INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
02/27/06
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• TO-247AD Package
www.irf.com 1
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
IRGP30B60KD-E
E
G
n-channel
C
TO-247AD
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 60
IC @ TC = 100°C Continuous Collector Current 30
ICM Pulsed Collector Current 120
ILM Clamped Inductive Load Current 120 A
IF @ TC = 25°C Diode Continuous Forward Current 60
IF @ TC = 100°C Diode Continuous Forward Current 30
IFM Diode Maximum Forward Current 120
VGE Gate-to-Emitter Voltage ±20 V
PD @ TC = 25°C Maximum Power Dissipation 304
PD @ TC = 100°C Maximum Power Dissipation 122
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf•in (1.1N•m)
Absolute Maximum Ratings
W
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case - IGBT ––– ––– 0.41
RθJC Junction-to-Case - Diode ––– ––– 1.32
RθCS Case-to-Sink, flat, greased surface ––– 0.24 –––
RθJA Junction-to-Ambient, typical socket mount ––– ––– 40
Wt Weight ––– 6.0 ––– g
°C/W
Thermal Resistance
VCES = 600V
IC = 30A, TC=100°C
tsc > 10µs, TJ=150°C
VCE(on) typ. = 1.95V
PD - 94388B
IRGP30B60KD-E
2www.irf.com
Notes:
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω. Energy losses include "tail" and diode reverse recovery.
22
Parameter Min. Typ. Max. Units Conditions
Qg Total Gate Charge (turn-on) –– 102 153 IC = 30A
Qge Gate - Emitter Charge (turn-on) ––– 14 21 nC VCC = 400V
Qgc Gate - Collector Charge (turn-on) ––– 44 66 VGE = 15V
Eon Turn-On Switching Loss ––– 350 620 µJ IC = 30A, VCC = 400V
Eoff Turn-Off Switching Loss ––– 825 955 VGE =15V, RG = 10Ω, L=200µH,
Etot Total Switching Loss ––– 1175 1575 LS = 150nH TJ = 25°C
td(on) Turn-On Delay Time ––– 46 60 IC = 30A, VCC = 400V
trRise Time ––– 28 39 VGE = 15V, RG = 10 L =200µH
td(off) Turn-Off Delay Time ––– 185 200 ns LS = 150nH, TJ = 25°C
tfFall Time ––– 31 40
Eon Turn-On Switching Loss ––– 635 1085 IC = 30A, VCC = 400V
Eoff Turn-Off Switching Loss ––– 1150 1350 µJ VGE = 15V,RG = 10Ω, L =200µH
Etot Total Switching Loss ––– 1785 2435 LS = 150nH TJ = 150°C
td(on) Turn-On Delay Time ––– 46 60 IC = 30A, VCC = 400V
trRise Time ––– 28 39 VGE = 15V, RG = 10 L =200µH
td(off) Turn-Off Delay Time ––– 205 235 ns LS = 150nH, TJ = 150°C
tfFall Time ––– 32 42
Cies Input Capacitance ––– 1750 ––– VGE = 0V
Coes Output Capacitance ––– 160 –– pF VCC = 30V
Cres Reverse Transfer Capacitance ––– 60 ––– f = 1.0MHz
TJ = 150°C, IC = 120A, Vp =600V
VCC = 500V, VGE = +15V to 0V,
TJ = 150°C, Vp =600V, RG = 10
VCC = 360V, VGE = +15V to 0V
Erec Reverse Recovery energy of the diode ––– 925 1165 µJ TJ = 150°C
trr Diode Reverse Recovery time ––– 125 –– ns VCC = 400V, IF = 30A, L = 200µH
Irr Diode Peak Reverse Recovery Current ––– 43 48 A VGE = 15V,RG = 10Ω, LS = 150nH
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
RBSOA Reverse Bias Safe Operting Area FULL SQUARE
SCSOA Short Circuit Safe Operting Area 10 ––– –––
Ref.Fig.
23
CT.1
CT.4
CT.4
13,15
WF1,WF2
4
CT.2
CT.3
WF.4
17,18,19
20,21
CT.4,WF.3
CT.4
RG=10
CT.4
14, 16
WF1,WF2
µs
Ref.Fig.
5, 6,7
9, 10,11
9,10,11
12
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ––– V VGE = 0V, I C = 500µA
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0 . 4 V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C)
VCE(on) Collector-to-Emitter Saturation Voltage ––– 1.95 2.35 V IC = 30A, VGE = 15V
––– 2.40 2.75 IC = 30A,VGE = 15V, TJ = 150°C
VGE(th) Gate Threshold Voltage 3.5 4.5 5.5 V VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage –– - 10 mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C)
gfe Forward Transconductance ––– 18 ––– S VCE = 50V, I C = 50A, PW=80µs
ICES Zero Gate Voltage Collector Current ––– 5.0 250 µA VGE = 0V, VCE = 600V
––– 1000 2000 VGE = 0V, VCE = 600V, TJ = 150°C
VFM Diode Forward Voltage Drop ––– 1.30 1.55 V IF = 30A
––– 1.25 1.50 IF = 30A TJ = 150°C
IGES Gate-to-Emitter Leakage Current ––– –– ±100 nA VGE = ±20V
8
IRGP30B60KD-E
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C; TJ 150°C Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
0 20 40 60 80 100 120 140 160
TC (°C)
0
50
100
150
200
250
300
350
Ptot (W)
0 20 40 60 80 100 120 140 160
TC (°C)
0
20
40
60
80
IC (A)
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
1000
IC (A)
10 µs
100 µs
1ms
DC
10 100 1000
VCE (V)
1
10
100
1000
IC A)
IRGP30B60KD-E
4www.irf.com
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
012345
VCE (V)
0
10
20
30
40
50
60
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
012345
VCE (V)
0
10
20
30
40
50
60
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
012345
VCE (V)
0
10
20
30
40
50
60
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8. 0V
0.0 0.5 1.0 1.5 2.0
VF (V)
0
10
20
30
40
50
60
IF (A)
-40°C
25°C
150°C
IRGP30B60KD-E
www.irf.com 5
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 15A
ICE = 30A
ICE = 60A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 15A
ICE = 30A
ICE = 60A
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 15A
ICE = 30A
ICE = 60A
0 5 10 15 20
VGE (V)
0
50
100
150
200
250
ICE (A)
TJ = 25°C
TJ = 150°C
TJ = 150°C
TJ = 25°C
IRGP30B60KD-E
6www.irf.com
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 200µH; VCE = 400V
RG = 10; VGE = 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 200µH; VCE = 400V
RG = 10; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 200µH; VCE = 400V
ICE = 30A; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 200µH; VCE = 400V
ICE = 30A; VGE = 15V
020 40 60 80
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0 20406080
IC (A)
0
500
1000
1500
2000
2500
3000
Energy (µJ)
EOFF
EON
025 50 75 100 125
RG ()
0
500
1000
1500
2000
2500
3000
Energy (µJ)
EON
EOFF
025 50 75 100 125
RG ()
10
100
1000
10000
Swiching Time (ns)
tR
tdOFF
tF
tdON
IRGP30B60KD-E
www.irf.com 7
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 30A
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
IF= 30A; TJ = 150°C
0500 1000 1500
diF /dt (A/µs)
0
5
10
15
20
25
30
35
40
45
50
IRR (A)
020 40 60 80
IF (A)
0
5
10
15
20
25
30
35
40
45
50
IRR (A)
RG = 4.7Ω
RG = 22Ω
RG = 47Ω
RG = 100Ω
RG = 10Ω
025 50 75 100 125
RG (Ω)
0
5
10
15
20
25
30
35
40
45
50
IRR (A)
0 500 1000 1500
diF /dt (A/µs)
0
1000
2000
3000
4000
5000
QRR (nC)
4.7Ω
47
100
22Ω 60A
30A
15A
10Ω
IRGP30B60KD-E
8www.irf.com
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 30A; L = 600µH
Fig. 22- Typ. Capacitance vs. V CE
VGE= 0V; f = 1MHz
0 25 50 75 100 125
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE (V)
200V
400V
020 40 60 80
IF (A)
0
200
400
600
800
1000
1200
1400
Energy (µJ)
47
22
100
4.7Ω
10Ω
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
IRGP30B60KD-E
www.irf.com 9
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Dur ation (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. P eak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.200 0.000428
0.209 0.013031
τJ
τJ
τ1
τ1τ2
τ2
R1
R1R2
R2
τ
τ
C
Ci= i/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Dur ation (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthj c + Tc
Ri (°C/W) τi (sec)
0.205 0.000136
0.505 0.001645
0.567 0.037985
τJ
τJ
τ1
τ1τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τ
C
Ci= i/Ri
Ci= τi/Ri
IRGP30B60KD-E
10 www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
L
Rg
80 V DUT
480V
1K
VCC
DUT
0
L
DC
4x
DUT
360V
L
Rg
VCC
diode cl am p /
DUT
DU T /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
IRGP30B60KD-E
www.irf.com 11
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
-100
0
100
200
300
400
500
600
700
-0.20 0.00 0.20 0.40 0.60 0.80
Time(µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
35
I
CE
(A )
90% ICE
5% VCE
5% ICE
Eoff Loss
tf
-100
0
100
200
300
400
500
600
700
15.90 16.00 16.10 16.20 16.30
Time (µs )
V
CE
(V )
-10
0
10
20
30
40
50
60
70
I
CE
(A )
TEST CURRENT
90% te st current
5% VCE
1 0 % test curren t
tr
Eon Loss
-700
-600
-500
-400
-300
-200
-100
0
100
-0.25 -0.05 0.15 0.35
time (µS)
V
F
(V )
-40
-30
-20
-10
0
10
20
30
40
I
F
(A)
Peak
IRR
t
RR
Q
RR
10%
Peak
IRR
0
100
200
300
400
500
600
-5.00 0.00 5.00 10.00 15.00
time (µS)
V
CE
(V )
0
50
100
150
200
250
300
I
CE
(A )
V
CE
I
CE
IRGP30B60KD-E
12 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/06
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-247AD package is not recommended for Surface Mount Application.
TO-247AD Part Marking Information
TO-247AD Package Outline
Dimensions are shown in milimeters (inches)
(;$03/(
$66(0%/('21::
/27&2'(
:,7+$66(0%/<
7+,6,6$1,5)3(
,17+($66(0%/</,1(+
+
/2*2
,17(51$7,21$/
5(&7,),(5
,5)3(
/27&2'(
$66(0%/<

3$57180%(5
'$7(&2'(
<($5 
:((.
/,1(+
Note: "P" in assembly line
pos it ion in dicat es "Lead-F r ee"
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/