© 2009 Microchip Technology Inc. DS21733J-page 1
MCP6001/1R/1U/2/4
Features
Available in SC-70-5 and SOT-23-5 packages
Gain Bandwidth Product: 1 MHz (typical)
Rail-to-Rail Input/Output
Supply Voltage: 1.8V to 6.0V
Supply Current: IQ = 100 µA (typical)
Phase Margin: 90° (typical)
Temperature Range:
- Industrial: -40°C to +85°C
- Extended: -40°C to +125°C
Available in Single, Dual and Quad Packages
Applications
Automotive
Portable Equipment
Photodiode Amplifier
Analog Filters
Notebooks and PDAs
Battery-Powered Systems
Design Aids
SPICE Macro Models
FilterLab® Software
Mindi™ Circuit Designer & Simulator
Microchip Advanced Part Selector (MAPS)
Analog Demonstration and Evaluation Boards
Application Notes
Typical Application
Description
The Microchip Technology Inc. MCP60 01/2/4 family of
operational amplifiers (op amps) is specifically
designed for general-pu rpose applications. T his family
has a 1 MHz Gain Bandwidth Product (GBWP) and 90°
phase margin (typical). It also maintains 45° phase
margin (typical) with a 500 pF capacitive load. This
family operates from a single supply voltage as low as
1.8V, while drawing 100 µA (typical) quiescent current.
Additionally , the MCP6001/2/4 supports rail-to-rail input
and output swing, with a common mode input voltage
range of VDD + 300 mV to VSS 300 mV . This family of
op amps is designed with Microchip’s advanced CMOS
process.
The MCP6001/2/4 family is available in the industrial
and extended temperature ranges, with a power supply
range of 1.8V to 6.0V.
Package Types
R1
VOUT
R2
VIN
VDD
+
Gain 1R1
R2
------+=
Non-Inverting Amplifier
MCP6001
VREF
VSS
4
5
4
5
4
MCP6001
1
2
3
-
+
5VDD
VIN
VOUT
VSS
VIN+
SC70-5, SOT-23-5
MCP6002
PDIP, SOIC, MSOP
MCP6004
VINA+
VINA
VSS
1
2
3
4
14
13
12
11
-
VOUTA
+-
+
VDD
VOUTD
VIND
VIND+
10
9
8
5
6
7
VOUTB
VINB
VINB+V
INC+
VINC
VOUTC
+
--
+
PDIP, SOIC, TSSOP
VINA+
VINA
VSS
1
2
3
4
8
7
6
5
-
VOUTA
+-
+
VDD
VOUTB
VINB
VINB+
4
1
2
3
-
+
5VDD
VOUT
VSS
MCP6001R
SOT-23-5
1
2
3
-
+
VSS
VIN
VOUT
VDD
VIN+
MCP6001U
SOT-23-5
1
2
3
-
+
VDD
VOUT
VIN+
VSS
VIN
MCP6002
VINA+
VINA
VSS
VOUTB
VINB
1
2
3
4
8
7
6
5VINB+
VOUTA
EP
9
VDD
2x3 DFN *
* Includes Exposed Thermal Pad (EP); see Table 3-1.
1 MHz, Low-Power Op Amp
MCP6001/1R/1U/2/4
DS21733J-page 2 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21733J-page 3
MCP6001/1R/1U/2/4
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
VDD –V
SS ........................................................................7.0V
Current at Analog Input Pins (VIN+, VIN–).....................±2 mA
Analog Inputs (VIN+, VIN–) ††........ VSS –1.0VtoV
DD +1.0V
All Other Inputs and Outputs ......... VSS 0.3V to VDD +0.3V
Difference Input Voltage ...................................... |VDD –V
SS|
Output Short Circuit Current ................................Continuous
Current at Output and Supply Pins ............................±30 mA
Storage Temperature ...................................–65°C to +150°C
Maximum Junction Temperature (TJ)..........................+150°C
ESD Protection On All Pins (HBM; MM).............. 4 kV; 200V
† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification is not
implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
†† See Section 4.1.2 “Input Voltage and Current Limits”.
DC ELECTRICAL SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VL = VDD/2,
RL = 10 kΩ to VL, and VOUT VDD/2 (refer to Figure 1-1).
Parameters Sym Min Typ Max Units Conditions
Input Offset
Input Offset Voltage VOS -4.5 +4.5 mV VCM = VSS (Note 1)
Input Offset Drift with Temperature ΔVOS/ΔTA—±2.0µV/°CT
A= -40°C to +125°C,
VCM = VSS
Power Supply Rejection Ratio PSRR 86 dB VCM = VSS
Input Bias Current and Impedance
Input Bias Current: IB ±1.0 pA
Industrial Temperature IB—19pAT
A = +85°C
Extended Temperature IB 1100 pA TA = +125°C
Input Offset Current IOS ±1.0 pA
Common Mode Input Impedance ZCM —10
13||6 Ω||pF
Differential Input Impedance ZDIFF —10
13||3 Ω||pF
Common Mode
Common Mode Input Range VCMR VSS 0.3 VDD + 0.3 V
Common Mode Rejection Ratio CMRR 60 76 dB VCM = -0.3V to 5.3V,
VDD = 5V
Open-Loop Gain
DC Open-Loop Gain (Large Signal) AOL 88 112 dB VOUT = 0.3V to VDD – 0.3V,
VCM =V
SS
Output
Maximum Output Voltage Swing VOL, VOH VSS + 25 VDD – 25 mV VDD = 5.5V,
0.5V Input Overdrive
Output Short Circuit Current ISC —±6mAV
DD = 1.8V
—±23mAV
DD = 5.5V
Power Supply
Supply Voltage VDD 1.8 6.0 V Note 2
Quiescent Current per Amplifier IQ50 100 170 µA IO = 0, VDD = 5.5V, VCM = 5V
Note 1: MCP6001/1R/1U/2/4 parts with date codes prior to December 2004 (week code 49) were tested to ±7 mV minimum/
maximum limits.
2: All parts with date codes November 2007 and later have been screened to ensure operation at
VDD = 6.0V. However, the other minimum and maximum specifications are measured at 1.8V and 5.5V.
MCP6001/1R/1U/2/4
DS21733J-page 4 © 2009 Microchip Technology Inc.
AC ELECTRICAL SPECIFICATIONS
TEMPERATURE SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,
VL = VDD/2, VOUT VDD/2, RL = 10 kΩ to VL, and CL = 60 pF (refer to Figure 1-1).
Parameters Sym Min Typ Max Units Conditions
AC Response
Gain Bandwidth Product GBWP 1.0 MHz
Phase Margin PM 90 ° G = +1 V/V
Slew Rate SR 0.6 V/µs
Noise
Input Noise Voltage Eni 6.1 µVp-p f = 0.1 Hz to 10 Hz
Input Noise Voltage Density eni —28nV/Hz f = 1 kHz
Input Noise Current Density ini —0.6fA/Hz f = 1 kHz
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Industrial Temperature Range TA-40 +85 °C
Extended Temperature Range TA-40 +125 °C
Operating Temperature Range TA-40 +125 °C Note
Storage Temperature Range TA-65 +150 °C
Thermal Package Resistances
Thermal Resistance, 5L-SC70 θJA 331 °C/W
Thermal Resistance, 5L-SOT-23 θJA 256 °C/W
Thermal Resistance, 8L-PDIP θJA —85°C/W
Thermal Resistance, 8L-SOIC (150 mil) θJA —163°C/W
Thermal Resistance, 8L-MSOP θJA —206°C/W
Thermal Resistance, 8L-DFN (2x3) θJA —68°C/W
Thermal Resistance, 14L-PDIP θJA 70 °C/W
Thermal Resistance, 14L-SOIC θJA 120 °C/W
Thermal Resistance, 14L-TSSOP θJA 100 °C/W
Note: The industrial temperature devices operate over this extended temperature range, but with reduced
performance. In any case, the internal Junction Temperature (TJ) must not exceed the Absolute Maximum
specification of +150°C.
© 2009 Microchip Technology Inc. DS21733J-page 5
MCP6001/1R/1U/2/4
1.1 Test Circuits
The circuit used for most DC and AC tests is shown in
Figure 1-1. This circuit can independently set VCM and
VOUT; see Equation 1-1. Note that VCM is not the
circuit’s common mode voltage ((VP+V
M)/2), and that
VOST includes VOS plus the effects (on the input offset
error, VOST) of temperature, CMRR, PSRR and AOL.
EQUATION 1-1:
FIGURE 1-1: AC and DC Test Circuit for
Most Specifications.
GDM RFRG
=
VCM VPVDD 2
+()2
=
VOUT VDD 2
()VPVM
()VOST 1G
DM
+()++=
Where:
GDM = Differential Mode Gain (V/V)
VCM = Op Amp’ s C ommon Mode
Input Voltage (V)
VOST = Op Amp’s Tot al Input Offset
Voltage (mV)
VOST VIN– VIN+
=
VDD
RGRF
VOUT
VM
CB2
CL
RL
VL
CB1
100 kΩ
100 kΩ
RGRF
VDD/2
VP100 kΩ
100 kΩ
60 pF10 kΩ
F100 nF
VIN–
VIN+
CF
6.8 pF
CF
6.8 pF
MCP600X
MCP6001/1R/1U/2/4
DS21733J-page 6 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21733J-page 7
MCP6001/1R/1U/2/4
2.0 TYPICAL PERFORMANCE CURVES
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.
FIGURE 2-1: Input Offset Voltage.
FIGURE 2-2: Input Offset Voltage Drift.
FIGURE 2-3: Input Offset Qu adratic
Temp. Co.
FIGURE 2-4: Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 1.8V.
FIGURE 2-5: Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 5.5V.
FIGURE 2-6: Input Offset Voltage vs.
Output Voltage.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provide d for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified pow er supply range) and therefore outside the warranted range.
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%
5-4-3-2-1012345
Input Offset Voltage (mV)
Percentage of Occurrences
64,695 Samples
VCM = VSS
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
Input Offset Voltage Drift;
TC1 (µV/°C)
Percentage of Occurrences
2453 Samples
TA = -40°C to +125°C
VCM = VSS
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
-0.02
-0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Input Offset Quadratic Temp. Co.;
TC2 (µV/°C2)
Percentage of Occurrences
2453 Samples
TA = -40°C to +125°C
VCM = VSS
-700
-600
-500
-400
-300
-200
-100
0
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Common Mode Input Voltage (V)
Input Offset Voltage (µV)
VDD = 1.8V
TA = -40°C
TA = +25°C
TA = +85°C
TA = +125°C
-700
-600
-500
-400
-300
-200
-100
0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Common Mode Input Voltage (V)
Input Offset Voltage (µV)
VDD = 5.5V
TA = -40°C
TA = +25°C
TA = +85°C
TA = +125°C
-200
-150
-100
-50
0
50
100
150
200
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Output Voltage (V)
Input Offset Voltage (µV)
VDD = 1.8V
VCM = VSS
VDD = 5.5V
MCP6001/1R/1U/2/4
DS21733J-page 8 © 2009 Microchip Technology Inc.
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.
FIGURE 2-7: Inpu t Bias Current at +85°C.
FIGURE 2-8: Inpu t Bias Current at
+125°C.
FIGURE 2-9: CMRR, PSRR vs. Ambient
Temperature.
FIGURE 2-10: PSRR, CMRR vs.
Frequency.
FIGURE 2-11: Open-Loop Gain, Phase vs.
Frequency.
FIGURE 2-12: Input Noise Voltage Density
vs. Frequency.
0%
2%
4%
6%
8%
10%
12%
14%
0 3 6 9 12 15 18 21 24 27 30
Input Bias Current (pA)
Percentage of Occurrences
1230 Samples
VDD = 5.5V
VCM = VDD
TA = +85°C
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
0
150
300
450
600
750
900
1050
1200
1350
1500
Input Bias Current (pA)
Percentage of Occurrences
605 Samples
VDD = 5.5V
VCM = VDD
TA = +125°C
70
75
80
85
90
95
100
-50 -25 0 25 50 75 100 125
Ambient Temperature (°C)
PSRR, CMRR (dB)
PSRR (VCM = VSS)
CMRR (VCM = -0.3V to +5.3V)
VDD = 5.0V
20
30
40
50
60
70
80
90
100
1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
Frequency (Hz)
PSRR, CMRR (dB)
PSRR+
CMRR
PSRR–
VCM = VSS
10 100 1k 10k 100k
-20
0
20
40
60
80
100
120
1.E-
01
1.E+
00
1.E+
01
1.E+
02
1.E+
03
1.E+
04
1.E+
05
1.E+
06
1.E+
07
Frequency (Hz)
Open-Loop Gain (dB)
-210
-180
-150
-120
-90
-60
-30
0
Open-Loop Phase (°)
0.1 1 10 100 10k 100k 1M 10M
Phase
Gain
1k
VCM = VSS
10
100
1,000
1.E-01 1.E+0
0
1.E+0
1
1.E+0
2
1.E+0
3
1.E+0
4
1.E+0
5Frequency (Hz)
Input Noise Voltage Density
(nV/Hz)
0.1 101 100 10k1k 100k
© 2009 Microchip Technology Inc. DS21733J-page 9
MCP6001/1R/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.
FIGURE 2-13: Output Short Circuit Curre nt
vs. Power Supply Voltage.
FIGURE 2-14: Output Voltage Headroom
vs. Output Current Magnitude.
FIGURE 2-15: Quiescent Current vs.
Power Supply Voltage.
FIGURE 2-16: Small-Signal, Non-Inverting
Pulse Response.
FIGURE 2-17: Large-Signal, Non-Inverting
Pulse Response.
FIGURE 2-18: Slew Rate vs. Ambient
Temperature.
0
5
10
15
20
25
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
Short Circuit Current
Magnitude (mA)
TA = -40°C
TA = +25°C
TA = +85°C
TA = +125°C
1
10
100
1,000
1.E-05 1.E-04 1.E-03 1.E-02
Output Current Magnitude (A)
Output Voltage Headroom
(mV)
VDD – VOH
10µ 10m1m100µ
VOL – VSS
0
20
40
60
80
100
120
140
160
180
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
Quiescent Current
per amplifier (µA)
VCM = VDD - 0.5V
TA = +125°C
TA = +85°C
TA = +25°C
TA = -40°C
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.E+00 1.E-06 2.E-06 3.E-06 4.E-06 5.E-06 6.E-06 7.E-06 8.E-06 9. E-06 1.E-05
Time (1 µs/div)
Output Voltage (20 mV/div)
G = +1 V/V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05 6.E-05 7.E-05 8.E-05 9.E-05 1.E-04
Time (10 µs/div)
Output Voltage (V)
G = +1 V/V
VDD = 5.0V
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-50 -25 0 25 50 75 100 125
Ambient Temperature (°C)
Slew Rate (V/µs)
VDD = 5.5V
VDD = 1.8V
Rising Edge
Falling Edge
MCP6001/1R/1U/2/4
DS21733J-page 10 © 2009 Microchip Technology Inc.
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.
FIGURE 2-19: Output Voltage Swing vs.
Frequency.
FIGURE 2-20: Measured Input Current vs.
Input Voltage (below VSS).
FIGURE 2-21: The MCP6001/2/4 Show No
Phase Reversa l.
0.1
1
10
1.E+03 1.E+04 1.E+05 1.E+06
Frequency (Hz)
Output Voltage Swing (V P-P)
VDD = 5.5V
1k 10k 100k 1M
VDD = 1.8V
1.E-12
1.E-11
1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Input Voltage (V)
Input Current Magnitude (A)
+125°C
+85°C
+25°C
-40°C
10m
1m
100µ
10µ
100n
10n
1n
100p
10p
1p
-1
0
1
2
3
4
5
6
0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05 6.E-05 7.E-05 8.E-05 9.E-05 1.E-04
Time (10 µs/div)
Input, Output Voltages (V)
VDD = 5.0V
G = +2 V/V
VIN
VOUT
© 2009 Microchip Technology Inc. DS21733J-page 11
MCP6001/1R/1U/2/4
3.0 PIN DESCRIPTIONS
Description s of the pi ns are listed in Table 3-1.
TABLE 3-1: PIN FUNCTION TABLE
3.1 Analog Outputs
The output pins are low-impedance voltage sources.
3.2 Analog Inputs
The non-inverting and inverting inputs are
high-impedance CMOS inputs with low bias currents.
3.3 Power Supply Pins
The positive power supply (VDD) is 1.8V to 6.0V higher
than the negative power supply (VSS). For normal
operation, the other pins are at voltages between VSS
and VDD.
Typically, these parts are used in a single (positive)
supply configuration. In this case, VSS is connecte d to
ground and VDD is connected to the supply. VDD will
need bypass capacitors.
3.4 Exposed Thermal Pad (EP)
There is an internal ele ctrical connection between the
Exposed Thermal Pad (EP) and the VSS pin; they must
be connected to the same potential on the Printed
Circuit Board (PCB).
MCP6001 MCP6001R MCP6001U MCP6002 MCP6004
Symbol Description
SC70-5,
SOT-23-5 SOT-23-5 SOT-23-5 MSOP,
PDIP,
SOIC
DFN
2x3
PDIP,
SOIC,
TSSOP
114111V
OUT, VOUTA Analog Output (op amp A)
443222V
IN–, VINA Inverting Input (op amp A)
331333V
IN+, VINA+ Non-inverting Input (op amp A)
525884V
DD Positive Power Supply
——555V
INB+ Non-inverting Input (op amp B)
——666
VINBInverting Input (op amp B)
——777V
OUTB Analog Output (op amp B)
——8V
OUTC Analog Output (op amp C)
——9V
INC Inverting Input (op amp C)
——10V
INC+ Non-inverting Input (op amp C)
2524411V
SS Negative Power Supply
——12V
IND+ Non-inverting Input (op amp D)
——13V
IND Inverting Input (op amp D)
——14V
OUTD Analog Output (op amp D)
9 EP Exposed Thermal Pad (EP);
must be connected to VSS.
MCP6001/1R/1U/2/4
DS21733J-page 12 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21733J-page 13
MCP6001/1R/1U/2/4
4.0 APPLICATION INFORMATION
The MCP6001/2/4 family of op amps is manufactured
using Microchip’s state-of-the-art CMOS process and
is specifically designed for low-cost, low-power and
general-purpose applications. The low supply voltage,
low quiescent current and wide bandwidth makes the
MCP6001/2/4 ideal for battery-powered applications.
This device has high phase margin, which makes it
stable for larger capacitive load applicati ons.
4.1 Rail-to-Rail Inputs
4.1.1 PHASE REVERSAL
The MCP6001/1R/1U/2/4 op amp is designed to
prevent phase reversal when the input pins exceed the
supply voltages. Figure 2-21 shows the input voltage
exceeding the supply voltage without any phase
reversal.
4.1.2 INPUT VOLTAGE AND CURRENT
LIMITS
The ESD protection on the inputs can be depicted as
shown in Figure 4-1. This structure was chosen to
protect the input transistors, and to minimize input bias
current (IB). The input ESD diodes clamp the inputs
when they try to go more than one diode drop below
VSS. They also clamp any voltages that go too far
above VDD; their breakdown voltage is high enough to
allow normal operation, and low enough to bypass
quick ESD events within the specified limits.
FIGURE 4-1: Simplified Analog Input ESD
Structures.
In order to prevent damag e and/or improper operation
of these op amps, the circuit they are in must li mit the
currents and voltages at the VIN+ and VIN– pins (see
Absolute Maximum Ratings † at the beginning of
Section 1.0 “Electrical Characteristics”). Figure 4-2
shows the recommended approach to protecting these
inputs. The internal ESD diodes prevent the input pins
(VIN+ and VIN–) from going too far below ground, and
the resistors R1 and R2 limit the possible current drawn
out of the input pins. Diodes D1 and D2 prevent the
input pins (VIN+ and VIN–) from going too far above
VDD, and dump any currents onto VDD. When
implemented as shown, resistors R1 and R2 also limit
the current through D1 and D2.
FIGURE 4-2: Prote cting the Analog
Inputs.
It is also possible to connect the diodes to the left of
resistors R1 and R2. In this case, current through the
diodes D1 and D2 needs to be limited by some other
mechanism. The resistors then serve as in-rush current
limiters; the DC current into the input pins (VIN+ and
VIN–) should be very small.
A significant amount of current can flow out of the
inputs when the common mode voltage (VCM) is below
ground (VSS); see Figure 2-20. Applications that are
high impedance may need to limit the usable voltage
range.
4.1.3 NORMAL OPERATION
The input stage of the MCP6001/1R/1U/2/4 op amps
use two differential CMOS input stages in p arallel. One
operates at low common mode input voltage (VCM),
while the other operates at high VCM. WIth this
topology, the device operates with VCM up to 0.3V
above VDD and 0.3V below VSS.
The transition between the two input stages occurs
when VCM = VDD – 1.1V. For the best distortion and
gain linearity , with non-inverting gains, avoid this region
of operation.
4.2 Rail-to-Rail Output
The output voltage range of the MCP6001/2/4 op amps
is VDD 25 mV (minimum) and VSS +25mV
(maximum) when RL=10kΩ is connected to VDD/2
and VDD = 5.5V. Refer to Figure 2-14 for more
information.
Bond
Pad
Bond
Pad
Bond
Pad
VDD
VIN+
VSS
Input
Stage Bond
Pad VIN
V1
MCP600X
R1
VDD
D1
R1>VSS (minimum expected V1)
2mA
R2>VSS (minimum expected V2)
2mA
V2R2
D2
R3
MCP6001/1R/1U/2/4
DS21733J-page 14 © 2009 Microchip Technology Inc.
4.3 Capacitive Loads
Driving large capacitive loads can cause stability
problems for voltage feedback op amps. As the load
capacitance increases, the feedback loop’s phase
margin decreases and the closed-loop bandwidth is
reduced. This produce s gain peaking in the frequency
response, with overshoot and ringing in the step
response. While a unity-gain buffer (G = +1) is the most
sensitive to capacitive loads, all gains show the same
general behavior.
When driving large capacitive loads with these op
amps (e.g., > 100 pF when G = +1), a small series
resistor at the output (RISO in Figure 4-3) improves the
feedback loop’s phase margin (stability) by making the
output load resistive at higher frequencies. The
bandwidth will be generally lower than the bandwidth
with no capacitance load.
FIGURE 4-3: Output resistor, RISO
stabilizes large capacitive loads.
Figure 4-4 gives recommended RISO values for
different capacitive loads and gains. The x-axis is the
normalized load capacitance (CL/GN), where GN is the
circuit's noise gain. For non-inverting gains, GN and the
Signal Gain are equal. For inverting gains, GN is
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).
FIGURE 4-4: Recommended RISO values
for Capacitive Loads.
After selecting RISO for your circuit, double-check the
resulting frequency response peaking and step
response overshoot. Modify RISO’s value until the
response is reasonable. Bench evaluation and
simulations with the MCP6001/1R/1U/2/4 SPICE
macro model are very helpful.
4.4 Supply Bypass
With this family of operational amplifiers, the power
supply pin (VDD for single-supply) should ha ve a local
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm
for good high-frequency performance. It also needs a
bulk capacitor (i.e., 1 µF or larger) within 100 mm to
provide large, slow currents. This bulk capacitor can be
shared with nearby analog parts.
4.5 Unused Op Amps
An unused op amp in a quad package (MCP6004)
should be configured as shown in Figure 4-5. These
circuits prevent the output from toggling and causing
crosstalk. Circuits A sets the op amp at its minimum
noise gain. The resistor divider produces any desired
reference voltage within the output voltage range of the
op amp; the op amp buffers that reference voltage.
Circuit B uses the minimum number of components
and operates as a comparator, but it may draw more
current.
FIGURE 4-5: Unused Op Amps.
4.6 PCB Surface Leakage
In applications where low input bias current is critical,
Printed Circuit Board (PCB) surface leakage effects
need to be considered. Surface leakage is caused by
humidity, dust or other contamination on the board.
Under low humidity conditions, a typical resistance
between nearby traces i s 1012Ω. A 5V difference would
cause 5 pA of current to flow; which is greater than the
MCP6001/1R/1U/2/4 family’s bias current at 25°C (typ-
ically 1 pA).
The easiest way to reduce surface leakage is to use a
guard ring around sensitive pins (or traces). The guard
ring is biased at the same voltage as th e sensi tive pin.
An example of this type of layout is shown in
Figure 4-6.
VIN
RISO VOUT
MCP600X
CL
+
10
100
1000
1.E-11 1.E-10 1.E-09 1.E-08
Normalized Load Capacitance; CL/GN (F)
Recommended RISO ()
GN = 1
GN 2
10p 10n
100p
VDD = 5.0V
RL = 100 k
1n
VDD
VDD
¼ MCP6004 (A) ¼ MCP6004 (B)
R1
R2
VDD
VREF
VREF VDD R2
R1R2
+
------------------
=
© 2009 Microchip Technology Inc. DS21733J-page 15
MCP6001/1R/1U/2/4
FIGURE 4-6: Example Guard Ring Layout
for Inverting Gain.
1. Non-inverting Gain and Unity-Gain Buffer:
a. Connect the non-inverting pin (VIN+) to the
input with a wire that does not touch the
PCB surface.
b. Connect the guard ring to the inverting input
pin (VIN–). This biases the guard ring to the
common mode input voltage.
2. Inverting Gain and Transimpedance Gain
Amplifiers (convert current to voltage, such as
photo detectors):
a. Connect the gu ard ring to the non-inverting
input pin (VIN+). This biases the guard ring
to the same reference voltage as the op
amp (e.g., VDD/2 or ground).
b. Connect the in verting pin (VIN–) to the input
with a wire that does not touch the PCB
surface.
4.7 Application Circuits
4.7.1 UNITY-GAIN BUFFER
The rail-to-rail input and output capability of the
MCP6001/2/4 op amp is ideal for unity-gain buffer
applications. The low quiescent current and wide
bandwidth makes the device suitable for a buffer
configuration in an instrumentation amplifier circuit, as
shown in Figure 4-7.
FIGURE 4-7: Instrumentation Amplifier
with Unity-Gain Buffer Inputs.
4.7.2 ACTIVE LOW-PASS FILTER
The MCP6001/2/4 op amp’s low input bias current
makes it possible for the designer to use larger
resistors and smaller capacitors for active low-pass
filter applications. However, as the resistance
increases, the noise generated also increases.
Parasitic capacitances and the large value resistors
could also modify the frequency response. These
trade-offs need to be considered when selecting circuit
elements.
Usually, the op amp bandwidth is 100x th e filter cutoff
frequency (or higher) for good performance. It is
possible to have the op amp bandwidth 10X higher
than the cutoff frequency, thus ha ving a design that is
more sensitive to component tolerances.
Figure 4-8 shows a second-order Butterworth filter with
100 kHz cuto ff frequency and a gain of +1 V/V; the op
amp bandwidth is only 10x higher than the cutoff
frequency. The component values were selected using
Microchip’s FilterLab® software.
FIGURE 4-8: Active Second-Order
Low-Pass Filter.
Guard Rin g
VSS
VIN-V
IN+
VIN1
R2
MCP6002
VIN2
R2
MCP6002
VREF
MCP6001 VOUT
R1
R1
+
+
+
1/2
1/2
VOUT VIN2VIN1
()
R1
R2
------
VREF
+=
R1 = 20 kΩ
R2 = 10 kΩ
14.3 kΩ
MCP6002 VOUT
53.6 kΩ
100 pF
VIN
33 pF
+
MCP6001/1R/1U/2/4
DS21733J-page 16 © 2009 Microchip Technology Inc.
4.7.3 PEAK DETECTOR
The MCP6001/2/4 op amp has a high input impedance,
rail-to-rail input/output and low input bias current, which
makes this device suitable for peak detector
applications. Figure 4-9 shows a peak detector circuit
with clear and sample switches. The peak-detection
cycle uses a clock (CLK), as shown in Figure 4-9.
At the rising edge of CLK, Sample Switch closes to
begin sampling. The peak voltage stored on C1 is
sampled to C2 for a sample time defined by tSAMP. At
the end of the sample time (falling edge of Sample
Signal), Clear Signal goes high and closes the Clear
Switch. When the Clear Switch closes, C1 discharges
through R1 for a time defined by tCLEAR. At the end of
the clear time (falling edge of Clea r Signal), op amp A
begins to store the peak value of VIN on C1 for a time
defined by tDETECT.
In order to define tSAMP and tCLEAR, it is necessary to
determine the capacitor charging and discharging
period. The capacitor charging time is limited by the
amplifier source current, while the discharging time (τ)
is defined using R1 (τ = R1C1). tDETECT is the time that
the input signal is sampled on C1 and is dep endent on
the input voltage change frequency.
The op amp output current limit, and the size of the
storage capacitors (both C1 and C2), could create
slewing limitations as the input voltage (VIN) increases.
Current through a capacitor is dependent on the size of
the capacitor and the rate of voltage change. From this
relationship, the rate of voltage change or the slew rate
can be determined. For example, with an op amp short
circuit current of ISC = 25 mA and a load capacitor of
C1= 0.1 µF, then:
EQUATION 4-1:
This voltage rate of change is less than the MCP6001/2/4
slew rate of 0.6 V/µs. When the input voltage swings
below the voltage across C1, D1 becomes reverse-
biased. This opens the feedback loop and rails the
amplifier. When the input voltage increases, the amplifier
recovers at its slew rate. Based on the rate of voltage
change shown in the above equation, it takes an
extended period of time to charge a 0.1 µF capacitor . The
capacitors need to be selected so that the circuit is not
limited by the amplifier slew rate. Therefore, the
capacitors should be less than 40 µF and a stabilizing
resistor (RISO) needs to be properly selected. (Refer to
Section 4.3 “Capacitive Loads”).
FIGURE 4-9: Peak Detector with Clear and Sample CMOS Analog Switches.
dVC1
dt
-------------ISC
C1
--------=
25mA
0.1μF
---------------=
dVC1
dt
------------- 250mV μs=
ISC C1dVC1
dt
-------------
=
VIN
MCP6002
VC1
MCP6002
D1
Op Amp A
Op Amp B
VOUT
MCP6001
Op Amp C
C2
Sample Signal
Clear Signal
Clear
RISO
Sample
+
+
+
CLK
tSAMP
tCLEAR
tDETECT
Switch
Switch
1/2
1/2
R1
RISO VC2
C1
© 2009 Microchip Technology Inc. DS21733J-page 17
MCP6001/1R/1U/2/4
5.0 DESIGN AIDS
Microchip provides the basic design tools needed for
the MCP6001/1R/1U/2/4 family of op amps.
5.1 SPICE Macro Model
The latest SPICE macro model for the MCP6001/1R/
1U/2/4 op amps is available on the Microchip web site
at www.microchip.com. The model was written and
tested in official Orcad (Cadence) owned PSPICE. For
the other simulators, it may require translation.
The model covers a wide aspect of the op amp's
electrical specifications. Not only does the model cover
voltage, current, and resistance of the op amp, but it
also covers the temperature and noise effects on the
behavior of the op amp. The model has not been
verified outside of the specification range listed in the
op amp data sheet. The model behaviors under these
conditions can not be guara nteed that it will match the
actual op amp performance.
Moreover, the model is intend ed to be an initial desig n
tool. Bench testing is a very important part of any
design and cannot be repla ced with simulations. Also,
simulation results using this macro model need to be
validated by comparing them to the data sheet
specifications and characteri stic curves.
5.2 FilterLab® Software
Microchip’s FilterLab® software is an innovative
software tool that simplifies analog active filter (using
op amps) design. Available at no cost from the
Microchip web site at www.microch ip.com/filterlab, th e
FilterLab d esign tool provides fu ll schematic diagrams
of the filter circuit with component values. It also
outputs the filter circuit in SPICE format, whic h can be
used with the macro model to simulate actual filter
performance.
5.3 Mindi™ Circuit Designer &
Simulator
Microchip’s Mindi™ Circuit Designer & Simulator aids
in the design of various circuits useful for active filter,
amplifier and power-management applications. It is a
free online circuit designer & simulator available from
the Microchip web site at www.microchip.com/mindi.
This interactive circuit designer & simulator enables
designers to quickly generate circuit diagrams,
simulate circuits. Circuits developed using the Mindi
Circuit Designer & Simulator can be downloaded to a
personal computer or workstation.
5.4 Microchip Advanced Part Selector
(MAPS)
MAPS is a software tool that helps semiconductor
professionals efficiently identify Microchip devi ces that
fit a particular design requirement. Available at no cost
from the Microchip web site at www.microchip.com/
maps, the MAPS is an overall selection tool for
Microchip’s product portfolio that includes Analog,
Memory, MCUs and DSCs. Using this tool you can
define a filter to sort features for a parametric search of
devices and export side-by-side technical comparison
reports. Helpful links are also provided for Data sheet s,
Purchase, and Sampling of Microchip parts.
5.5 Analog Demonstration and
Evaluation Boards
Microchip offers a broad spectrum of Analog
Demonstration and Evaluation Boards that are
designed to help you achieve faster time to market. For
a complete listing of these boards and their
corresponding user’s guides and technical information,
visit the Microchip web site at www.microchip.com/
analogtools.
Some boards that are especially useful are:
MCP6XXX Amplifier Evaluation Board 1
MCP6XXX Amplifier Evaluation Board 2
MCP6XXX Amplifier Evaluation Board 3
MCP6XXX Amplifier Evaluation Board 4
Active Filter Demo Board Kit
5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2
8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,
P/N SOIC8EV
14-Pin SOIC/TSSOP/DIP Evaluation Board,
P/N SOIC14EV
MCP6001/1R/1U/2/4
DS21733J-page 18 © 2009 Microchip Technology Inc.
5.6 Application Notes
The following Microchip Analog Design Note and
Application Notes are available on the Microchip web
site at www.microchip. com/appnotes and are
recommended as supplemental reference resources.
ADN003: “Select the Right Operational Amplifier
for your Filtering Circuits”, DS21821
AN722: “Operational Amplifier T opologies and DC
Specifications”, DS00722
AN723: “Operational Amplifier AC Specifications
and Applications”, DS00723
AN884: “Driving Capacitive Loads With Op
Amps”, DS00884
AN990: “Analog Sensor Conditioning Circuits
An Overview”, DS00990
AN1177: “Op Amp Precision Design: DC Errors”,
DS01177
AN1228: “Op Amp Precision Design: Random
Noise”, DS01228
AN1297: "Microchip 's Op Amp SPICE Macro
Models"
These application notes and others are listed in the
design guide:
“Signal Chain Design Guide”, DS21825
© 2009 Microchip Technology Inc. DS21733J-page 19
MCP6001/1R/1U/2/4
6.0 PACKAGING INFORMATION
6.1 Package Marking Information
XXXXXXXX
XXXXXNNN
YYWW
8-Lead PDIP (300 mil) Example:
MCP6002
I/P256
0432
5-Lead SC-70 (MCP6001)Example: (I-Temp)
123
54
5-Lead SOT-23 (MCP6001/1R/1U)Example: (E-Temp)
XXNN
123
54
CD25
XXN (Front)
YWW (Back) AA7 (Front)
432 (Back)
Device I-Temp
Code
E-Temp
Code
MCP6001 AANN CDNN
MCP6001R ADNN CENN
MCP6001U AFNN CFNN
Note: Applies to 5-Lead SOT-23.
Device I-Temp
Code
E-Temp
Code
MCP6001 AAN CDN
Note: Applies to 5-Lead SC-70.
OR OR
XXNN AA74
Device I-Temp
Code
E-Temp
Code
MCP6001 AANN CDNN
Note: Applies to 5-Lead SC-70.
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year )
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
MCP6002
I/P^^256
0746
OR
3
e
8-Lead DFN (2 x 3)
XXX
YWW
NN
Example:
ABY
944
25
MCP6001/1R/1U/2/4
DS21733J-page 20 © 2009 Microchip Technology Inc.
Package Marking Information (Continued)
14-Lead PDIP (300 mil) (MCP6004) Example:
14-Lead TSSOP (MCP6004)Example:
14-Lead SOIC (150 mil) (MCP6004)Example:
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
YYWWNNN
XXXXXXXXXX
YYWWNNN
XXXXXX
YYWW
NNN
MCP6004
0432256
6004ST
0432
256
XXXXXXXXXX MCP6004ISL
0432256
8-Lead MSOP Example:
XXXXXX
YWWNNN
6002I
432256
8-Lead SOIC (150 mil) Example:
XXXXXXXX
XXXXYYWW
NNN
MCP6002I
SN0432
256
OR
OR
OR
OR
MCP6002I
SN^^0746
256
MCP6004
0746256
MCP6004
0746256
6004STE
0432
256
3
e
E/P^^
3
e
E/SL^^
3
e
I/P^^
3
e
© 2009 Microchip Technology Inc. DS21733J-page 21
MCP6001/1R/1U/2/4


   !"!#$!!% #$  !% #$   #&! !
  !#"'(
)*+ )  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 (
1# 9()*
6,:# ; < 
!!1//  ; < 
#!%%   < 
6,=!# " ;  
!!1/=!# " ( ( (
6,4# ;  (
.#4# 4   9
4!/ ; < 9
4!=!# 8 ( < 
D
b
1
23
E1
E
45
ee
c
L
A1
AA2
  - *9)
MCP6001/1R/1U/2/4
DS21733J-page 22 © 2009 Microchip Technology Inc.
 .# #$#/!- 0  #1/%##!#
##+22---2/
© 2009 Microchip Technology Inc. DS21733J-page 23
MCP6001/1R/1U/2/4
 !

   !"!#$!!% #$  !% #$   #&! !
  !#"'(
)*+ )  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 (
4!1# ()*
6$# !4!1#  )*
6,:#  < (
!!1//  ; < 
#!%%   < (
6,=!# "  < 
!!1/=!# "  < ;
6,4#  < 
.#4# 4  < 9
.## 4 ( < ;
.# I> < >
4!/ ; < 9
4!=!# 8  < (
φ
N
b
E
E1
D
123
e
e1
A
A1
A2 c
L
L1
  - *)
MCP6001/1R/1U/2/4
DS21733J-page 24 © 2009 Microchip Technology Inc.
"#$%&'() *!*+,-.#$

 1, $!&%#$,08$#$ #8#!-###!
 1/,& !#8 #! 
 1/  - $#!
  !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 ;
1# ()*
6,:# ;  
#!%%    (
*##/  ".
6,4# )*
6,=!# " )*
"& !1!4#   < ((
"& !1!=!# " ( < (
*##=!# 8  ( 
*##4# 4   (
*###"& !1! ?  < <
D
N
E
NOTE 1
12
EXPOSED PAD
NOTE 1
21
D2
K
L
E2
N
e
b
A3 A1
A
NOTE 2
BOTTOM VIEW
TOP VIEW
  - **
© 2009 Microchip Technology Inc. DS21733J-page 25
MCP6001/1R/1U/2/4
"#$%&'() *!*+,-.#$
 .# #$#/!- 0  #1/%##!#
##+22---2/
MCP6001/1R/1U/2/4
DS21733J-page 26 © 2009 Microchip Technology Inc.
"#/)!-.#/

 1, $!&%#$,08$#$ #8#!-###!
 @%#*# #
   !"!#$!!% #$  !% #$   #&!A !
  !#"'(
)*+)  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 5*:"
 4# 5 56 7
5$8%1 5 ;
1# )*
##1 < < 
!!1//  (  (
) ##1  ( < <
$!#$!=!# "   (
!!1/=!# "  ( ;
6,4# ; 9( 
##1 4 (  (
4!/ ;  (
34!=!# 8  9 
4-4!=!# 8  ; 
6,-@ ) < < 
N
E1
NOTE 1
D
123
A
A1
A2
L
b1
b
e
E
eB
c
  - *;)
© 2009 Microchip Technology Inc. DS21733J-page 27
MCP6001/1R/1U/2/4
")0%!+,-./

 1, $!&%#$,08$#$ #8#!-###!
 @%#*# #
   !"!#$!!% #$  !% #$   #&!( !
  !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 ;
1# )*
6,:# < < (
!!1//  ( < <
#!%%
@
  < (
6,=!# " 9)*
!!1/=!# " )*
6,4# )*
*%B#C ( < (
.#4# 4  < 
.## 4 ".
.# I> < ;>
4!/  < (
4!=!# 8  < (
!%# D(> < (>
!%#)## E(> < (>
D
N
e
E
E1
NOTE 1
12 3
b
A
A1
A2
L
L1
c
h
h
φ
β
α
  - *()
MCP6001/1R/1U/2/4
DS21733J-page 28 © 2009 Microchip Technology Inc.
")0%!+,-./
 .# #$#/!- 0  #1/%##!#
##+22---2/
© 2009 Microchip Technology Inc. DS21733J-page 29
MCP6001/1R/1U/2/4
"(&'((

 1, $!&%#$,08$#$ #8#!-###!
   !"!#$!!% #$  !% #$   #&!( !
  !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 ;
1# 9()*
6,:# < < 
!!1//  ( ;( (
#!%%   < (
6,=!# " )*
!!1/=!# " )*
6,4# )*
.#4# 4  9 ;
.## 4 (".
.# I> < ;>
4!/ ; < 
4!=!# 8  < 
D
N
E
E1
NOTE 1
12
e
b
A
A1
A2 c
L1 L
φ
  - *)
MCP6001/1R/1U/2/4
DS21733J-page 30 © 2009 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
© 2009 Microchip Technology Inc. DS21733J-page 31
MCP6001/1R/1U/2/4
12#/)!-.#/

 1, $!&%#$,08$#$ #8#!-###!
 @%#*# #
   !"!#$!!% #$  !% #$   #&!A !
  !#"'(
)*+)  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 5*:"
 4# 5 56 7
5$8%1 5 
1# )*
##1 < < 
!!1//  (  (
) ##1  ( < <
$!#$!=!# "   (
!!1/=!# "  ( ;
6,4# ( ( (
##1 4 (  (
4!/ ;  (
34!=!# 8 ( 9 
4-4!=!# 8  ; 
6,-@ ) < < 
N
E1
D
NOTE 1
123
E
c
eB
A2
L
A
A1 b1
be
  - *()
MCP6001/1R/1U/2/4
DS21733J-page 32 © 2009 Microchip Technology Inc.
12)0%!+,-./

 1, $!&%#$,08$#$ #8#!-###!
 @%#*# #
   !"!#$!!% #$  !% #$   #&!( !
  !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 
1# )*
6,:# < < (
!!1//  ( < <
#!%%@   < (
6,=!# " 9)*
!!1/=!# " )*
6,4# ;9()*
*%B#C ( < (
.#4# 4  < 
.## 4 ".
.# I> < ;>
4!/  < (
4!=!# 8  < (
!%# D(> < (>
!%#)## E(> < (>
NOTE 1
N
D
E
E1
123
b
e
A
A1
A2
L
L1
c
h
hα
β
φ
  - *9()
© 2009 Microchip Technology Inc. DS21733J-page 33
MCP6001/1R/1U/2/4
 .# #$#/!-0  #1/%##!#
##+22---2/
MCP6001/1R/1U/2/4
DS21733J-page 34 © 2009 Microchip Technology Inc.
1233&)2+2-.

 1, $!&%#$,08$#$ #8#!-###!
   !"!#$!!% #$  !% #$   #&!( !
  !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 
1# 9()*
6,:# < < 
!!1//  ;  (
#!%%  ( < (
6,=!# " 9)*
!!1/=!# "   (
!!1/4#  ( (
.#4# 4 ( 9 (
.## 4 ".
.# I> < ;>
4!/  < 
4!=!# 8  < 
NOTE 1
D
N
E
E1
12
e
b
c
A
A1
A2
L1 L
φ
  - *;)
© 2009 Microchip Technology Inc. DS21733J-page 35
MCP6001/1R/1U/2/4
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
MCP6001/1R/1U/2/4
DS21733J-page 36 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21733J-page 35
MCP6001/1R/1U/2/4
APPENDIX A: REVISION HISTORY
Revision J (November 2009)
The following is the list of modificatio ns:
1. Added new 2x3 DFN 8-Lead package on
page 1.
2. Updated the Temperature Specifications table
with 2x3 DFN thermal resistance information.
3. Updated Section 1.1 “Test Circuits”.
4. Updated Figure 2-15.
5. Added the 2x3 DFN column to Table 3-1.
6. Added new Section 3.4 “Exposed Thermal
Pad (EP)”.
7. Updated Section 5.1 “SPICE Macro Model”.
8. Updated Section 5.5 “Analog Demonstration
and Evaluation Boards”.
9. Updated Section 5.6 “Application Notes.
10. Updated Section 6.1 “Package Marking
Information” with the new 2x3 DFN package
marking information.
11. Upd ated the package drawings.
12. Updated the Product Identification System
section with new 2x3 DFN package information.
Revision H (May 2008)
The following is the list of modificatio ns:
1. Design Aids: Name change for Mindi
Simulation Tool.
2. Package Types: Correct device labeling error.
3. Section 1.0 “Electrical Characteristics”, DC
Electrical Specifications: Changed “Maximum
Output V oltage Swing” condition from 0.9V Input
Overdrive to 0.5V Input Overdrive.
4. Section 1.0 “Electrical Characteristics”, AC
Electrical Specifications: Changed Phase
Margin condition from G = +1 to G= +1 V/V.
5. Section 5.0 “Design AIDS”: Name change for
Mindi Simulation Tool.
Revision G (November 2007)
The following is the list of modifi cations:
1. Updated notes to Section 1.0 “Electrical
Characteristics”.
2. Increased Absolute Maximum Voltage range at
input pins.
3. Increased maximum operating supply voltage
(VDD).
4. Added test circuits.
5. Added Figure 2-3 and Figure 2-20.
6. Added Section 4.1.1 “Phase Reversal”,
Section 4.1.2 “Input Voltage and Current
Limits”, Section 4.1.3 “Normal Operation”
and Section 4.5 “Unused Op Amps”.
7. Updated Section 5.0 “Design AIDS”,
8. Updated Section 6.0 “Packaging
Information”
9. Updated Package Outline Drawings.
Revision F (March 2005)
The following is the list of modifi cations:
1. Updated Section 6.0 “Packaging
Information” to include old and new packaging
examples.
Revision E (December 2004)
The following is the list of modifi cations:
1. VOS specification reduced to ±4.5 mV from
±7.0 mV for parts starting with date code
YYWW = 0449
2. Corrected package markings in Section 6.0
“Packaging Information”.
3. Added Appendix A: Revi sion History.
Revision D (May 2003)
Undocumented changes.
Revision C (December 2002)
Undocumented changes.
Revision B (October 2002)
Undocumented changes.
Revision A (June 2002)
Original data sheet release.
MCP6001/1R/1U/2/4
DS21733J-page 36 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21733J-page 37
MCP6001/1R/1U/2/4
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Device: MCP6001T: Single Op Amp (Tape and Reel)
(SC-70, SOT-23)
MCP6001RT: Single Op Amp (Tape and Reel) (SOT-23)
MCP6001UT: Single Op Amp (Tape and Reel) (SOT-23)
MCP6002: Dual Op Amp
MCP6002T: Dual Op Amp (Tape and Reel)
(SOIC, MSOP)
MCP6004: Quad Op Amp
MCP6004T: Quad Op Amp (Tape and Reel)
(SOIC, MSOP)
Temperature Range: I = -4 0°C to +85°C
E = -40°C to +125°C
Package: LT = Plastic Package (SC-70), 5-lead (MCP6001 only)
OT = Plastic Small Outline Transistor (SOT-23), 5-lead
(MCP6001, MCP6001R, MCP6001U)
MS = Plastic MSOP, 8-l ead
MC = Plastic DFN, 8-lead
P = Plastic DIP (300 mil body), 8-lead, 14-lead
SN = Plastic SOIC, (3.99 mm body), 8-lead
SL = Plastic SOIC (3.99 body), 14-lead
ST = Plastic TSSOP (4.4mm body), 14-lead
PART NO. X/XX
PackageTemperature
Range
Device
Examples:
a) MCP6001T-I/LT: Tape and Reel,
Industrial Temperature,
5LD SC-70 package
b) MCP6001T-I/OT: Tape and Reel,
Industrial Temperature,
5LD SOT-23 package.
c) MCP6001RT-I/OT: Tape and Reel,
Industrial Temperature,
5LD SOT-23 package.
d) MCP6001UT-E/ OT: Tape and Reel,
Extended Temperature,
5LD SOT-23 package.
a) MCP6002-I/MS: Industrial Temper ature,
8LD MSOP package.
b) MCP6002-I/P: Industrial Temperature,
8LD PDIP package.
c) MCP6002-E/P: Extended Temperature,
8LD PDIP package.
d) MCP6002-E/MC: Extended Temperature,
8LD DFN package.
e) MCP6002-I/SN: Industrial Temperature,
8LD SOIC package.
f) MCP6002T-I/MS: Tape and Reel,
Industrial Temperature,
8LD MSOP package.
g) MCP6002T-E/MC: Tape and Reel,
Extended Temperature,
8LD DFN package.
a) MCP6004-I/P: Industrial Temperature,
14LD PDIP package.
b) MCP6004-I/SL: Industrial Temperature,
14LD SOIC package.
c) MCP6004-E/SL: Extended Temperature,
14LD SOIC packag e.
d) MCP6004-I/ST: In dustrial Temperature,
14LD TSSO P package.
e) MCP6004T-I/SL: Tape and Reel,
Industrial Temperature,
14LD SOIC package.
f) MCP6004T-I/ST: Tape and Reel,
Industrial Temperature,
14LD TSSO P package.
MCP6001/1R/1U/2/4
DS21733J-page 38 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21733J-page 39
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defen d, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip T echnology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Dat a
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection featur es of our
products. Attempts to break Microchip’ s code protection feature may be a violation of the Digit al Millennium Copyright Act. If such acts
allow unauthorized access to you r software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:200 2 certif ication for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperi pherals, nonvola tile memo ry and
analog product s. In addition, Microchip s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS21733J-page 40 © 2009 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89- 627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
03/26/09