2007-04-26
1
SMBT2907A/MMBT2907A
12
3
PNP Silicon Switching Transistor
Low collector-emitter saturation voltage
Complementary type:
SMBT2222A / MMBT2222A (NPN)
Pb-free (RoHS compliant) package1)
Qualified according AEC Q101
Type Marking Pin Configuration Package
SMBT2907A/MMBT2907A s2F 1 = B 2 = E 3 = C SOT23
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCEO 60 V
Collector-base voltage VCBO 60
Emitter-base voltage VEBO 5
Collector current IC600 mA
Base current IB100
Peak base current IBM 200
Total power dissipation
TS 77 °C Ptot 330 mW
Junction temperature Tj150 °C
Storage temperature Tstg -65 ... 150
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point2) RthJS 220 K/W
1Pb-containing package may be available upon special request
2For calculation of RthJA please refer to Application Note Thermal Resistance
2007-04-26
2
SMBT2907A/MMBT2907A
Electrical Characteristics at T
A
= 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 10 mA, IB = 0 V(BR)CEO 60 - - V
Collector-base breakdown voltage
IC = 10 µA, IE = 0 V(BR)CBO 60 - -
Emitter-base breakdown voltage
IE = 10 µA, IC = 0 V(BR)EBO 5 - -
Collector-base cutoff current
VCB = 50 V, IE = 0
VCB = 50 V, IE = 0 , TA = 150 °C
ICBO
-
-
-
-
0.01
10
µA
Emitter-base cutoff current
VEB = 5 V, IC = 0 IEBO - - 10 nA
DC current gain1)
IC = 100 µA, VCE = 10 V
IC = 1 mA, VCE = 10 V
IC = 10 mA, VCE = 10 V
IC = 150 mA, VCE = 10 V
IC = 500 mA, VCE = 10 V
hFE
75
100
100
100
50
-
-
-
-
-
-
-
-
300
-
-
Collector-emitter saturation voltage1)
IC = 150 mA, IB = 15 mA
IC = 500 mA, IB = 50 mA
VCEsat
-
-
-
-
0.4
1.6
V
Base emitter saturation voltage-1)
IC = 150 mA, IB = 15 mA
IC = 500 mA, IB = 50 mA
VBEsat
-
-
-
-
1.3
2.6
1Puls test: t 300µs, D = 2%
2007-04-26
3
SMBT2907A/MMBT2907A
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
AC Characteristics
Transition frequency
IC = 20 mA, VCE = 20 V, f = 100 MHz fT200 - - MHz
Collector-base capacitance
VCB = 10 V, f = 1 MHz Ccb - - 8 pF
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz Ceb - - 30
Delay time
VCC = 30 V, IC = 150 mA, IB1 = 15 mA,
VBE(off) = 0.5 V
td- - 10 ns
Rise time
VCC = 30 V, IC = 150 mA, IB1 = 15 mA,
VBE(off) = 0.5 V
tr- - 40
Storage time
VCC = 30 V, IC = 150 mA, IB1 = IB2 = 15mA tstg - - 80
Fall time
VCC = 30 V, IC = 150 mA, IB1 = IB2 = 15mA tf- - 30
2007-04-26
4
SMBT2907A/MMBT2907A
Test circuit
Delay and rise time
EHN00053
200
-30
V
Osc.
< 5 ns
tr
ns200
= 50
< 2ns
Input
r
Z
t0
0
-16 V
1k
50
Storage and fall time
EHN00069
200
-30
-30
0
+15 V
1
k
V
V
< 2 ns
= 50
Input
tZ
r0
200 ns
1k
50
Osc.
< 5 ns
tr
Oscillograph: R > 100, C < 12pF, tr < 5ns
2007-04-26
5
SMBT2907A/MMBT2907A
DC current gain hFE = ƒ(IC)
VCE = 5 V
EHP00754SMBT 2907/A
10
10 mA
h
C
10
5
FE
10
3
2
10
1
5
10 10 10
-1 0 1 2 3
Ι
-50 ˚C
25 ˚C
150 ˚C
Saturation voltage IC = ƒ(VBEsat; VCEsat)
hFE = 10
EHP00750SMBT 2907/A
10
0V
BE sat
C
10
3
1
10
-1
5
10
0
5
Ι
V
mA
0.2 0.4 0.6 0.8 1.0 1.2 1.6
CE sat
V,
5
10
2
V
BE
V
CE
10
-2
Transition frequency fT = ƒ(IC)
VCE = 5 V
EHP00749SMBT 2907/A
10
MHz
10 10 mA
f
C
10
5
10
T
555
Ι
0123
10
3
2
10
1
5
Collector-base capacitance Ccb = ƒ(VCB)
Emitter-base capacitance Ceb = ƒ(VEB)
0 4 8 12 16 V22
VCB0(VEB
0
2
4
6
8
10
12
14
16
18
20
22
24
26
pF
30
CCB0(CEB0)
CCB
CEB
2007-04-26
6
SMBT2907A/MMBT2907A
Collector-base capacitance CCB= ƒ (VCB)
f = 1MHz
EHP00747SMBT 2907/A
10
pF
10 10 V
C
CB
10
5
10
cb
555
-1 0 1 2
10
2
1
100
5
V
Total power dissipation Ptot = ƒ(TS)
0 15 30 45 60 75 90 105 120 °C 150
TS
0
30
60
90
120
150
180
210
240
270
300
mW
360
Ptot
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
10
EHP00748SMBT 2907/A
-6
0
10
5
D
=
5
10
1
5
10
2
3
10
10
-5
10
-4
10
-3
10
-2
10
0
s
0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
totmax
tot
P
DC
P
p
t
tp
=
DT
t
p
T
Delay time td = ƒ(IC)
Rise time tr = ƒ(IC)
EHP00751SMBT 2907/A
10
10 mA
t
C
5
r
10
3
2
10
1
5
10 10
01 2
Ι
5 5
ns
BE
V
t
d
,
= 0 V
3
10
5
t
d
t
r
, = 10 V
CC
V,
CC
= 20 V
BE
VV, = 30 V
2007-04-26
7
SMBT2907A/MMBT2907A
Storage time tstg = ƒ(IC)
EHP00752SMBT 2907/A
10
10 mA
t
C
5
stg
10
3
2
101
5
10 10
01 2
Ι
5 5
ns
FE
h= 10
3
10
5
FE = 20
h
Fall time tf = ƒ(IC)
EHP00753SMBT 2907/A
10
10 mA
t
C
5
f
10
3
2
101
5
10 10
01 2
Ι
5 5
ns
FE
h= 10
3
10
5
FE = 20h
VCC = 30 V
2007-04-26
8
SMBT2907A/MMBT2907A
Package SOT23
Package Outline
Foot Print
Marking Layout (Example)
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
EH
s
BCW66
Type code
Pin 1
0.8
0.9 0.91.3
0.8 1.2
0.25 MBC
1.9
-0.05
+0.1
0.4
±0.1
2.9
0.95
C
B
0...8˚
0.2 A
0.1 MAX.
10˚ MAX.
0.08...0.15
1.3
±0.1
10˚ MAX.
M
2.4
±0.15
±0.1
1
A
0.15 MIN.
1)
1) Lead width can be 0.6 max. in dambar area
12
3
3.15
4
2.65
2.13
0.9
8
0.2
1.15
Pin 1
Manufacturer
2005, June
Date code (YM)
2007-04-26
9
SMBT2907A/MMBT2907A
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.