© 2015 IXYS CORPORATION, All Rights Reserved
VCES = 650V
IC110 = 20A
VCE(sat) 


2.50V
tfi(typ) = 28ns
DS100576C(3/15)
Extreme Light Punch Through
IGBT for 20-60kHz Switching
Symbol Test Conditions Characteristic Values
(TJ = 25C, Unless Otherwise Specified) Min. Typ. Max.
BVCES IC = 250A, VGE = 0V 650 V
VGE(th) IC= 250A, VCE = VGE 3.5 6.0 V
ICES VCE = VCES, VGE = 0V 10 A
TJ = 150C 400 A
IGES VCE = 0V, VGE = 20V 100 nA
VCE(sat) IC= 20A, VGE = 15V, Note 1 2.27 2.50 V
TJ = 150C 2.44 V
Symbol Test Conditions Maximum Ratings
VCES TJ = 25°C to 175°C 650 V
VCGR TJ = 25°C to 175°C, RGE = 1M 650 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC = 25°C 50 A
IC110 TC = 110°C 20 A
IF110 TC = 110°C 18 A
ICM TC = 25°C, 1ms 105 A
IATC = 25°C 10 A
EAS TC = 25°C 200 mJ
SSOA VGE = 15V, TVJ = 150°C, RG = 20 ICM = 40 A
(RBSOA) Clamped Inductive Load VCE VCES
tsc VGE = 15V, VCE = 360V, TJ = 150°C 10 μs
(SCSOA) RG = 82, Non Repetitive
PCTC = 25°C 200 W
TJ-55 ... +175 °C
TJM 175 °C
Tstg -55 ... +175 °C
TLMaximum Lead Temperature for Soldering 300 °C
TSOLD 1.6 mm (0.062in.) from Case for 10s 260 °C
MdMounting Torque (TO-220) 1.13/10 Nm/lb.in
FCMounting Force (TO-263) 10..65 / 2.2..14.6 N/lb
Weight TO-263 2.5 g
TO-220 3.0 g
XPTTM 650V IGBT
GenX3TM w/Diode
IXYA20N65C3D1
IXYP20N65C3D1
Features
Optimized for 20-60kHz Switching
Square RBSOA
Avalanche Rated
Anti-Parallel Fast Diode
Short Circuit Capability
International Standard Packages
Advantages
High Power Density
Extremely Rugged
Low Gate Drive Requirement
Applications
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
High Frequency Power Inverters
G = Gate C = Collector
E = Emitter Tab = Collector
TO-263 AA (IXYA)
GCE
TO-220AB (IXYP)
G
E
C (Tab)
C (Tab)
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYA20N65C3D1
IXYP20N65C3D1
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or more of the following U.S. patents: 4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
Notes:
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max.
gfs IC = 20A, VCE = 10V, Note 1 7 12 S
Cies 822 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 67 pF
Cres 19 pF
Qg(on) 30 nC
Qge IC = 20A, VGE = 15V, VCE = 0.5 • VCES 6 nC
Qgc 15 nC
td(on) 19 ns
tri 34 ns
Eon 0.43 mJ
td(off) 80 ns
tfi 28 ns
Eoff 0.35 0.65 mJ
td(on) 18 ns
tri 33 ns
Eon 0.70 mJ
td(off) 96 ns
tfi 36 ns
Eoff 0.40 mJ
RthJC 0.65 °C/W
RthCS TO-220 0.50 °C/W
Inductive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 400V, RG = 20
Note 2
Inductive load, TJ = 150°C
IC = 20A, VGE = 15V
VCE = 400V, RG = 20
Note 2
Reverse Diode (FRED)
Symbol Test Conditions Characteristic Values
(TJ = 25C, Unless Otherwise Specified) Min. Typ. Max.
VF IF = 20A, VGE = 0V, Note 1 2.5 V
TJ = 150C 1.5 V
IRM 11 A
trr 135 ns
RthJC 1.85 °C/W
IF = 20A, VGE = 0V,
-diF/dt = 300A/μs, VR = 400V, TJ = 150°C
Dim. Millimeter Inches
Min. Max. Min. Max.
A 4.06 4.83 .160 .190
b 0.51 0.99 .020 .039
b2 1.14 1.40 .045 .055
c 0.40 0.74 .016 .029
c2 1.14 1.40 .045 .055
D 8.64 9.65 .340 .380
D1 8.00 8.89 .280 .320
E 9.65 10.41 .380 .405
E1 6.22 8.13 .270 .320
e 2.54 BSC .100 BSC
L 14.61 15.88 .575 .625
L1 2.29 2.79 .090 .110
L2 1.02 1.40 .040 .055
L3 1.27 1.78 .050 .070
L4 0 0.13 0 .005
TO-263 Outline
1. Gate
2. Collector
3. Emitter
4. Collector
Bottom Side
TO-220 Outline
Pins: 1 - Gate
2,4 - Collector
3 - Emitter
© 2015 IXYS CORPORATION, All Rights Reserved
Fig. 1. Output Characteristics @ T
J
= 25ºC
0
5
10
15
20
25
30
35
40
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 15V
13V
12V
10V
8V
7V
9V
11V
Fig. 2. Extended Output Characteristics @ T
J
= 25ºC
0
20
40
60
80
100
0 5 10 15 20 25 30
V
CE
- Volts
I
C
-
Amperes
V
GE
= 15V
8V
9V
11V
13V
12V
14V
10V
Fig. 3. Output Characteristics @ T
J
= 150ºC
0
5
10
15
20
25
30
35
40
00.511.522.533.544.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 15V
14V
13V
12V
9V
11V
8V
10V
7V
Fig. 4. Dependenc e of V
CE(sat)
on
Junc tion Tempe ratu re
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
-50 -25 0 25 50 75 100 125 150 175
T
J
- Degrees Centigrade
V
CE(sat)
- Normalized
V
GE
= 15V
I
C
= 20A
I
C
= 10A
I
C
= 40A
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Em itter Voltage
1
2
3
4
5
6
7
8
8 9 10 11 12 13 14 15
V
GE
- Volts
V
CE
- Volts
I
C
= 40A
T
J
= 25ºC
20A
10A
Fig. 6. Input Admittance
0
10
20
30
40
50
60
4 5 6 7 8 9 10 11 12 13
V
GE
- Volts
I
C
-
Amperes
T
J
= 150ºC
25ºC - 40ºC
IXYA20N65C3D1
IXYP20N65C3D1
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYA20N65C3D1
IXYP20N65C3D1
Fig. 7. Trans conductanc e
0
2
4
6
8
10
12
14
16
0 5 10 15 20 25 30 35 40 45 50
I
C
- Amperes
g f s -
Siemens
T
J
= - 40ºC
25ºC
150ºC
V
CE
= 10V
Fig. 10. Reverse-Bias Safe Operating Area
0
10
20
30
40
100 200 300 400 500 600 700
V
CE
- Volts
I
C
- Amperes
T
J
= 150ºC
R
G
= 20
dv / dt < 10V / ns
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 4 8 121620242832
Q
G
- NanoCoulombs
V
GE
- Volts
V
CE
= 325V
I
C
= 20A
I
G
= 10mA
Fig. 9. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
- Volts
Capacitance - PicoFarad
s
f
= 1 MH
z
Cies
Coes
Cres
Fig. 11. Forward-Bias Safe Operating Area
0.1
1
10
100
1000
1 10 100 1000
VDS - Volts
ID - Amperes
T
J
= 175ºC
T
C
= 25ºC
Single Pulse
25µs
1ms
10ms
V
CE(sat)
Limi
t
100µs
DC
Fig. 12. Maximum Transient Thermal Impedance (IGBT)
0.01
0.1
1
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
Pulse Width - Second
Z(th)JC - ºC / W
D = t
p
/ T
t
p
T
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
Single Pulse
© 2015 IXYS CORPORATION, All Rights Reserved
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
20 30 40 50 60 70 80 90 100
R
G
- Ohms
E
off
- MilliJoules
0
1
2
3
4
5
6
7
E
on
- MilliJoules
E
off
E
on
- - - -
T
J
= 150ºC , V
GE
= 15V
V
CE
= 400V
I
C
= 20A
I
C
= 40A
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
20
25
30
35
40
45
50
55
20 30 40 50 60 70 80 90 100
R
G
- Ohms
t
f i
- Nanoseconds
60
90
120
150
180
210
240
270
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
T
J
= 150ºC, V
GE
= 15V
V
CE
= 400V
I
C
= 20A
I
C
= 40A
Fig. 14. Inductive Switching Energy Loss vs.
Collecto r Curre n t
0.0
0.2
0.4
0.6
0.8
1.0
1.2
10 15 20 25 30 35 40
I
C
- Amperes
E
off
- MilliJoules
0.0
0.4
0.8
1.2
1.6
2.0
2.4
E
on
- MilliJoules
E
off
E
on
- - - -
R
G
= 20 , V
GE
= 15V
V
CE
= 400V
T
J
= 150ºC
T
J
= 25ºC
Fig. 15. Inductive Switch ing Energy Lo s s vs.
Junc tion Tempera ture
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
25 50 75 100 125 150
T
J
- Degrees Centigrade
E
off
- MilliJoules
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
E
on
- MilliJoules
E
off
E
on
- - - -
R
G
= 20 , V
GE
= 15V
V
CE
= 400V
I
C
= 20A
I
C
= 40A
Fig. 17. Inductive Turn-off Switching Times vs.
Collecto r Current
20
25
30
35
40
45
50
55
10 15 20 25 30 35 40
I
C
- Amperes
t
f i
- Nanosecond
s
60
70
80
90
100
110
120
130
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
R
G
= 20
, V
GE
= 15V
V
CE
= 400V
T
J
= 150ºC
T
J
= 25ºC
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
20
24
28
32
36
40
44
25 50 75 100 125 150
T
J
- Degrees Centigrade
t
f i
- Nanosecond
s
64
72
80
88
96
104
112
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
R
G
= 20
, V
GE
= 15V
V
CE
= 400V
I
C
= 20A
I
C
= 40A
IXYA20N65C3D1
IXYP20N65C3D1
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYA20N65C3D1
IXYP20N65C3D1
Fig. 20. Inductive Turn-on Switching Times vs.
Colle ctor Curren t
0
10
20
30
40
50
60
70
80
90
100
10 15 20 25 30 35 40
I
C
- Amperes
t
r i
- Nanosecond
s
10
12
14
16
18
20
22
24
26
28
30
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
R
G
= 20
, V
GE
= 15V
V
CE
= 400V
T
J
= 150ºC
T
J
= 25ºC
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
0
20
40
60
80
100
120
25 50 75 100 125 150
T
J
- Degrees Centigrade
t
r i
- Nanosecond
s
10
14
18
22
26
30
34
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
R
G
= 20
, V
GE
= 15V
V
CE
= 400V
I
C
= 40A
I
C
= 20A
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
0
40
80
120
160
200
240
280
20 30 40 50 60 70 80 90 100
R
G
- Ohms
t
r i
- Nanosecond
s
0
20
40
60
80
100
120
140
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
T
J
= 150ºC, V
GE
= 15V
V
CE
= 400V
I
C
= 40A
I
C
= 20A
Fig. 22. Diode Forward Characteristics
0
5
10
15
20
25
30
35
40
00.5 11.5 22.5
VF (V)
IF (A)
T
J
= 150ºC
T
J
= 25ºC
Fig. 23. Reverse Recove ry Charge vs. -di
F
/dt
0.4
0.6
0.8
1.0
1.2
1.4
1.6
200 300 400 500 600 700 800 900 1000 1100 1200
-diF/ dt (A/µs)
QRR (µC)
T
J
= 150ºC
V
R
= 400V I
F
= 30A
20A
10A
© 2015 IXYS CORPORATION, All Rights Reserved IXYS REF: IXY_20N65C3(3D) 01-21-15-B
Fig. 13. Maximum Transient Thermal Im pedance
0.01
0.1
1
10
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
Pulse Width - Second
Z
(th)JC
- ºC / W
Fig. 27. Maximum Transient Thermal Impe dance (Diode)
AAAAA
4
D = t
p
/ T
t
p
T
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
Single Pulse
Fig. 24 Reverse Recove ry Current vs. -di
F
/dt
8
10
12
14
16
18
20
22
24
26
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
di
F
/dt (A/µs)
I
RR
(A)
T
J
= 150ºC
V
R
= 400V
I
F
= 40A 20A 10A
Fig. 25. Reverse Recovery Time vs. -di
F
/dt
60
80
100
120
140
160
180
200 300 400 500 600 700 800 900 1000 1100 1200
-di
F
/dt (A/µs)
t
RR
(ns)
T
J
= 150ºC
V
R
= 400V
I
F
= 40A
20A
10A
Fig. 26. Dynam ic Para m e ters Q
RR,
I
RR
vs.
Junction Temperature
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
0 20 40 60 80 100 120 140 160
T
J
(ºC)
K
F
K
F
I
RR
K
F
Q
RR
V
R
= 400V
I
F
= 20A
-diF /dt = 300A/µs
Fig. 28. Cauer Thermal Network IGBT
i Ri (°C/W) Ci (J/°C)
1 0.170320 0.0017715
2 0.136990 0.0166820
3 0.090011 0.0391660
DIODE
i Ri (°C/W) Ci (J/°C)
1 0.331730 0.0002858
2 0.768860 0.0037423
3 0.285550 0.0432130
IXYA20N65C3D1
IXYP20N65C3D1
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.