MPS404 (siicon) MPS404A PNP SILICON ANNULAR TRANSISTORS ... plastic encapsulated package designed for medium-speed chopper applications in industrial and computer equipment. Intended for op- eration in applications replacing the 2N404 and 2N404A transistors. @ High Emitter-Base Breakdown Voltage BVEgO = 12 Vdc (Min) MPS404 25 Vdc (Min) - MPS404A 50 Vdc (Typ) MPS404, MPS404A @ Full Design Curves PNP SILICON CHOPPER TRANSISTORS MAXIMUM RATINGS Rating Symbol! | MPS404 MPS404A| Unit Collector-Emitter Voltage VcEO 24 35 Vde Collector-Base Voltage VcB 25 40 Vde Emitter-Base Voltage VEB 12 25 Vde Coilector Current Continuous le 150 mAdc Totat Power Dissipation @ Ta = 25C Pp 350 mw Derate above 25C 28 mw/c Total Power Dissipation @ Tc = 25C Pp j- 1.0 | Watt Derate above 25C 8.0 mw/c Operating and Storage Junction Ty. Tstg [-- -55 to +150 o 9% Temperature Range THERMAL CHARACTERISTICS . Characteristic Symbo! Max Unit Thermal Resistance, Junction to Reyalt) 367 c/w Ambient Thermal Resistance, Junction to Case Resc 125 cmw (1) Rg ga is measured with the device soldered into a typical printed circuit board. SEATING PLANE STYLE |: PIN 1. EMITTER 2. BASE 3. COLLECTOR Si } CASE 28-02 TO-92 855 MPS$404,A (continued) ELECTRICAL CHARACTERISTICS (Ta = 25C unless otherwise noted) { Characteristic _l[ Symbol ] Min l _Typ [. Max I Unit J OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (1) BYVCEO Vde Uc = 10 mAdc, Ig = 0) MPS404 24 - ~ MPS4044 38 - = Collector-Base Breakdown Voltage BVcBO Vde (Iq = 10 zAds, Ig = 0) MPS404 25 - ~ MPS4044 40 = = Emitter-Base Breakdown Voltage BVEBO Vde (lg = 10 nAde, Io = 0) MPS404 12 50 - MPS404A 25 50 - Collector Cutoff Current icBO nAdc (Vop = 10 Vde, te = 0} - - 100 Emitter Cutoff Current tEBo nAdc (Vee = 10 Vde, Ic = 0) - - 100 ON CHARACTERISTICS DC Current Gain hee - (ig = 12 mAdc, Vog = 0.15 Vdc) 30 100 400 Collector-Emitter Saturation Voltage VCE (sat) Vde (I = 12 mAdc, Ig = 0.4 mAdc) - 01 0.15 (I = 24 mAdc, Ig = 1.0 mAdc} = 0.12 0.20 Base-Ernitter Saturation Voltage VBE(sat) Vde (Ig = 12 mAdc, Ig = 0.4 mAdc} - 0.7 0.85 (I = 24 mAdc, Ig = 1.0 mAdc) - 0.74 1.0 DYNAMIC CHARACTERISTICS Common-Base Cutoff Frequency tot MHz (ic = 1.0 mAdc, Vcog = 6.0 Vdc) 4.0 - - Output Capacitance Cob pF (Vcg = 6.0 Vde, Ig = 0} - 68 20 SWITCHING CHARACTERISTICS Deiay Time (Vec= 10 Vdc, i = 10 mAdc, Igy = tg - 43 ~ ns Rise Time 1.0 mAde, Vee (oft)= 1.4 Vde) (Fig. 11,13) tr 180 ~ ns Storage Time | (Veg = 10 Vdc, Ic = 10 mAdc, Ig1 = ts - 675 - ns Fall Time Ig2 = 1.0 mAdc (Figures 12 and 13) tf 160 ns Total Control Charge (Figure 14) Qs pc {Io = 10 mAdc, Ig = 1.0 mAdc) - = 1400 (1) Pulse Test: Pulse Width < 300 us, Duty Cycle < 2.0%. FIGURE 1 COLLECTOR-EMITTER VOLTAGE FIGURE 2 BASE ON VOLTAGE 100 NORMAL MODE INVERTED MODE MODE INVERTED MODE Ty = 25C 0.82 2 S VBE (sat) @ Ic/ig = 2 @le/ig=2 0.74 2 3 & 0.66 Vec, EMITTER-COLLECTOR VOLTAGE (mv) Vce, COLLECTOR-EMITTER VOLTAGE (mV) Vec. BASE-COLLECTOR VOLTAGE (VOLTS) Vee. BASE-EMITTER VOLTAGE (VOLTS) 6 @ le/lg = 2.0 os0 1.0 20 30 6 7.0 10 20 WO 60 70 100 10 20 3.0 50 7.0 10 2030 50 70 100 Ic, COLLECTOR CURRENT (mA) Ic, COLLECTOR CURRENT (mA) Ig, EMITTER CURRENT (mA) le, EMITTER CURRENT (mA) 856 MPS404,A (continued) hee, OC CURRENT GAIN hee, OC CURRENT GAIN Voce, COLLECTOR-EMITTER VOLTAGE (VOLTS) NORMAL MODE FIGURE 3 -- DC CURRENT GAIN @ Veg = 0.15 Vde 1.0 20 30 5.0 7.0 10 20 30 ig, COLLECTOR CURRENT (mA) 50 (70 FIGURE 5 OC CURRENT GAIN @ V_ = 1.0 Vde sed oO 1003.6 G 7.0 10 30 50 (79 20 Ic, COLLECTOR CURRENT (mA) FIGURE 7 COLLECTOR SATURATION REGION o a Ty = 250C 2 > o we 2 we 2 0.05 Ip, BASE CURRENT (mA) 0 0.005 0.01 09.02 01 0.2 0.5 10 2.0 100 100 5.0 857 hee, OC CURRENT GAIN hee, DC CURRENT GAIN Vec, EMITTER-COLLECTOR VOLTAGE (VOLTS) INVERTED MODE FIGURE 4 DC CURRENT GAIN @ Veg = 0.15 Vdc Tye 'g, EMITTER CURRENT (mA) FIGURE 6 DC CURRENT GAIN @ Vgc = 1.0 Vdc 3.0 7 1a ig, EMITTER CURRENT (mA) FIGURE 8 EMITTER SATURATION REGION Os 0.4 =0.5 mA 2.0 mA 0.3 0.2 0.1 o 0.05 0.1 0.2 as 10 (2.0 5.0 ip, BASE CURRENT (mA) 0 20 MPS404,A (continued) FIGURE 9 EMITTER-COLLECTOR ON RESISTANCE 100 dynamic between the emitter and collector 70 is measured with the device in the Inverted Mode. z P50 ce 52 4S 30 aw Qo 2 = 20 Wh Eo ES ze = 10 z = 7.0 5.9 0.1 02 03 05 07 10 20 3.0 56 7.0 10 ip. BASE CURRENT (mA) FIGURE 11 TURN-ON TIME 20k Voc =10Vv 1.0k Ic/ig = 10 200 Ty = 25C a3 = 2 - td Vae(oit) = 1.4 V 10 20 3.0 50 70 10 20 30 50 70 100 Ic, COLLECTOR CURRENT (mA) FIGURE 13 SWITCHING TIME TEST CIRCUIT VeB Vec-10V Ree 10k 1.0k 0.1 pat Rg TO SCOPE Vin 10k 1 Vin Vee Voltages and resistor values shown (Volts) } (Volts) | are for ic = 10 mA, Ic/g = 10 ton. tg and tr ~12 +14 and Ig 1 =ig2. Resistor vaiues - changed to obtain curves in oft tyandte | 20.6 | -11-8 | Figures 11 and 12. 858 FIGURE 10 CAPACITANCE 20 ~ a o C, CAPACITANCE (pF) 2.0 0.05 01 0.2 05 10 2.0 5.0 10 20 50 Vr, REVERSE VOLTAGE (VOLTS) FIGURE 12 TURN-OFF TIME vec=10V (c/ig = 10 181 = (Bz Ty= 26C t, TIME {ag 1.0 20 3.0 50 70 10 2030 50 70 100 Ic, COLLECTOR CURRENT (mA) FIGURE 14 STORED BASE CHARGE TEST CIRCUIT vee 4 P5580. {-6.0V) OUTPUT INPUT Vin + Vattage Waveforms MEASUREMENT PROCEDURE Vin |>5.0us{ ty, t<15 ns - Cy is increased until the to time of 60V the output waveform is decreased to ' ! 0.2 us, Og is then caiculated by T Qs = Cq Vin. Vout I 1 Qg3 or Og7 by B-Line Electronics 6.0 V ty or equivalent may also be used. 1 A et toft