
per IGBT
per diode
per module
0,15
0,25
0,038
°C/W
°C/W
°C/W
SEMITRANS® M
Low Loss IGBT Modules
SKM 150 GB 124 D
Features
MOS input (voltage controlled)
N channel, homogeneous Silicon
structure (NPT- IGBT)
Low inductance case
Very low tail current with low
temperature dependence
High short circuit capability,
self limiting to 6 * Icnom
Latch-up free
Fast & soft inverse CAL diodes 8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
Large clearance (12 mm) and
creepage distances (20 mm)
Typical Applications B 6 147
Switching (not for linear use)
AC in verter drives
UPS
1) Tcase = 25 °C, unless otherwise
specified
2) IF = – IC, VR = 600 V,
–diF/dt = 1000 A/µs, VGE = 0 V
3) Use VGEoff = –5... –15 V
5) See fig. 2 + 3; Rgoff = 8
8) CAL = Controlled Axial Lifetime
Technology
Cases and mech. data
B 6 148
GB
SEMITRANS 3
http://store.iiic.cc/
© by SEMIKRONB 6 – 144
SKM 150 GB 124 D…
0898
M150G124.XLS-6
0
2
4
6
8
10
12
0 200 400 600 800 1000 1200 1400
V
CE
V
I
CSC
/I
C
a l lowe d num ber s of
short circuits: <1000
t ime between s hort
circuits: >1s
d i /d t =30 0 A/µs
900 A/µs
1500 A/µs
M150G124.XLS-5
0
0,5
1
1,5
2
2,5
0 200 400 600 800 1000 1200 1400
V
CE
V
I
Cpuls
/I
C
M150G124.XLS-4
0,1
1
10
100
1000
1 10 100 1000 10000
V
CE
V
I
C
At
p
=15µs
10s
1ms
10ms
M150G124.XLS-3
0
5
10
15
20
25
30
35
40
0 102030405060
R
G
E
mWs E
on
E
off
M150G124.XLS-2
0
5
10
15
20
25
30
35
0 50 100 150 200 250
I
C
A
E
mWs E
on
E
off
M150G124.XLS-1
0
200
400
600
800
1000
0 20 40 60 80 100 120 140 160
T
C
°C
P
tot
W
Fig. 3 Turn-on /-off energy = f (R
G
) Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 1 Rated power dissipation P
tot
= f (T
C
) Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
T
j
= 125 °C
V
CE
= 60 0 V
V
GE
= + 15 V
R
G
= 8
1 pulse
T
C
= 25 °C
T
j
150 °C
T
j
= 12 5 °C
V
CE
= 600 V
V
GE
= + 15 V
I
C
= 100 A
T
j
150 °C
V
GE
= ± 15 V
t
sc
10 µs
L < 25 nH
I
CN
= 100 A
T
j
150 °C
V
GE
= 15 V
R
G off
= 8
I
C
= 100 A
Not for
line ar us e!
http://store.iiic.cc/
© by SEMIKRON B 6 – 1450898
M150G124.XLS-12
0
50
100
150
200
02468101214
V
GE
V
I
C
A
M150G124.XLS-10
0
50
100
150
200
012345
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M1 50G12 4.X LS -9
0
50
100
150
200
012345
V
CE
V
I
C
A17V
15V
13V
11V
9V
7V
M1 50G12 4.X LS -8
0
40
80
120
160
200
0 20406080100120140160
T
C
°C
I
C
A
P
cond(t)
= V
CEsat(t)
· I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
· I
C(t)
V
CE(TO)(Tj)
1,3 + 0,0005 (T
j
–25) [V]
typ.: r
CE(Tj)
= 0,008 + 0,000025 (T
j
–25) [
]
max.: r
CE(Tj)
= 0 ,0115 + 0,0000 35 (T
j
–25) [
]
valid for V
GE
= + 15 [V]; I
C
> 0, 3 I
Cnom
Fig. 9 Typ. output characteristic, t
p
= 80 µs; 25 °C Fig. 10 Typ. output characteristic, t
p
= 80 µs; 125 °C
Fig. 8 Rated current vs. temperature I
C
= f (T
C
)
+2
–1
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations Fig. 12 Typ. transfer characteristic, t
p
= 80 µs; V
CE
= 20 V
T
j
= 150 ° C
V
GE
15V
http://store.iiic.cc/
© by SEMIKRONB 6 – 146
SKM 150 GB 124 D…
0898
M150G124.XLS-18
0
1
2
3
4
5
6
0 50 100 150 200
I
F
A
E
offD
mJ
31 Ω
13 Ω
60 Ω
9 Ω
R
G
=6 Ω
M150G124.XLS-17
0
40
80
120
160
200
0123
V
F
V
I
F
AT
j
= 1 25° C, t yp.
T
j
=25°C, typ.
T
j
=12C, max .
T
j
=25°C, max.
M150G124.XLS-16
10
100
1000
10000
0204060
R
G
t
ns
t
doff
t
don
t
r
t
f
M150G124.XLS-15
10
100
1000
0 50 100 150 200 250
I
C
A
t
ns t
doff
t
don
t
r
t
f
M150G124.XLS-14
0,1
1
10
100
0102030
V
CE
V
C
nF
C
ies
C
oes
C
res
M150G124.XLS-13
0
2
4
6
8
10
12
14
16
18
20
0 100 200 300 400 500 600 700
Q
Gate
nC
V
GE
V
600V
800V
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V
CE
V
GE
= 0 V
f = 1 MHz
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. switching times vs. gate resistor R
G
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse
T
j
= 125 °C
V
CE
= 600 V
V
GE
= ± 15 V
I
C
= 100 A
ind uc t. lo ad
I
Cpuls
= 100 A
T
j
= 125 °C
V
CE
= 600 V
V
GE
= ± 15 V
R
Gon
= 8
R
Goff
= 8
induct. load
V
CC
= 600 V
T
j
= 12 5 °C
V
GE
= ± 15 V
http://store.iiic.cc/
© by SEMIKRON B 6 – 1470898
M150G124.XLS-24
0
5
10
15
20
0 1000 2000 3000 4000 5000 6000
di
F
/dt A/µs
Q
rr
µC I
F
=
100 A
75 A
50 A
25 A
31 Ω
13 Ω
60 Ω
9 Ω
R
G
=
6 Ω 15 0 A
M150G124.XLS-22
0
50
100
150
200
250
0 50 100 150 200
I
F
A
I
RR
A
31 Ω
13 Ω
60 Ω
9 Ω
R
G
=
6 Ω
M150G124.XLS-23
0
50
100
150
200
0 1000 2000 3000 4000 5000 6000
di
F
/dt A/µs
I
RR
A
31 Ω
13 Ω
60 Ω
9 Ω
R
G
=6 Ω
M150G124.XLS-20
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
s
Z
thJC
K/W
D=0,5
0,2
0,1
0,0
5
0,02
0,01
s ingle puls e
t
p
M150G124.XLS-19
0,00001
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
t
p
s
Z
thJC
K/W
D=0,5
0
0,2
0
0,1
0
0,0
5
0,02
0,01
s ingle puls e
Fig. 19 Transient thermal impedance of IGBT
Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
· f Fig. 20 Transient thermal impedance of
inverse CAL diodes Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
· f
Fig. 22 Typ. CAL diode peak revers e recovery
curren t I
RR
= f (I
F
; R
G
)Fig. 23 Typ. CAL diode peak reverse recovery
current I
RR
= f (di
F
/dt)
Fig. 24 Typ. CAL diode recovered charge Q
rr
= f (di/dt)
Typical Applications
include
Switch ed mode power supplies
DC servo and robot drives
Inverters
AC motor spee d control
Inductive heating
General power switching applications
Electronic (also po rtable ) welders
Pulse frequencies above 15 kHz
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15 V
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15 V
V
CC
= 60 0 V
T
j
= 1 25 °C
V
GE
= ± 15 V
I
F
= 10 0 A
http://store.iiic.cc/
© by SEMIKRONB 6 – 148
SKM 150 GB 124 D…
0898
SEMITRANS 3
Case D 56
UL Recognized
File no. E 63 532
SKM 150 GB 124 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions Values Units
min. typ. max.
M
1
M
2
a
w
to heatsink, SI Units (M6)
to heatsink, US Units
for terminal s, SI Units (M6)
fo r terminals, U S Units
3
27
2,5
22
5
44
5
44
5x9,81
325
Nm
lb.in.
Nm
lb.in.
m/s
2
g
This is an electrostatic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Three devices are supplied in one
SE M IBO X B wi th o ut mo u nt ing
hardware, which can be ordered
separately under Ident No.
33321100 (for 10 SEMITRANS 3).
Larger packing units of 12 and 20
pieces are used if suitable
Accessories
B 6
4.
SEMIBOX
C
1.
http://store.iiic.cc/