DS529 August 19, 2010 www.xilinx.com 1
Product Specification
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.
Module 1:
Introduction and Ordering Information
DS529-1 (v2.0) August 19, 2010
Introduction
Features
Architectural and Configuration Overview
General I/O Capabilities
Production Status
Supported Packages and Package Marking
Ordering Information
Module 2:
Spartan-3A FPGA Family: Functional
Description
DS529-2 (v2.0) August 19, 2010
The functionality of the Spartan®-3A FPGA family is
described in the following documents.
UG331: Spartan-3 Generation FPGA User Guide
Clocking Resources
Digital Clock Managers (DCMs)
•Block RAM
Configurable Logic Blocks (CLBs)
- Distributed RAM
- SRL16 Shift Registers
- Carry and Arithmetic Logic
•I/O Resources
Embedded Multiplier Blocks
Programmable Interconnect
ISE® Design Tools and IP Cores
Embedded Processing and Control Solutions
Pin Types and Package Overview
Package Drawings
Powering FPGAs
Power Management
UG332: Spartan-3 Generation Configuration User Guide
Configuration Overview
Configuration Pins and Behavior
Bitstream Sizes
Detailed Descriptions by Mode
- Master Serial Mode using Platform Flash PROM
- Master SPI Mode using Commodity Serial Flash
- Master BPI Mode using Commodity Parallel Flash
- Slave Parallel (SelectMAP) using a Processor
- Slave Serial using a Processor
-JTAG Mode
ISE iMPACT Programming Examples
MultiBoot Reconfiguration
Design Authentication using Device DNA
UG334: Spartan-3A/3AN FPGA Starter Kit User Guide
Module 3:
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010
DC Electrical Characteristics
Absolute Maximum Ratings
Supply Voltage Specifications
Recommended Operating Conditions
Switching Characteristics
I/O Timing
Configurable Logic Block (CLB) Timing
Multiplier Timing
•Block RAM Timing
Digital Clock Manager (DCM) Timing
Suspend Mode Timing
Device DNA Timing
Configuration and JTAG Timing
Module 4:
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010
Pin Descriptions
Package Overview
Pinout Tables
Footprint Diagrams
For more information on the Spartan-3A FPGA family, go to
www.xilinx.com/spartan3a
0
Spartan-3A FPGA Family:
Data Sheet
DS529 August 19, 2010 00Product Specification
Spartan-3A FPGA Status
XC3S50A Production
XC3S200A Production
XC3S400A Production
XC3S700A Production
XC3S1400A Production
Spartan-3A FPGA Family: Data Sheet
2 www.xilinx.com DS529 August 19, 2010
Product Specification
DS529-1 (v2.0) August 19, 2010 www.xilinx.com 3
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.
Introduction
The Spartan®-3A family of Field-Programmable Gate
Arrays (FPGAs) solves the design challenges in most
high-volume, cost-sensitive, I/O-intensive electronic
applications.
The five-member family offers densities ranging
from 50,000 to 1.4 million system gates, as shown in Table 1 .
The Spartan-3A FPGAs are part of the Extended
Spartan-3A family, which also include the non-volatile
Spartan-3AN and the higher density Spartan-3A DSP
FPGAs. The Spartan-3A family builds on the success of the
earlier Spartan-3E and Spartan-3 FPGA families. New
features improve system performance and reduce the cost
of configuration.
These Spartan-3A family enhancements,
combined with proven 90 nm process technology, deliver
more functionality and bandwidth per dollar than ever before,
setting the new standard in the programmable logic industry.
Because of their exceptionally low cost, Spartan-3A FPGAs
are ideally suited to a wide range of consumer electronics
applications, including broadband access, home networking,
display/projection, and digital television equipment.
The Spartan-3A family is a superior alternative to mask
programmed ASICs. FPGAs avoid the high initial cost,
lengthy development cycles, and the inherent inflexibility of
conventional ASICs, and permit field design upgrades.
Features
Very low cost, high-performance logic solution for
high-volume, cost-conscious applications
Dual-range VCCAUX supply simplifies 3.3V-only design
Suspend, Hibernate modes reduce system power
Multi-voltage, multi-standard SelectIO™ interface pins
Up to 502 I/O pins or 227 differential signal pairs
LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling
Selectable output drive, up to 24 mA per pin
QUIETIO standard reduces I/O switching noise
Full 3.3V ± 10% compatibility and hot swap compliance
640+ Mb/s data transfer rate per differential I/O
LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O
with integrated differential termination resistors
Enhanced Double Data Rate (DDR) support
DDR/DDR2 SDRAM support up to 400 Mb/s
Fully compliant 32-/64-bit, 33/66 MHz PCI® technology
support
Abundant, flexible logic resources
Densities up to 25,344 logic cells, including optional shift
register or distributed RAM support
Efficient wide multiplexers, wide logic
Fast look-ahead carry logic
Enhanced 18 x 18 multipliers with optional pipeline
IEEE 1149.1/1532 JTAG programming/debug port
Hierarchical SelectRAM™ memory architecture
Up to 576 Kbits of fast block RAM with byte write enables
for processor applications
Up to 176 Kbits of efficient distributed RAM
Up to eight Digital Clock Managers (DCMs)
Clock skew elimination (delay locked loop)
Frequency synthesis, multiplication, division
High-resolution phase shifting
Wide frequency range (5 MHz to over 320 MHz)
Eight low-skew global clock networks, eight additional
clocks per half device, plus abundant low-skew routing
Configuration interface to industry-standard PROMs
Low-cost, space-saving SPI serial Flash PROM
x8 or x8/x16 BPI parallel NOR Flash PROM
Low-cost Xilinx® Platform Flash with JTAG
Unique Device DNA identifier for design authentication
Load multiple bitstreams under FPGA control
Post-configuration CRC checking
Complete Xilinx ISE® and WebPACK™ development
system software support plus Spartan-3A Starter Kit
MicroBlaze™ and PicoBlaze embedded processors
Low-cost QFP and BGA packaging, Pb-free options
Common footprints support easy density migration
Compatible with select Spartan-3AN nonvolatile FPGAs
Compatible with higher density Spartan-3A DSP FPGAs
XA Automotive version available
8Spartan-3A FPGA Family:
Introduction and Ordering Information
DS529-1 (v2.0) August 19, 2010 Product Specification
Table 1: Summary of Spartan-3A FPGA Attributes
Device
System
Gates
Equivalent
Logic Cells
CLB Array
(One CLB = Four Slices) Distributed
RAM bits(1)
Block
RAM
bits(1)Dedicated
Multipliers DCMs
Maximum
User I/O
Maximum
Differential
I/O PairsRows Columns CLBs Slices
XC3S50A 50K 1,584 16 12 176 704 11K 54K 3 2 144 64
XC3S200A 200K 4,032 32 16 448 1,792 28K 288K 16 4 248 112
XC3S400A 400K 8,064 40 24 896 3,584 56K 360K 20 4 311 142
XC3S700A 700K 13,248 48 32 1,472 5,888 92K 360K 20 8 372 165
XC3S1400A 1400K 25,344 72 40 2,816 11,264 176K 576K 32 8 502 227
Notes:
1. By convention, one Kb is equivalent to 1,024 bits.
Introduction and Ordering Information
4 www.xilinx.com DS529-1 (v2.0) August 19, 2010
Architectural Overview
The Spartan-3A family architecture consists of five
fundamental programmable functional elements:
Configurable Logic Blocks (CLBs) contain flexible
Look-Up Tables (LUTs) that implement logic plus
storage elements used as flip-flops or latches. CLBs
perform a wide variety of logical functions as well as
store data.
Input/Output Blocks (IOBs) control the flow of data
between the I/O pins and the internal logic of the
device. IOBs support bidirectional data flow plus 3-state
operation. Supports a variety of signal standards,
including several high-performance differential
standards. Double Data-Rate (DDR) registers are
included.
Block RAM provides data storage in the form of 18-Kbit
dual-port blocks.
Multiplier Blocks accept two 18-bit binary numbers as
inputs and calculate the product.
Digital Clock Manager (DCM) Blocks provide
self-calibrating, fully digital solutions for distributing,
delaying, multiplying, dividing, and phase-shifting clock
signals.
These elements are organized as shown in Figure 1. A dual
ring of staggered IOBs surrounds a regular array of CLBs.
Each device has two columns of block RAM except for the
XC3S50A, which has one column. Each RAM column
consists of several 18-Kbit RAM blocks. Each block RAM is
associated with a dedicated multiplier. The DCMs are
positioned in the center with two at the top and two at the
bottom of the device. The XC3S50A has DCMs only at the
top, while the XC3S700A and XC3S1400A add two DCMs in
the middle of the two columns of block RAM and multipliers.
The Spartan-3A family features a rich network of routing that
interconnect all five functional elements, transmitting signals
among them. Each functional element has an associated
switch matrix that permits multiple connections to the
routing.
Figure 1: Spartan-3A FPGA Architecture
CLB
Block RAM
Multiplier
DCM
IOBs
IOBs
DS312-1_01_032606
IOBs
IOBs
DCM
Block RAM / Multiplier
DCM
CLBs
IOBs
O
B
s
D
C
M
Notes:
1. The XC3S700A and XC3S1400A have two additional DCMs on both the left and right sides as indicated by the
dashed lines. The XC3S50A has only two DCMs at the top and only one Block RAM/Multiplier column.
Introduction and Ordering Information
DS529-1 (v2.0) August 19, 2010 www.xilinx.com 5
Configuration
Spartan-3A FPGAs are programmed by loading
configuration data into robust, reprogrammable, static
CMOS configuration latches (CCLs) that collectively control
all functional elements and routing resources. The FPGA’s
configuration data is stored externally in a PROM or some
other non-volatile medium, either on or off the board. After
applying power, the configuration data is written to the
FPGA using any of seven different modes:
Master Serial from a Xilinx Platform Flash PROM
Serial Peripheral Interface (SPI) from an
industry-standard SPI serial Flash
Byte Peripheral Interface (BPI) Up from an
industry-standard x8 or x8/x16 parallel NOR Flash
Slave Serial, typically downloaded from a processor
Slave Parallel, typically downloaded from a processor
Boundary Scan (JTAG), typically downloaded from a
processor or system tester
Furthermore, Spartan-3A FPGAs support MultiBoot
configuration, allowing two or more FPGA configuration
bitstreams to be stored in a single SPI serial Flash or a BPI
parallel NOR Flash. The FPGA application controls which
configuration to load next and when to load it.
Additionally, each Spartan-3A FPGA contains a unique,
factory-programmed Device DNA identifier useful for
tracking purposes, anti-cloning designs, or IP protection.
I/O Capabilities
The Spartan-3A FPGA SelectIO interface supports many
popular single-ended and differential standards. Ta b l e 2
shows the number of user I/Os as well as the number of
differential I/O pairs available for each device/package
combination. Some of the user I/Os are unidirectional
input-only pins as indicated in Table 2 .
Spartan-3A FPGAs support the following single-ended
standards:
3.3V low-voltage TTL (LVTTL)
Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,
1.5V, or 1.2V
3.3V PCI at 33 MHz or 66 MHz
HSTL I, II, and III at 1.5V and 1.8V, commonly used in
memory applications
SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used
for memory applications
Spartan-3A FPGAs support the following differential
standards:
LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or
3.3V
Bus LVDS I/O at 2.5V
TMDS I/O at 3.3V
Differential HSTL and SSTL I/O
LVPECL inputs at 2.5V or 3.3V
Table 2: Available User I/Os and Differential (Diff) I/O Pairs
Package VQ100
VQG100
TQ144
TQG144
FT256
FTG256
FG320
FGG320
FG400
FGG400
FG484
FGG484
FG676
FGG676
Body Size
(mm) 14 x 14(2) 20 x 20(2) 17 x 17 19 x 19 21 x 21 23 x 23 27 x 27
Device User Diff User Diff User Diff User Diff User Diff User Diff User Diff
XC3S50A 68
(13)
60
(24)
108
(7)
50
(24)
144
(32)
64
(32) - - - - - - - -
XC3S200A 68
(13)
60
(24) - - 195
(35)
90
(50)
248
(56)
112
(64) - - - - - -
XC3S400A - - - - 195
(35)
90
(50)
251
(59)
112
(64)
311
(63)
142
(78) - - - -
XC3S700A - - - - 161
(13)
74
(36) - - 311
(63)
142
(78)
372
(84)
165
(93) - -
XC3S1400A - - - - 161
(13)
74
(36) - - - - 375
(87)
165
(93)
502
(94)
227
(131)
Notes:
1. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number
of input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins
within I/O banks that are restricted to differential inputs.
2. The footprints for the VQ/TQ packages are larger than the package body. See the Package Drawings for details.
Introduction and Ordering Information
6 www.xilinx.com DS529-1 (v2.0) August 19, 2010
Production Status
Table 3 indicates the production status of each Spartan-3A
FPGA by temperature range and speed grade. The table
also lists the earliest speed file version required for creating
a production configuration bitstream. Later versions are also
supported.
Package Marking
Figure 2 provides a top marking example for Spartan-3A
FPGAs in the quad-flat packages. Figure 3 shows the top
marking for Spartan-3A FPGAs in BGA packages. The
markings for the BGA packages are nearly identical to those
for the quad-flat packages, except that the marking is
rotated with respect to the ball A1 indicator.
The “5C” and “4I” Speed Grade/Temperature Range part
combinations may be dual marked as “5C/4I”. Devices with
a single mark are only guaranteed for the marked speed
grade and temperature range.
Table 3: Spartan-3A FPGA Production Status (Production Speed File)
Temperature Range Commercial (C) Industrial
Speed Grade Standard (–4) High-Performance (–5) Standard (–4)
Part Number
XC3S50A Production
(v1.35)
Production
(v1.35)
Production
(v1.35)
XC3S200A Production
(v1.35)
Production
(v1.35)
Production
(v1.35)
XC3S400A Production
(v1.36)
Production
(v1.36)
Production
(v1.36)
XC3S700A Production
(v1.34)
Production
(v1.35)
Production
(v1.34)
XC3S1400A Production
(v1.34)
Production
(v1.35)
Production
(v1.34)
Figure 2: Spartan-3A QFP Package Marking Example
Figure 3: Spartan-3A BGA Package Marking Example
Date Code
Mask Revision Code
Process Technology
XC3S50ATM
TQ144AGQ0625
D1234567A
4C
SPARTAN
Device Type
Package
Speed Grade
Temperature Range
Fabrication Code
Pin P1
R
R
DS529-1_03_080406
Lot Code
Lot Code
Date Code
XC3S50A
TM
4C
SPARTAN
Device Type
BGA Ball A1
Package
Speed Grade
Temperature Range
R
R
DS529-1_02_021206
FT256 AGQ0625
D1234567A
Mask Revision Code
Process Code
Fabrication Code
Introduction and Ordering Information
DS529-1 (v2.0) August 19, 2010 www.xilinx.com 7
Ordering Information
Spartan-3A FPGAs are available in both standard and Pb-free packaging options for all device/package combinations. The
Pb-free packages include a ‘G’ character in the ordering code.
Revision History
The following table shows the revision history for this document.
Device Speed Grade Package Type / Number of Pins(1) Temperature Range ( TJ
)
XC3S50A –4 Standard Performance VQ100/
VQG100
100-pin Very Thin Quad Flat Pack (VQFP) C Commercial (0°C to 85°C)
XC3S200A –5 High Performance
(Commercial only)
TQ144/
TQG144
144-pin Thin Quad Flat Pack (TQFP) I Industrial (–40°C to 100°C)
XC3S400A FT256/
FTG256
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)
XC3S700A FG320/
FGG320
320-ball Fine-Pitch Ball Grid Array (FBGA)
XC3S1400A FG400/
FGG400
400-ball Fine-Pitch Ball Grid Array (FBGA)
FG484/
FGG484
484-ball Fine-Pitch Ball Grid Array (FBGA)
FG676
FGG676
676-ball Fine-Pitch Ball Grid Array (FBGA)
Notes:
1. See Ta bl e 2 for specific device/package combinations.
2. See DS681 for the XA Automotive Spartan-3A FPGAs.
Date Version Revision
12/05/06 1.0 Initial release.
02/02/07 1.1 Promoted to Preliminary status. Updated maximum differential I/O count for XC3S50A in Ta bl e 1 .
Updated differential input-only pin counts in Ta b l e 2 .
03/16/07 1.2 Minor formatting updates.
04/23/07 1.3 Added "Production Status" section.
05/08/07 1.4 Updated XC3S400A to Production.
07/10/07 1.4.1 Minor updates.
04/15/08 1.6 Added VQ100 for XC3S50A and XC3S200A and extended FT256 to XC3S700A and XC3S1400A
Added reference to SCD 4103 for 750 Mbps performance.
05/28/08 1.7 Added reference to XA Automotive version.
03/06/09 1.8 Simplified Ordering Information. Added references to Extended Spartan-3A Family.
Removed reference to SCD 4103.
08/19/10 2.0 Updated Table 2 to clarify TQ/VQ size.
Introduction and Ordering Information
8 www.xilinx.com DS529-1 (v2.0) August 19, 2010
DS529-2 (v2.0) August 19, 2010 www.xilinx.com 9
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.
Spartan-3A FPGA Design Documentation
The functionality of the Spartan®-3A FPGA Family is
described in the following documents. The topics covered in
each guide is listed below.
DS706: Extended Spartan-3A Family Overview
www.xilinx.com/support/documentation/
data_sheets/ds706.pdf
UG331: Spartan-3 Generation FPGA User Guide
www.xilinx.com/support/documentation/
user_guides/ug331.pdf
Clocking Resources
Digital Clock Managers (DCMs)
•Block RAM
Configurable Logic Blocks (CLBs)
-Distributed RAM
-SRL16 Shift Registers
-Carry and Arithmetic Logic
I/O Resources
Embedded Multiplier Blocks
Programmable Interconnect
ISE® Software Design Tools
•IP Cores
Embedded Processing and Control Solutions
Pin Types and Package Overview
Package Drawings
Powering FPGAs
Power Management
UG332: Spartan-3 Generation Configuration User
Guide
www.xilinx.com/support/documentation/
user_guides/ug332.pdf
Configuration Overview
-Configuration Pins and Behavior
-Bitstream Sizes
Detailed Descriptions by Mode
-Master Serial Mode using Xilinx® Platform
Flash PROM
-Master SPI Mode using Commodity SPI Serial
Flash PROM
-Master BPI Mode using Commodity Parallel
NOR Flash PROM
-Slave Parallel (SelectMAP) using a Processor
-Slave Serial using a Processor
-JTAG Mode
ISE iMPACT Programming Examples
MultiBoot Reconfiguration
Design Authentication using Device DNA
For application examples, see the Spartan-3A FPGA
application notes.
Spartan-3A FPGA Application Notes
www.xilinx.com/support/documentation/
spartan-3a_application_notes.htm
For specific hardware examples, please see the Spartan-3A
FPGA Starter Kit board web page, which has links to
various design examples and the user guide.
Spartan-3A/3AN FPGA Starter Kit Board Page
www.xilinx.com/s3astarter
UG334: Spartan-3A/3AN FPGA Starter Kit User
Guide
www.xilinx.com/support/documentation/
boards_and_kits/ug334.pdf
For information on the XA Automotive version of the
Spartan-3A family, see the following data sheet.
XA Spartan-3A Automotive FPGA Family Data Sheet
www.xilinx.com/support/documentation/data_sheets/
ds681.pdf
Create a Xilinx user account and sign up to receive
automatic e-mail notification whenever this data sheet or
the associated user guides are updated.
Sign Up for Alerts
www.xilinx.com/support/answers/18683.htm
10
Spartan-3A FPGA Family:
Functional Description
DS529-2 (v2.0) August 19, 2010 0Product Specification
Spartan-3A FPGA Family: Functional Description
10 www.xilinx.com DS529-2 (v2.0) August 19, 2010
Related Product Families
The Spartan-3AN nonvolatile FPGA family is architecturally
identical to the Spartan-3A FPGA family, except that it has
in-system flash memory and is offered in select
pin-compatible package options.
DS557: Spartan-3AN Family Data Sheet
www.xilinx.com/support/documentation/
data_sheets/ds557.pdf
The compatible Spartan-3A DSP FPGA family replaces the
18-bit multiplier with the DSP48A block, while also
increasing the block RAM capability and quantity. The two
members of the Spartan-3A DSP FPGA family extend the
Spartan-3A density range up to 37,440 and 53,712 logic
cells.
DS610: Spartan-3A DSP FPGA Family Data Sheet
www.xilinx.com/support/documentation/
data_sheets/ds610.pdf
UG431: XtremeDSP DSP48A for Spartan-3A DSP
FPGAs
www.xilinx.com/support/documentation/
user_guides/ug431.pdf
Revision History
The following table shows the revision history for this document.
Date Version Revision
12/05/06 1.0 Initial release.
02/02/07 1.1 Promoted to Preliminary status.
03/16/07 1.2 Added cross-reference to nonvolatile Spartan-3AN FPGA family.
04/23/07 1.3 Added cross-reference to compatible Spartan-3A DSP family.
07/10/07 1.4 Updated Starter Kit reference to new UG334.
04/15/08 1.6 Updated trademarks.
05/28/08 1.7 Added reference to XA Automotive version.
03/06/09 1.8 Added link to DS706 on Extended Spartan-3A family.
08/19/10 2.0 Updated link to sign up for Alerts.
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 11
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.
DC Electrical Characteristics
In this section, specifications may be designated as
Advance, Preliminary, or Production. These terms are
defined as follows:
Advance: Initial estimates are based on simulation, early
characterization, and/or extrapolation from the
characteristics of other families. Values are subject to
change. Use as estimates, not for production.
Preliminary: Based on characterization. Further changes
are not expected.
Production: These specifications are approved once the
silicon has been characterized over numerous production
lots. Parameter values are considered stable with no future
changes expected.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan®-3A devices. AC and DC characteristics
are specified using the same numbers for both
commercial and industrial grades.
Absolute Maximum Ratings
Stresses beyond those listed under Ta bl e 4 : Absolute
Maximum Ratings may cause permanent damage to the
device. These are stress ratings only; functional operation
of the device at these or any other conditions beyond those
listed under the Recommended Operating Conditions is not
implied. Exposure to absolute maximum conditions for
extended periods of time adversely affects device reliability.
64
Spartan-3A FPGA Family:
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 0Product Specification
Table 4: Absolute Maximum Ratings
Symbol Description Conditions Min Max Units
VCCINT Internal supply voltage –0.5 1.32 V
VCCAUX Auxiliary supply voltage –0.5 3.75 V
VCCO Output driver supply voltage –0.5 3.75 V
VREF Input reference voltage –0.5 VCCO
+ 0.5 V
VIN
Voltage applied to all User I/O pins and
dual-purpose pins
Driver in a high-impedance state –0.95 4.6 V
Voltage applied to all Dedicated pins –0.5 4.6 V
IIK Input clamp current per I/O pin –0.5V < VIN < (VCCO + 0.5V) (1) –±100mA
VESD Electrostatic Discharge Voltage
Human body model ±2000 V
Charged device model –±500V
Machine model –±200V
TJJunction temperature –125°C
TSTG Storage temperature –65 150 °C
Notes:
1. Upper clamp applies only when using PCI IOSTANDARDs.
2. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow
Guidelines for Pb-Free Packages.
DC and Switching Characteristics
12 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Power Supply Specifications
Table 5: Supply Voltage Thresholds for Power-On Reset
Symbol Description Min Max Units
VCCINTT Threshold for the VCCINT supply 0.4 1.0 V
VCCAUXT Threshold for the VCCAUX supply 1.0 2.0 V
VCCO2T Threshold for the VCCO Bank 2 supply 1.0 2.0 V
Notes:
1. VCCINT
, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash,
SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration
source. Apply VCCINT last for lowest overall power consumption (see UG331 chapter “Powering Spartan-3 Generation FPGAs” for more
information).
2. To ensure successful power-on, VCCINT
, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with
no dips at any point.
Table 6: Supply Voltage Ramp Rate
Symbol Description Min Max Units
VCCINTR Ramp rate from GND to valid VCCINT supply level 0.2 100 ms
VCCAUXR Ramp rate from GND to valid VCCAUX supply level 0.2 100 ms
VCCO2R Ramp rate from GND to valid VCCO Bank 2 supply level 0.2 100 ms
Notes:
1. VCCINT
, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash,
SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration
source. Apply VCCINT last for lowest overall power consumption (see UG331 chapter "Powering Spartan-3 Generation FPGAs" for more
information).
2. To ensure successful power-on, VCCINT
, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with
no dips at any point.
Table 7: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM
Data
Symbol Description Min Units
VDRINT VCCINT level required to retain CMOS Configuration Latch (CCL) and RAM data 1.0 V
VDRAUX VCCAUX level required to retain CMOS Configuration Latch (CCL) and RAM data 2.0 V
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 13
General Recommended Operating Conditions
Table 8: General Recommended Operating Conditions
Symbol Description Min Nominal Max Units
TJ Junction temperature Commercial 0 –85°C
Industrial –40 –100°C
VCCINT Internal supply voltage 1.14 1.20 1.26 V
VCCO
(1) Output driver supply voltage 1.10 –3.60V
VCCAUX Auxiliary supply voltage(2) VCCAUX = 2.5 2.25 2.50 2.75 V
VCCAUX = 3.3 3.00 3.30 3.60 V
VIN Input voltage(3)
PCI IOSTANDARD –0.5 –V
CCO+0.5 V
All other
IOSTANDARDs
IP or IO_# –0.5 –4.10V
IO_Lxxy_# (4) –0.5 –4.10V
TIN Input signal transition time(5) 500 ns
Notes:
1. This VCCO range spans the lowest and highest operating voltages for all supported I/O standards. Table 11 lists the recommended VCCO
range specific to each of the single-ended I/O standards, and Ta b l e 1 3 lists that specific to the differential standards.
2. Define VCCAUX selection using CONFIG VCCAUX constraint.
3. See XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.
4. For single-ended signals that are placed on a differential-capable I/O, VIN of –0.2V to –0.5V is supported but can cause increased leakage
between the two pins. See Parasitic Leakage in UG331, Spartan-3 Generation FPGA User Guide .
5. Measured between 10% and 90% VCCO. Follow Signal Integrity recommendations.
DC and Switching Characteristics
14 www.xilinx.com DS529-3 (v2.0) August 19, 2010
General DC Characteristics for I/O Pins
Table 9: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (1)
Symbol Description Test Conditions Min Typ Max Units
IL(2) Leakage current at User I/O,
input-only, dual-purpose, and
dedicated pins, FPGA powered
Driver is in a high-impedance state,
VIN = 0V or VCCO max, sample-tested
–10 +10 µA
IHS Leakage current on pins during
hot socketing, FPGA unpowered
All pins except INIT_B, PROG_B, DONE, and JTAG
pins when PUDC_B = 1.
–10 –+10µA
INIT_B, PROG_B, DONE, and JTAG pins or other
pins when PUDC_B = 0. Add IHS + IRPU µA
IRPU(3) Current through pull-up resistor
at User I/O, dual-purpose,
input-only, and dedicated pins.
Dedicated pins are powered by
VCCAUX.
VIN = GND VCCO or VCCAUX =
3.0V to 3.6V
–151 –315 710 µA
VCCO or VCCAUX =
2.3V to 2.7V
–82 –182 –437 µA
VCCO = 1.7V to 1.9V –36 –88 –226 µA
VCCO = 1.4V to 1.6V –22 –56 –148 µA
VCCO = 1.14V to 1.26V –11 –31 83 µA
RPU(3) Equivalent pull-up resistor value
at User I/O, dual-purpose,
input-only, and dedicated pins
(based on IRPU per Note 3)
VIN = GND VCCO = 3.0V to 3.6V 5.1 11.4 23.9 kΩ
VCCO = 2.3V to 2.7V 6.2 14.8 33.1 kΩ
VCCO = 1.7V to 1.9V 8.4 21.6 52.6 kΩ
VCCO = 1.4V to 1.6V 10.8 28.4 74.0 kΩ
VCCO = 1.14V to 1.26V 15.3 41.1 119.4 kΩ
IRPD(3) Current through pull-down
resistor at User I/O,
dual-purpose, input-only, and
dedicated pins. Dedicated pins
are powered by VCCAUX.
VIN = VCCO VCCAUX = 3.0V to 3.6V 167 346 659 µA
VCCAUX = 2.25V to 2.75V
100 225 457 µA
RPD(3) Equivalent pull-down resistor
value at User I/O, dual-purpose,
input-only, and dedicated pins
(based on IRPD per Note 3)
VCCAUX = 3.0V to 3.6V VIN = 3.0V to 3.6V 5.5 10.4 20.8 kΩ
VIN = 2.3V to 2.7V 4.1 7.8 15.7 kΩ
VIN = 1.7V to 1.9V 3.0 5.7 11.1 kΩ
VIN = 1.4V to 1.6V 2.7 5.1 9.6 kΩ
VIN = 1.14V to 1.26V 2.4 4.5 8.1 kΩ
VCCAUX = 2.25V to 2.75V VIN = 3.0V to 3.6V 7.9 16.0 35.0 kΩ
VIN = 2.3V to 2.7V 5.9 12.0 26.3 kΩ
VIN = 1.7V to 1.9V 4.2 8.5 18.6 kΩ
VIN = 1.4V to 1.6V 3.6 7.2 15.7 kΩ
VIN = 1.14V to 1.26V 3.0 6.0 12.5 kΩ
IREF VREF current per pin All VCCO levels –10 +10 µA
CIN Input capacitance –10pF
RDT Resistance of optional differential
termination circuit within a
differential I/O pair. Not available
on Input-only pairs.
VCCO = 3.3V ± 10% LVDS_33,
MINI_LVDS_33,
RSDS_33
90 100 115 Ω
VCCO = 2.5V ± 10% LVDS_25,
MINI_LVDS_25,
RSDS_25
90 110 Ω
Notes:
1. The numbers in this table are based on the conditions set forth in Tabl e 8.
2. For single-ended signals that are placed on a differential-capable I/O, VIN of –0.2V to –0.5V is supported but can cause increased leakage
between the two pins. See "Parasitic Leakage" in UG331, Spartan-3 Generation FPGA User Guide .
3. This parameter is based on characterization. The pull-up resistance RPU = VCCO / IRPU. The pull-down resistance RPD = VIN / IRPD.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 15
Quiescent Current Requirements
Table 10: Quiescent Supply Current Characteristics
Symbol Description Device Typical(2) Commercial
Maximum(2) Industrial
Maximum(2) Units
ICCINTQ Quiescent VCCINT supply current XC3S50A 2 20 30 mA
XC3S200A 7 50 70 mA
XC3S400A 10 85 125 mA
XC3S700A 13 120 185 mA
XC3S1400A 24 220 310 mA
ICCOQ Quiescent VCCO supply current XC3S50A 0.2 2 3 mA
XC3S200A 0.2 2 3 mA
XC3S400A 0.3 3 4 mA
XC3S700A 0.3 3 4 mA
XC3S1400A 0.3 3 4 mA
ICCAUXQ Quiescent VCCAUX supply current XC3S50A 3 8 10 mA
XC3S200A 5 12 15 mA
XC3S400A 5 18 24 mA
XC3S700A 6 28 34 mA
XC3S1400A 10 50 58 mA
Notes:
1. The numbers in this table are based on the conditions set forth in Tabl e 8.
2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads
disabled. Typical values are characterized using typical devices at room temperature (TJ of 25°C at VCCINT = 1.2V, VCCO = 3.3V, and VCCAUX
= 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage
limits with VCCINT = 1.26V, VCCO = 3.6V, and VCCAUX = 3.6V. The FPGA is programmed with a “blank” configuration data file (that is, a design
with no functional elements instantiated). For conditions other than those described above (for example, a design including functional
elements), measured quiescent current levels will be different than the values in the table.
3. For more accurate estimates for a specific design, use the Xilinx XPower tools. There are two recommended ways to estimate the total power
consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3A FPGA XPower Estimator provides quick, approximate,
typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as
well as more accurate typical estimates.
4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.
5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode
typically saves 40% total power consumption compared to quiescent current.
DC and Switching Characteristics
16 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Single-Ended I/O Standards
Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards
IOSTANDARD
Attribute
VCCO for Drivers(2) VREF VIL VIH
Min (V) Nom (V) Max (V) Min (V) Nom (V) Max (V) Max (V) Min (V)
LVTTL 3.0 3.3 3.6
VREF is not used for
these I/O standards
0.8 2.0
LV C M O S 3 3(4) 3.0 3.3 3.6 0.8 2.0
LV C M O S 2 5(4,5) 2.3 2.5 2.7 0.7 1.7
LVCMOS18 1.65 1.8 1.95 0.4 0.8
LVCMOS15 1.4 1.5 1.6 0.4 0.8
LVCMOS12 1.1 1.2 1.3 0.4 0.7
PCI33_3(6) 3.0 3.3 3.6 0.3 VCCO 0.5 VCCO
PCI66_3(6) 3.0 3.3 3.6 0.3 VCCO 0.5 VCCO
HSTL_I 1.4 1.5 1.6 0.68 0.75 0.9 VREF – 0.1 VREF + 0.1
HSTL_III 1.4 1.5 1.6 0.9 - VREF – 0.1 VREF + 0.1
HSTL_I_18 1.7 1.8 1.9 0.8 0.9 1.1 VREF – 0.1 VREF + 0.1
HSTL_II_18 1.7 1.8 1.9 0.9 VREF – 0.1 VREF + 0.1
HSTL_III_18 1.7 1.8 1.9 1.1 VREF – 0.1 VREF + 0.1
SSTL18_I 1.7 1.8 1.9 0.833 0.900 0.969 VREF – 0.125 VREF + 0.125
SSTL18_II 1.7 1.8 1.9 0.833 0.900 0.969 VREF – 0.125 VREF + 0.125
SSTL2_I 2.3 2.5 2.7 1.13 1.25 1.38 VREF0.150 VREF + 0.150
SSTL2_II 2.3 2.5 2.7 1.13 1.25 1.38 VREF – 0.150 VREF + 0.150
SSTL3_I 3.0 3.3 3.6 1.3 1.5 1.7 VREF – 0.2 VREF + 0.2
SSTL3_II 3.0 3.3 3.6 1.3 1.5 1.7 VREF – 0.2 VREF + 0.2
Notes:
1. Descriptions of the symbols used in this table are as follows:
VCCO – the supply voltage for output drivers
VREFthe reference voltage for setting the input switching threshold
VIL – the input voltage that indicates a Low logic level
VIH – the input voltage that indicates a High logic level
2. In general, the VCCO rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when VCCAUX = 3.3V range
and for PCI I/O standards.
3. For device operation, the maximum signal voltage (VIH max) can be as high as VIN max. See Ta ble 8.
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.
5. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail and use the LVCMOS25 or
LVCMOS33 standard depending on VCCAUX. The dual-purpose configuration pins use the LVCMOS standard before the User mode. When
using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the VCCO lines of Banks 0, 1, and 2 at power-on as well as
throughout configuration.
6. For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. The PCIX
IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 17
Table 12: DC Characteristics of User I/Os Using
Single-Ended Standards
IOSTANDARD
Attribute
Test
Conditions
Logic Level
Characteristics
IOL
(mA)
IOH
(mA)
VOL
Max (V)
VOH
Min (V)
LVTTL(3) 222 0.4 2.4
444
666
888
12 12 –12
16 16 –16
24 24 –24
LV C M O S 33 (3) 222 0.4 V
CCO 0.4
444
666
888
12 12 –12
16 16 –16
24(4) 24 –24
LV C M O S 25 (3) 222 0.4 V
CCO 0.4
444
666
888
12 12 –12
16(4) 16 –16
24(4) 24 –24
LV C M O S 18 (3) 222 0.4 V
CCO 0.4
444
666
888
12(4) 12 –12
16(4) 16 –16
LV C M O S 15 (3) 222 0.4 V
CCO 0.4
444
666
8(4) 8–8
12(4) 12 –12
LV C M O S 12 (3) 222 0.4 V
CCO 0.4
4(4) 4–4
6(4) 6–6
PCI33_3(5) 1.5 –0.5 10% VCCO 90% VCCO
PCI66_3(5) 1.5 –0.5 10% VCCO 90% VCCO
HSTL_I(4) 8–8 0.4 V
CCO - 0.4
HSTL_III(4) 24 –8 0.4 VCCO - 0.4
HSTL_I_18 8 –8 0.4 VCCO - 0.4
HSTL_II_18(4) 16 –16 0.4 VCCO - 0.4
HSTL_III_18 24 –8 0.4 VCCO - 0.4
SSTL18_I 6.7 –6.7 VTT – 0.475 VTT + 0.475
SSTL18_II(4) 13.4 –13.4 VTT – 0.603 VTT + 0.603
SSTL2_I 8.1 –8.1 VTT – 0.61 VTT + 0.61
SSTL2_II(4) 16.2 –16.2 VTT – 0.81 VTT + 0.81
SSTL3_I 8 –8 VTT – 0.6 VTT + 0.6
SSTL3_II 16 –16 VTT – 0.8 VTT + 0.8
Notes:
1. The numbers in this table are based on the conditions set forth in
Ta b l e 8 and Table 11.
2. Descriptions of the symbols used in this table are as follows:
IOL the output current condition under which VOL is tested
IOH the output current condition under which VOH is tested
VOL the output voltage that indicates a Low logic level
VOH the output voltage that indicates a High logic level
VCCO the supply voltage for output drivers
VTT the voltage applied to a resistor termination
3. For the LVCMOS and LVTTL standards: the same VOL and VOH
limits apply for the Fast, Slow, and QUIETIO slew attributes.
4. These higher-drive output standards are supported only on
FPGA banks 1 and 3. Inputs are unrestricted. See the chapter
"Using I/O Resources" in UG331.
5. Tested according to the relevant PCI specifications. For
information on PCI IP solutions, see www.xilinx.com/pci. The
PCIX IOSTANDARD is available and has equivalent
characteristics but no PCI-X IP is supported.
Table 12: DC Characteristics of User I/Os Using
Single-Ended Standards(Continued)
IOSTANDARD
Attribute
Test
Conditions
Logic Level
Characteristics
IOL
(mA)
IOH
(mA)
VOL
Max (V)
VOH
Min (V)
DC and Switching Characteristics
18 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Differential I/O Standards
Differential Input Pairs
Figure 4: Differential Input Voltages
Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards
IOSTANDARD Attribute
VCCO for Drivers(1) VID VICM(2)
Min (V) Nom (V) Max (V) Min (mV) Nom (mV) Max (mV) Min (V) Nom (V) Max (V)
LVD S_25(3) 2.25 2.5 2.75 100 350 600 0.3 1.25 2.35
LVD S_33(3) 3.0 3.3 3.6 100 350 600 0.3 1.25 2.35
BLVDS_25(4) 2.25 2.5 2.75 100 300 –0.31.32.35
MINI_LVDS_25(3) 2.25 2.5 2.75 200 600 0.3 1.2 1.95
MINI_LVDS_33(3) 3.0 3.3 3.6 200 600 0.3 1.2 1.95
LVPECL_25(5) Inputs Only 100 800 1000 0.3 1.2 1.95
LVPECL_33(5) Inputs Only 100 800 1000 0.3 1.2 2.8(6)
RSDS_25(3) 2.25 2.5 2.75 100 200 0.3 1.2 1.5
RSDS_33(3) 3.0 3.3 3.6 100 200 0.3 1.2 1.5
TMDS_33(3, 4, 7) 3.14 3.3 3.47 150 –12002.7 –3.23
PPDS_25(3) 2.25 2.5 2.75 100 –4000.2–2.3
PPDS_33(3) 3.0 3.3 3.6 100 –4000.2–2.3
DIFF_HSTL_I_18 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_II_18(8) 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_III_18 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_I 1.4 1.5 1.6 100 –0.68 0.9
DIFF_HSTL_III 1.4 1.5 1.6 100 –0.9
DIFF_SSTL18_I 1.7 1.8 1.9 100 –0.7–1.1
DIFF_SSTL18_II(8) 1.7 1.8 1.9 100 –0.7–1.1
DIFF_SSTL2_I 2.3 2.5 2.7 100 –1.0–1.5
DIFF_SSTL2_II(8) 2.3 2.5 2.7 100 –1.0–1.5
DIFF_SSTL3_I 3.0 3.3 3.6 100 –1.1–1.9
DIFF_SSTL3_II 3.0 3.3 3.6 100 –1.1–1.9
Notes:
1. The VCCO rails supply only differential output drivers, not input circuits.
2. VICM must be less than VCCAUX.
3. These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.
4. See "External Termination Requirements for Differential I/O," page 20.
5. LVPECL is supported on inputs only, not outputs. LVPECL_33 requires VCCAUX=3.3V ± 10%.
6. LVPECL_33 maximum VICM = the lower of 2.8V or VCCAUX(VID / 2)
7. Requires VCCAUX = 3.3V ± 10% for inputs. (VCCAUX – 300 mV) VICM (VCCAUX – 37 mV)
8. These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.
9. All standards except for LVPECL and TMDS can have VCCAUX at either 2.5V or 3.3V. Define your VCCAUX level using the CONFIG VCCAUX constraint.
DS529-3_10_012907
V
INN
V
INP
GND level
50%
VICM
V
ICM
= Input common mode voltage =
VID
V
INP
Internal
Logic
Differential
I/O Pair Pins
V
INN
N
P
2
V
INP
+ V
INN
V
ID
= Differential input voltage = V
INP
- V
INN
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 19
Differential Output Pairs
Figure 5: Differential Output Voltages
Table 14: DC Characteristics of User I/Os Using Differential Signal Standards
IOSTANDARD Attribute
VOD VOCM VOH VOL
Min (mV)
Typ
(mV) Max (mV) Min (V) Typ (V) Max (V) Min (V) Max (V)
LVDS_25 247 350 454 1.125 –1.375
LVDS_33 247 350 454 1.125 –1.375
BLVDS_25 240 350 460 –1.30
MINI_LVDS_25 300 600 1.0 –1.4
MINI_LVDS_33 300 600 1.0 –1.4
RSDS_25 100 400 1.0 –1.4
RSDS_33 100 400 1.0 –1.4
TMDS_33 400 –800V
CCO – 0.405 –V
CCO – 0.190
PPDS_25 100 400 0.5 0.8 1.4
PPDS_33 100 400 0.5 0.8 1.4
DIFF_HSTL_I_18 –V
CCO – 0.4 0.4
DIFF_HSTL_II_18 –V
CCO – 0.4 0.4
DIFF_HSTL_III_18 –V
CCO – 0.4 0.4
DIFF_HSTL_I VCCO – 0.4 0.4
DIFF_HSTL_III VCCO – 0.4 0.4
DIFF_SSTL18_I –V
TT + 0.475 VTT – 0.475
DIFF_SSTL18_II –V
TT + 0.603 VTT – 0.603
DIFF_SSTL2_I –V
TT + 0.61 VTT0.61
DIFF_SSTL2_II –V
TT + 0.81 VTT0.81
DIFF_SSTL3_I –V
TT + 0.6 VTT – 0.6
DIFF_SSTL3_II –V
TT + 0.8 VTT – 0.8
Notes:
1. The numbers in this table are based on the conditions set forth in Tabl e 8 and Ta ble 1 3.
2. See "External Termination Requirements for Differential I/O," page 20.
3. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins of the
differential signal pair.
4. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25,
MINI_LVDS_25, PPDS_25 when VCCO=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when VCCO = 3.3V
VOUTN
VOUTP
GND level
50%
VOCM
V
OCM
VOD
V
OL
VOH
VOUTP
Internal
Logic VOUTN
N
P
= Output common mode voltage = 2
VOUTP +V
OUTN
V
OD = Output differential voltage =
V
OH = Output voltage indicating a High logic level
V
OL = Output voltage indicating a Low logic level
VOUTP -V
OUTN
Differential
I/O Pair Pins
DS529-3_11_012907
DC and Switching Characteristics
20 www.xilinx.com DS529-3 (v2.0) August 19, 2010
External Termination Requirements for Differential I/O
LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
BLVDS_25 I/O Standard
TMDS_33 I/O Standard
Device DNA Read Endurance
Figure 6: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
Figure 7: External Output and Input Termination Resistors for BLVDS_25 I/O Standard
Figure 8: External Input Resistors Required for TMDS_33 I/O Standard
Table 15: Device DNA Identifier Memory Characteristics
Symbol Description Minimum Units
DNA_CYCLES Number of READ operations or JTAG ISC_DNA read operations. Unaffected by
HOLD or SHIFT operations. 30,000,000 Read
cycles
Z0 = 50Ω
Z0 = 50Ω100Ω
DS529-3_09_020107
a) Input-only differential pairs or pairs not using DIFF_TERM=Yes constraint
Z0 = 50Ω
Z0 = 50Ω
b) Differential pairs using DIFF_TERM=Yes constraint
DIFF_TERM=No
DIFF_TERM=Yes
LVDS_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
LVDS_33, LVDS_25,
MINI_LVDS_33,
MINI_LVDS_25,
RSDS_33, RSDS_25,
PPDS_33, PPDS_25
CAT16-PT4F4
Part Number
/ th of Bourns
14
VCCO = 3.3V
LVDS_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
VCCO = 2.5V
LVDS_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
VCCO = 3.3V
LVDS_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
VCCO = 2.5V
No VCCO Restrictions
R
LVDS_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
VCCO = 3.3V
LVDS_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
VCCO = 2.5V
DT
Bank 0
Bank 2
Bank 0
Bank 2
Bank 3
Bank 1
Bank 0 and 2 Any Bank
Z
0 = 50Ω
Z0 = 50Ω
140Ω
165Ω
165Ω
100Ω
VCCO = 2.5V No VCCO Requirement
DS529-3_07_020107
BLVDS_25 BLVDS_25
CAT16-LV4F12
Part Number
/ th of Bourns
14
CAT16-PT4F4
Part Number
/ th of Bourns
14
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
50Ω
VCCO = 3.3VVCCAUX = 3.3V
DS529-3_08_020107
DVI/HDMI cable
50Ω
3.3V
TMDS_33 TMDS_33
Bank 0
Bank 2
Bank 0 and 2
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 21
Switching Characteristics
All Spartan-3A FPGAs ship in two speed grades: –4 and the
higher performance –5. Switching characteristics in this
document are designated as Advance, Preliminary, or
Production, as shown in Table 16. Each category is defined
as follows:
Advance: These specifications are based on simulations
only and are typically available soon after establishing
FPGA specifications. Although speed grades with this
designation are considered relatively stable and
conservative, some under-reporting might still occur.
Preliminary: These specifications are based on complete
early silicon characterization. Devices and speed grades
with this designation are intended to give a better indication
of the expected performance of production silicon. The
probability of under-reporting preliminary delays is greatly
reduced compared to Advance data.
Production: These specifications are approved once
enough production silicon of a particular device has been
characterized to provide full correlation between speed files
and devices over numerous production lots. There is no
under-reporting of delays, and customers receive formal
notification of any subsequent changes. Typically, the
slowest speed grades transition to Production before faster
speed grades.
Software Version Requirements
Production-quality systems must use FPGA designs
compiled using a speed file designated as PRODUCTION
status. FPGA designs using a less mature speed file
designation should only be used during system prototyping
or pre-production qualification. FPGA designs with speed
files designated as Advance or Preliminary should not be
used in a production-quality system.
Whenever a speed file designation changes, as a device
matures toward Production status, rerun the latest Xilinx®
ISE® software on the FPGA design to ensure that the FPGA
design incorporates the latest timing information and
software updates.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan-3A devices. AC and DC characteristics
are specified using the same numbers for both
commercial and industrial grades.
To create a Xilinx user account and sign up for automatic
E-mail notification whenever this data sheet is updated:
Sign Up for Alerts
www.xilinx.com/support/answers/18683.htm
Timing parameters and their representative values are
selected for inclusion below either because they are
important as general design requirements or they indicate
fundamental device performance characteristics. The
Spartan-3A FPGA speed files (v1.41), part of the Xilinx
Development Software, are the original source for many but
not all of the values. The speed grade designations for these
files are shown in Ta b l e 1 6. For more complete, more
precise, and worst-case data, use the values reported by the
Xilinx static timing analyzer (TRACE in the Xilinx
development software) and back-annotated to the
simulation netlist.
Table 17 provides the recent history of the Spartan-3A
FPGA speed files.
Table 16: Spartan-3A v1.41 Speed Grade Designation
Device Advance Preliminary Production
XC3S50A -4, -5
XC3S200A -4, -5
XC3S400A -4, -5
XC3S700A -4, -5
XC3S1400A -4, -5
Table 17: Spartan-3A Speed File Version History
Version
ISE
Release Description
1.41 ISE 10.1.03 Updated Automotive output delays
1.40 ISE 10.1.02 Updated Automotive input delays.
1.39 ISE 10.1.01 Added Automotive parts.
1.38 ISE 9.2.03i Added Absolute Minimum values.
1.37 ISE 9.2.01i
Updated pin-to-pin setup and hold
times (Table 19), TMDS output
adjustment (Table 26) multiplier
setup/hold times (Table 34), and block
RAM clock width (Table 35).
1.36
ISE 9.2i;
previously
available via
Answer
Record
AR24992
XC3S400A, all speed grades and all
temperature grades, upgraded to
Production
1.35
Answer
Record
AR24992
XC3S50A, XC3S200A, XC3S700A,
XC3S1400A, all speed grades and all
temperature grades, upgraded to
Production.
1.34 ISE 9.1.03i
XC3S700A and XC3S1400A -4 speed
grade upgraded to Production. Updated
pin-to-pin timing numbers.
DC and Switching Characteristics
22 www.xilinx.com DS529-3 (v2.0) August 19, 2010
I/O Timing
Pin-to-Pin Clock-to-Output Times
Table 18: Pin-to-Pin Clock-to-Output Times for the IOB Output Path
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Max Max
Clock-to-Output Times
TICKOFDCM When reading from the Output
Flip-Flop (OFF), the time from the
active transition on the Global
Clock pin to data appearing at the
Output pin. The DCM is in use.
LV C M O S 25 (2), 12mA
output drive, Fast slew
rate, with DCM(3)
XC3S50A 3.18 3.42 ns
XC3S200A 3.21 3.27 ns
XC3S400A 2.97 3.33 ns
XC3S700A 3.39 3.50 ns
XC3S1400A 3.51 3.99 ns
TICKOF When reading from OFF, the time
from the active transition on the
Global Clock pin to data appearing
at the Output pin. The DCM is not
in use.
LV C M O S 25 (2), 12mA
output drive, Fast slew
rate, without DCM
XC3S50A 4.59 5.02 ns
XC3S200A 4.88 5.24 ns
XC3S400A 4.68 5.12 ns
XC3S700A 4.97 5.34 ns
XC3S1400A 5.06 5.69 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Ta ble 27 and are based on the operating conditions set forth in
Tabl e 8 and Table 11.
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate
Input adjustment from Table 23. If the latter is true, add the appropriate Output adjustment from Ta bl e 26 .
3. DCM output jitter is included in all measurements.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 23
Pin-to-Pin Setup and Hold Times
Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Min Min
Setup Times
TPSDCM When writing to the Input
Flip-Flop (IFF), the time from the
setup of data at the Input pin to
the active transition at a Global
Clock pin. The DCM is in use. No
Input Delay is programmed.
LV C M O S 2 5(2),
IFD_DELAY_VALUE = 0,
with DCM(4)
XC3S50A 2.45 2.68 ns
XC3S200A 2.59 2.84 ns
XC3S400A 2.38 2.68 ns
XC3S700A 2.38 2.57 ns
XC3S1400A 1.91 2.17 ns
TPSFD When writing to IFF, the time from
the setup of data at the Input pin
to an active transition at the
Global Clock pin. The DCM is not
in use. The Input Delay is
programmed.
LV C M O S 2 5(2),
IFD_DELAY_VALUE = 5,
without DCM
XC3S50A 2.55 2.76 ns
XC3S200A 2.32 2.76 ns
XC3S400A 2.21 2.60 ns
XC3S700A 2.28 2.63 ns
XC3S1400A 2.33 2.41 ns
Hold Times
TPHDCM When writing to IFF, the time from
the active transition at the Global
Clock pin to the point when data
must be held at the Input pin. The
DCM is in use. No Input Delay is
programmed.
LV C M O S 2 5(3),
IFD_DELAY_VALUE = 0,
with DCM(4)
XC3S50A -0.36 -0.36 ns
XC3S200A -0.52 -0.52 ns
XC3S400A -0.33 -0.29 ns
XC3S700A -0.17 -0.12 ns
XC3S1400A -0.07 0.00 ns
TPHFD When writing to IFF, the time from
the active transition at the Global
Clock pin to the point when data
must be held at the Input pin. The
DCM is not in use. The Input
Delay is programmed.
LV C M O S 2 5(3),
IFD_DELAY_VALUE = 5,
without DCM
XC3S50A -0.63 -0.58 ns
XC3S200A -0.56 -0.56 ns
XC3S400A -0.42 -0.42 ns
XC3S700A -0.80 -0.75 ns
XC3S1400A -0.69 -0.69 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Ta ble 27 and are based on the operating conditions set forth in
Tabl e 8 and Table 11.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 23. If this is true of the data Input, add the
appropriate Input adjustment from the same table.
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 2 3 . If this is true of the data Input, subtract the
appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active
edge.
4. DCM output jitter is included in all measurements.
DC and Switching Characteristics
24 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Input Setup and Hold Times
Table 20: Setup and Hold Times for the IOB Input Path
Symbol Description Conditions
IFD_
DELAY_
VALUE Device
Speed Grade
Units
-5 -4
Min Min
Setup Times
TIOPICK Time from the setup of data at the
Input pin to the active transition at the
ICLK input of the Input Flip-Flop (IFF).
No Input Delay is programmed.
LV C M O S 2 5(2) 0 XC3S50A 1.56 1.58 ns
XC3S200A 1.71 1.81 ns
XC3S400A 1.30 1.51 ns
XC3S700A 1.34 1.51 ns
XC3S1400A 1.36 1.74 ns
TIOPICKD Time from the setup of data at the
Input pin to the active transition at the
ICLK input of the Input Flip-Flop (IFF).
The Input Delay is programmed.
LV C M O S 2 5(2) 1 XC3S50A 2.16 2.18 ns
23.103.12
ns
3 3.51 3.76 ns
4 4.04 4.32 ns
5 3.88 4.24 ns
6 4.72 5.09 ns
75.475.94
ns
8 5.97 6.52 ns
1 XC3S200A 2.05 2.20 ns
22.722.93
ns
33.383.78
ns
43.884.37
ns
53.694.20
ns
64.565.23
ns
75.346.11
ns
85.856.71
ns
1 XC3S400A 1.79 2.02 ns
22.432.67
ns
33.023.43
ns
43.493.96
ns
53.413.95
ns
64.204.81
ns
74.965.66
ns
85.446.19
ns
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 25
TIOPICKD Time from the setup of data at the
Input pin to the active transition at the
ICLK input of the Input Flip-Flop (IFF).
The Input Delay is programmed.
LV C M O S 2 5(2) 1 XC3S700A 1.82 1.95 ns
22.622.83
ns
33.323.72
ns
43.834.31
ns
53.694.14
ns
64.605.19
ns
75.396.10
ns
85.926.73
ns
1 XC3S1400A 1.79 2.17 ns
22.552.92
ns
33.383.76
ns
43.754.32
ns
53.814.19
ns
64.395.09
ns
75.165.98
ns
85.696.57
ns
Hold Times
TIOICKP Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF)
to the point where data must be held
at the Input pin. No Input Delay is
programmed.
LV C M O S 2 5(3) 0 XC3S50A –0.66 –0.64 ns
XC3S200A –0.85 –0.65 ns
XC3S400A –0.42 –0.42 ns
XC3S700A –0.81 –0.67 ns
XC3S1400A –0.71 –0.71 ns
TIOICKPD Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF)
to the point where data must be held
at the Input pin. The Input Delay is
programmed.
LV C M O S 2 5(3) 1 XC3S50A –0.88 –0.88 ns
2 –1.33 –1.33 ns
3 –2.05 –2.05 ns
4 –2.43 –2.43 ns
5 –2.34 –2.34 ns
6 –2.81 –2.81 ns
7 –3.03 –3.03 ns
8 –3.83 –3.57 ns
1 XC3S200A –1.51 –1.51 ns
2 –2.09 –2.09 ns
3 –2.40 –2.40 ns
4 –2.68 –2.68 ns
5 –2.56 –2.56 ns
6 –2.99 –2.99 ns
7 –3.29 –3.29 ns
8 –3.61 –3.61 ns
Table 20: Setup and Hold Times for the IOB Input Path(Continued)
Symbol Description Conditions
IFD_
DELAY_
VALUE Device
Speed Grade
Units
-5 -4
Min Min
DC and Switching Characteristics
26 www.xilinx.com DS529-3 (v2.0) August 19, 2010
TIOICKPD Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF)
to the point where data must be held
at the Input pin. The Input Delay is
programmed.
LV C M O S 2 5(3) 1 XC3S400A –1.12 –1.12 ns
2 –1.70 –1.70 ns
3 –2.08 –2.08 ns
4 –2.38 –2.38 ns
5 –2.23 –2.23 ns
6 –2.69 –2.69 ns
7 –3.08 –3.08 ns
8 –3.35 –3.35 ns
1 XC3S700A –1.67 –1.67 ns
2 –2.27 –2.27 ns
3 –2.59 –2.59 ns
4 –2.92 –2.92 ns
5 –2.89 –2.89 ns
6 –3.22 –3.22 ns
7 –3.52 –3.52 ns
8 –3.81 –3.81 ns
1 XC3S1400A –1.60 –1.60 ns
2 –2.06 –2.06 ns
3 –2.46 –2.46 ns
4 –2.86 –2.86 ns
5 –2.88 –2.88 ns
6 –3.24 –3.24 ns
7 –3.55 –3.55 ns
8 –3.89 –3.89 ns
Set/Reset Pulse Width
TRPW_IOB Minimum pulse width to SR control
input on IOB
- - All 1.33 1.61 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Ta ble 27 and are based on the operating conditions set forth in
Tabl e 8 and Table 11.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the
appropriate Input adjustment from Table 23.
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract
the appropriate Input adjustment from Table 23. When the hold time is negative, it is possible to change the data before the clock’s active
edge.
Table 21: Sample Window (Source Synchronous)
Symbol Description Max Units
TSAMP Setup and hold
capture window of
an IOB flip-flop.
The input capture sample window value is highly specific to a particular application, device,
package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the
appropriate Xilinx Answer Record for application-specific values.
Answer Record 30879
ps
Table 20: Setup and Hold Times for the IOB Input Path(Continued)
Symbol Description Conditions
IFD_
DELAY_
VALUE Device
Speed Grade
Units
-5 -4
Min Min
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 27
Input Propagation Times
Table 22: Propagation Times for the IOB Input Path
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
Propagation Times
TIOPI The time it takes for data to travel
from the Input pin to the I output with
no input delay programmed
LV C M O S 25 (2) IBUF_DELAY_VALUE=0 XC3S50A 1.04 1.12 ns
XC3S200A 0.87 0.87 ns
XC3S400A 0.65 0.72 ns
XC3S700A 0.92 0.92 ns
XC3S1400A 0.96 1.21 ns
TIOPID The time it takes for data to travel
from the Input pin to the I output with
the input delay programmed
LV C M O S 25 (2) 1 XC3S50A 1.79 2.07 ns
22.132.46ns
32.362.71ns
42.883.21ns
53.113.46ns
63.453.84ns
73.754.19ns
84.004.47ns
93.614.11ns
10 3.95 4.50 ns
11 4.18 4.67 ns
12 4.75 5.20 ns
13 4.98 5.44 ns
14 5.31 5.95 ns
15 5.62 6.28 ns
16 5.86 6.57 ns
1 XC3S200A 1.57 1.65 ns
21.871.97ns
32.162.33ns
42.682.96ns
52.873.19ns
63.203.60ns
73.574.02ns
83.794.26ns
93.423.86ns
10 3.79 4.25 ns
11 4.02 4.55 ns
12 4.62 5.24 ns
13 4.86 5.53 ns
14 5.18 5.94 ns
DC and Switching Characteristics
28 www.xilinx.com DS529-3 (v2.0) August 19, 2010
TIOPID The time it takes for data to travel
from the Input pin to the I output with
the input delay programmed
LV C M O S 25 (2) 15 XC3S200A 5.43 6.24 ns
16 5.75 6.59 ns
1 XC3S400A 1.32 1.43 ns
21.671.83ns
31.902.07ns
42.332.52ns
52.602.91ns
62.943.20ns
73.233.51ns
83.503.85ns
93.183.55ns
10 3.53 3.95 ns
11 3.76 4.20 ns
12 4.26 4.67 ns
13 4.51 4.97 ns
14 4.85 5.32 ns
15 5.14 5.64 ns
16 5.40 5.95 ns
1 XC3S700A 1.84 1.87 ns
22.202.27ns
32.462.60ns
42.933.15ns
53.213.45ns
63.543.80ns
73.864.16ns
84.134.48ns
93.824.19ns
10 4.17 4.58 ns
11 4.43 4.89 ns
12 4.95 5.49 ns
13 5.22 5.83 ns
14 5.57 6.21 ns
15 5.89 6.55 ns
16 6.16 6.89 ns
1 XC3S1400A 1.95 2.18 ns
22.292.59ns
32.542.84ns
42.963.30ns
Table 22: Propagation Times for the IOB Input Path(Continued)
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 29
TIOPID The time it takes for data to travel
from the Input pin to the I output with
the input delay programmed
LV C M O S 25 (2) 5 XC3S1400A 3.17 3.52 ns
63.523.92ns
73.824.18ns
84.104.57ns
93.844.31ns
10 4.20 4.79 ns
11 4.46 5.06 ns
12 4.87 5.51 ns
13 5.07 5.73 ns
14 5.43 6.08 ns
15 5.73 6.33 ns
16 6.01 6.77 ns
TIOPLI The time it takes for data to travel
from the Input pin through the IFF
latch to the I output with no input
delay programmed
LV C M O S 25 (2) IFD_DELAY_VALUE=0 XC3S50A 1.70 1.81 ns
XC3S200A 1.85 2.04 ns
XC3S400A 1.44 1.74 ns
XC3S700A 1.48 1.74 ns
XC3S1400A 1.50 1.97 ns
TIOPLID The time it takes for data to travel
from the Input pin through the IFF
latch to the I output with the input
delay programmed
LV C M O S 25 (2) 1 XC3S50A 2.30 2.41 ns
23.243.35
ns
33.653.98
ns
44.184.55
ns
54.024.47
ns
64.865.32
ns
75.616.17
ns
86.116.75
ns
1 XC3S200A 2.19 2.43 ns
22.863.16
ns
33.524.01
ns
44.024.60
ns
53.834.43
ns
64.705.46
ns
75.486.33
ns
85.996.94
ns
1 XC3S400A 1.93 2.25 ns
22.572.90
ns
33.163.66
ns
43.634.19
ns
Table 22: Propagation Times for the IOB Input Path(Continued)
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
DC and Switching Characteristics
30 www.xilinx.com DS529-3 (v2.0) August 19, 2010
TIOPLID The time it takes for data to travel
from the Input pin through the IFF
latch to the I output with the input
delay programmed
LV C M O S 25 (2) 5 XC3S400A 3.55 4.18 ns
64.345.03
ns
75.095.88
ns
85.586.42
ns
1 XC3S700A 1.96 2.18 ns
22.763.06
ns
33.453.95
ns
43.974.54
ns
53.834.37
ns
64.745.42
ns
75.536.33
ns
86.066.96
ns
1 XC3S1400A 1.93 2.40 ns
22.693.15ns
33.523.99
ns
43.894.55
ns
53.954.42
ns
64.535.32
ns
75.306.21
ns
85.836.80
ns
Notes:
1. The numbers in this table are tested using the methodology presented in Ta ble 27 and are based on the operating conditions set forth in
Tabl e 8 and Table 11.
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is
true, add the appropriate Input adjustment from Table 23.
Table 22: Propagation Times for the IOB Input Path(Continued)
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 31
Input Timing Adjustments
Table 23: Input Timing Adjustments by IOSTANDARD
Convert Input Time from
LVCMOS25 to the Following
Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Units
Speed Grade
-5 -4
Single-Ended Standards
LVTTL 0.62 0.62 ns
LVCMOS33 0.54 0.54 ns
LV C M O S 25 0 0 n s
LVCMOS18 0.83 0.83 ns
LVCMOS15 0.60 0.60 ns
LVCMOS12 0.31 0.31 ns
PCI33_3 0.41 0.41 ns
PCI66_3 0.41 0.41 ns
HSTL_I 0.72 0.72 ns
HSTL_III 0.77 0.77 ns
HSTL_I_18 0.69 0.69 ns
HSTL_II_18 0.69 0.69 ns
HSTL_III_18 0.79 0.79 ns
SSTL18_I 0.71 0.71 ns
SSTL18_II 0.71 0.71 ns
SSTL2_I 0.68 0.68 ns
SSTL2_II 0.68 0.68 ns
SSTL3_I 0.78 0.78 ns
SSTL3_II 0.78 0.78 ns
Differential Standards
LVD S_2 5 0. 76 0.76 ns
LVD S_3 3 0. 79 0.79 ns
BLVDS_25 0.79 0.79 ns
MINI_LVDS_25 0.78 0.78 ns
MINI_LVDS_33 0.79 0.79 ns
LVPECL_25 0.78 0.78 ns
LVPECL_33 0.79 0.79 ns
RSDS_25 0.79 0.79 ns
RSDS_33 0.77 0.77 ns
TMDS_33 0.79 0.79 ns
PPDS_25 0.79 0.79 ns
PPDS_33 0.79 0.79 ns
DIFF_HSTL_I_18 0.74 0.74 ns
DIFF_HSTL_II_18 0.72 0.72 ns
DIFF_HSTL_III_18 1.05 1.05 ns
DIFF_HSTL_I 0.72 0.72 ns
DIFF_HSTL_III 1.05 1.05 ns
DIFF_SSTL18_I 0.71 0.71 ns
DIFF_SSTL18_II 0.71 0.71 ns
DIFF_SSTL2_I 0.74 0.74 ns
DIFF_SSTL2_II 0.75 0.75 ns
DIFF_SSTL3_I 1.06 1.06 ns
DIFF_SSTL3_II 1.06 1.06 ns
Notes:
1. The numbers in this table are tested using the methodology
presented in Table 27 and are based on the operating conditions
set forth in Tabl e 8 , Table 11, and Table 13.
2. These adjustments are used to convert input path times originally
specified for the LVCMOS25 standard to times that correspond to
other signal standards.
Table 23: Input Timing Adjustments by IOSTANDARD(Continued)
Convert Input Time from
LVCMOS25 to the Following
Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
32 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Output Propagation Times
Three-State Output Propagation Times
Table 24: Timing for the IOB Output Path
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Max Max
Clock-to-Output Times
TIOCKP When reading from the Output Flip-Flop (OFF),
the time from the active transition at the OCLK
input to data appearing at the Output pin
LVCMOS25(2), 12 mA output
drive, Fast slew rate
All 2.87 3.13 ns
Propagation Times
TIOOP The time it takes for data to travel from the IOB’s
O input to the Output pin
LVCMOS25(2), 12 mA output
drive, Fast slew rate
All 2.78 2.91 ns
Set/Reset Times
TIOSRP Time from asserting the OFF’s SR input to
setting/resetting data at the Output pin
LVCMOS25(2), 12 mA output
drive, Fast slew rate
All 3.63 3.89 ns
TIOGSRQ Time from asserting the Global Set Reset (GSR)
input on the STARTUP_SPARTAN3A primitive to
setting/resetting data at the Output pin
8.62 9.65 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Ta ble 27 and are based on the operating conditions set forth in
Tabl e 8 and Table 11.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data
Output. When this is true, add the appropriate Output adjustment from Table 26.
Table 25: Timing for the IOB Three-State Path
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Max Max
Synchronous Output Enable/Disable Times
TIOCKHZ Time from the active transition at the OTCLK input of
the Three-state Flip-Flop (TFF) to when the Output
pin enters the high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 0.63 0.76 ns
TIOCKON(2) Time from the active transition at TFF’s OTCLK input
to when the Output pin drives valid data
All 2.80 3.06 ns
Asynchronous Output Enable/Disable Times
TGTS Time from asserting the Global Three State (GTS)
input on the STARTUP_SPARTAN3A primitive to
when the Output pin enters the high-impedance
state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 9.47 10.36 ns
Set/Reset Times
TIOSRHZ Time from asserting TFF’s SR input to when the
Output pin enters a high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 1.61 1.86 ns
TIOSRON(2) Time from asserting TFF’s SR input at TFF to when
the Output pin drives valid data
All 3.57 3.82 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Ta ble 27 and are based on the operating conditions set forth in
Tabl e 8 and Table 11.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data
Output. When this is true, add the appropriate Output adjustment from Table 26.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 33
Output Timing Adjustments
Table 26: Output Timing Adjustments for IOB
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
Single-Ended Standards
LVTTL Slow 2 mA 5.58 5.58 ns
4 mA 3.16 3.16 ns
6 mA 3.17 3.17 ns
8 mA 2.09 2.09 ns
12 mA 1.62 1.62 ns
16 mA 1.24 1.24 ns
24 mA 2.74(3) 2.74(3) ns
Fast 2 mA 3.03 3.03 ns
4 mA 1.71 1.71 ns
6 mA 1.71 1.71 ns
8 mA 0.53 0.53 ns
12 mA 0.53 0.53 ns
16 mA 0.59 0.59 ns
24 mA 0.60 0.60 ns
QuietIO 2 mA 27.67 27.67 ns
4 mA 27.67 27.67 ns
6 mA 27.67 27.67 ns
8 mA 16.71 16.71 ns
12 mA 16.67 16.67 ns
16 mA 16.22 16.22 ns
24 mA 12.11 12.11 ns
LVCMOS33 Slow 2 mA 5.58 5.58 ns
4 mA 3.17 3.17 ns
6 mA 3.17 3.17 ns
8 mA 2.09 2.09 ns
12 mA 1.24 1.24 ns
16 mA 1.15 1.15 ns
24 mA 2.55(3) 2.55(3) ns
Fast 2 mA 3.02 3.02 ns
4 mA 1.71 1.71 ns
6 mA 1.72 1.72 ns
8 mA 0.53 0.53 ns
12 mA 0.59 0.59 ns
16 mA 0.59 0.59 ns
24 mA 0.51 0.51 ns
QuietIO 2 mA 27.67 27.67 ns
4 mA 27.67 27.67 ns
6 mA 27.67 27.67 ns
8 mA 16.71 16.71 ns
12 mA 16.29 16.29 ns
16 mA 16.18 16.18 ns
24 mA 12.11 12.11 ns
Table 26: Output Timing Adjustments for IOB(Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
34 www.xilinx.com DS529-3 (v2.0) August 19, 2010
LVCMOS25 Slow 2 mA 5.33 5.33 ns
4 mA 2.81 2.81 ns
6 mA 2.82 2.82 ns
8 mA 1.14 1.14 ns
12 mA 1.10 1.10 ns
16 mA 0.83 0.83 ns
24 mA 2.26(3) 2.26(3) ns
Fast 2 mA 4.36 4.36 ns
4 mA 1.76 1.76 ns
6 mA 1.25 1.25 ns
8 mA 0.38 0.38 ns
12 mA 0 0 ns
16 mA 0.01 0.01 ns
24 mA 0.01 0.01 ns
QuietIO 2 mA 25.92 25.92 ns
4 mA 25.92 25.92 ns
6 mA 25.92 25.92 ns
8 mA 15.57 15.57 ns
12 mA 15.59 15.59 ns
16 mA 14.27 14.27 ns
24 mA 11.37 11.37 ns
LVCMOS18 Slow 2 mA 4.48 4.48 ns
4 mA 3.69 3.69 ns
6 mA 2.91 2.91 ns
8 mA 1.99 1.99 ns
12 mA 1.57 1.57 ns
16 mA 1.19 1.19 ns
Fast 2 mA 3.96 3.96 ns
4 mA 2.57 2.57 ns
6 mA 1.90 1.90 ns
8 mA 1.06 1.06 ns
12 mA 0.83 0.83 ns
16 mA 0.63 0.63 ns
QuietIO 2 mA 24.97 24.97 ns
4 mA 24.97 24.97 ns
6 mA 24.08 24.08 ns
8 mA 16.43 16.43 ns
12 mA 14.52 14.52 ns
16 mA 13.41 13.41 ns
Table 26: Output Timing Adjustments for IOB(Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
LVCMOS15 Slow 2 mA 5.82 5.82 ns
4 mA 3.97 3.97 ns
6 mA 3.21 3.21 ns
8 mA 2.53 2.53 ns
12 mA 2.06 2.06 ns
Fast 2 mA 5.23 5.23 ns
4 mA 3.05 3.05 ns
6 mA 1.95 1.95 ns
8 mA 1.60 1.60 ns
12 mA 1.30 1.30 ns
QuietIO 2 mA 34.11 34.11 ns
4 mA 25.66 25.66 ns
6 mA 24.64 24.64 ns
8 mA 22.06 22.06 ns
12 mA 20.64 20.64 ns
LVCMOS12 Slow 2 mA 7.14 7.14 ns
4 mA 4.87 4.87 ns
6 mA 5.67 5.67 ns
Fast 2 mA 6.77 6.77 ns
4 mA 5.02 5.02 ns
6 mA 4.09 4.09 ns
QuietIO 2 mA 50.76 50.76 ns
4 mA 43.17 43.17 ns
6 mA 37.31 37.31 ns
PCI33_3 0.34 0.34 ns
PCI66_3 0.34 0.34 ns
HSTL_I 0.78 0.78 ns
HSTL_III 1.16 1.16 ns
HSTL_I_18 0.35 0.35 ns
HSTL_II_18 0.30 0.30 ns
HSTL_III_18 0.47 0.47 ns
SSTL18_I 0.40 0.40 ns
SSTL18_II 0.30 0.30 ns
SSTL2_I 0 0 ns
SSTL2_II 0.05 0.05 ns
SSTL3_I 0 0 ns
SSTL3_II 0.17 0.17 ns
Table 26: Output Timing Adjustments for IOB(Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 35
Differential Standards
LVDS_25 1.16 1.16 ns
LVDS_33 0.46 0.46 ns
BLVDS_25 0.11 0.11 ns
MINI_LVDS_25 0.75 0.75 ns
MINI_LVDS_33 0.40 0.40 ns
LVPECL_25 Input Only
LVPECL_33
RSDS_25 1.42 1.42 ns
RSDS_33 0.58 0.58 ns
TMDS_33 0.46 0.46 ns
PPDS_25 1.07 1.07 ns
PPDS_33 0.63 0.63 ns
DIFF_HSTL_I_18 0.43 0.43 ns
DIFF_HSTL_II_18 0.41 0.41 ns
DIFF_HSTL_III_18 0.36 0.36 ns
DIFF_HSTL_I 1.01 1.01 ns
DIFF_HSTL_III 0.54 0.54 ns
DIFF_SSTL18_I 0.49 0.49 ns
DIFF_SSTL18_II 0.41 0.41 ns
DIFF_SSTL2_I 0.82 0.82 ns
DIFF_SSTL2_II 0.09 0.09 ns
DIFF_SSTL3_I 1.16 1.16 ns
DIFF_SSTL3_II 0.28 0.28 ns
Notes:
1. The numbers in this table are tested using the methodology
presented in Table 27 and are based on the operating conditions
set forth in Table 8 , Table 11, and Table 13.
2. These adjustments are used to convert output- and
three-state-path times originally specified for the LVCMOS25
standard with 12 mA drive and Fast slew rate to times that
correspond to other signal standards. Do not adjust times that
measure when outputs go into a high-impedance state.
3. Note that 16 mA drive is faster than 24 mA drive for the Slow
slew rate.
Table 26: Output Timing Adjustments for IOB(Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
36 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Timing Measurement Methodology
When measuring timing parameters at the programmable
I/Os, different signal standards call for different test
conditions. Ta ble 27 lists the conditions to use for each
standard.
The method for measuring Input timing is as follows: A
signal that swings between a Low logic level of VL and a
High logic level of VH is applied to the Input under test.
Some standards also require the application of a bias
voltage to the VREF pins of a given bank to properly set the
input-switching threshold. The measurement point of the
Input signal (VM) is commonly located halfway between VL
and VH.
The Output test setup is shown in Figure 9. A termination
voltage VT is applied to the termination resistor RT
, the other
end of which is connected to the Output. For each standard,
RT and VT generally take on the standard values
recommended for minimizing signal reflections. If the
standard does not ordinarily use terminations (for example,
LVCMOS, LVTTL), then RT is set to 1MΩ to indicate an open
connection, and VT is set to zero. The same measurement
point (VM) that was used at the Input is also used at the
Output.
Figure 9: Output Test Setup
FPGA Output
V
T
(V
REF
)
R
T
(R
REF
)
V
M
(V
MEAS
)
C
L
(C
REF
)
DS312-3_04_102406
Notes:
1. The names shown in parentheses are
used in the IBIS file.
Table 27: Test Methods for Timing Measurement at I/Os
Signal Standard
(IOSTANDARD)
Inputs Outputs
Inputs and
Outputs
VREF (V) VL (V) VH (V) RT (Ω)V
T (V) VM (V)
Single-Ended
LVTTL - 0 3.3 1M 0 1.4
LV C M O S 3 3 - 0 3.3 1M 0 1.65
LV C M O S 2 5 - 0 2.5 1M 0 1.25
LV C M O S 1 8 - 0 1.8 1M 0 0.9
LV C M O S 1 5 - 0 1.5 1M 0 0.75
LV C M O S 1 2 - 0 1.2 1M 0 0.6
PCI33_3 Rising - Note 3 Note 3 25 0 0.94
Falling 25 3.3 2.03
PCI66_3 Rising - Note 3 Note 3 25 0 0.94
Falling 25 3.3 2.03
HSTL_I 0.75 VREF – 0.5 VREF + 0.5 50 0.75 VREF
HSTL_III 0.9 VREF – 0.5 VREF + 0.5 50 1.5 VREF
HSTL_I_18 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF
HSTL_II_18 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF
HSTL_III_18 1.1 VREF – 0.5 VREF + 0.5 50 1.8 VREF
SSTL18_I 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF
SSTL18_II 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF
SSTL2_I 1.25 VREF – 0.75 VREF + 0.75 50 1.25 VREF
SSTL2_II 1.25 VREF0.75 VREF + 0.75 25 1.25 VREF
SSTL3_I 1.5 VREF0.75 VREF + 0.75 50 1.5 VREF
SSTL3_II 1.5 VREF – 0.75 VREF + 0.75 25 1.5 VREF
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 37
The capacitive load (CL) is connected between the output and GND. The Output timing for all standards, as published in the
speed files and the data sheet, is always based on a CL value of zero. High-impedance probes (less than 1 pF) are used for
all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those
measurements to produce the final timing numbers as published in the speed files and data sheet.
Differential
LVDS_25 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
LVDS_33 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
BLVDS_25 -V
ICM – 0.125 VICM + 0.125 1M 0 VICM
MINI_LVDS_25 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
MINI_LVDS_33 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
LVPECL_25 -V
ICM – 0.3 VICM + 0.3 N/A N/A VICM
LVPECL_33 -V
ICM – 0.3 VICM + 0.3 N/A N/A VICM
RSDS_25 -V
ICM – 0.1 VICM + 0.1 50 1.2 VICM
RSDS_33 -V
ICM – 0.1 VICM + 0.1 50 1.2 VICM
TMDS_33 -V
ICM – 0.1 VICM + 0.1 50 3.3 VICM
PPDS_25 -V
ICM – 0.1 VICM + 0.1 50 0.8 VICM
PPDS_33 -V
ICM – 0.1 VICM + 0.1 50 0.8 VICM
DIFF_HSTL_I -V
ICM – 0.5 VICM + 0.5 50 0.75 VICM
DIFF_HSTL_III -V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
DIFF_HSTL_I_18 -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_HSTL_II_18 -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_HSTL_III_18 -V
ICM – 0.5 VICM + 0.5 50 1.8 VICM
DIFF_SSTL18_I -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_SSTL18_II -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_SSTL2_I -V
ICM – 0.5 VICM + 0.5 50 1.25 VICM
DIFF_SSTL2_II -V
ICM – 0.5 VICM + 0.5 50 1.25 VICM
DIFF_SSTL3_I -V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
DIFF_SSTL3_II -V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
Notes:
1. Descriptions of the relevant symbols are as follows:
VREF – The reference voltage for setting the input switching threshold
VICM – The common mode input voltage
VM – Voltage of measurement point on signal transition
VL – Low-level test voltage at Input pin
VH – High-level test voltage at Input pin
RT – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required
VT – Termination voltage
2. The load capacitance (CL) at the Output pin is 0 pF for all signal standards.
3. According to the PCI specification.
Table 27: Test Methods for Timing Measurement at I/Os(Continued)
Signal Standard
(IOSTANDARD)
Inputs Outputs
Inputs and
Outputs
VREF (V) VL (V) VH (V) RT (Ω)V
T (V) VM (V)
DC and Switching Characteristics
38 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Using IBIS Models to Simulate Load Conditions in Application
IBIS models permit the most accurate prediction of timing
delays for a given application. The parameters found in the
IBIS model (VREF
, RREF
, and VMEAS) correspond directly
with the parameters used in Table 2 7 (VT
, RT
, and VM). Do
not confuse VREF (the termination voltage) from the IBIS
model with VREF (the input-switching threshold) from the
table. A fourth parameter, CREF
, is always zero. The four
parameters describe all relevant output test conditions. IBIS
models are found in the Xilinx development software as well
as at the following link:
www.xilinx.com/support/download/index.htm
Delays for a given application are simulated according to its
specific load conditions as follows:
1. Simulate the desired signal standard with the output
driver connected to the test setup shown in Figure 9.
Use parameter values VT
, RT
, and VM from Table 2 7.
CREF is zero.
2. Record the time to VM.
3. Simulate the same signal standard with the output driver
connected to the PCB trace with load. Use the
appropriate IBIS model (including VREF
, RREF
, CREF
,
and VMEAS values) or capacitive value to represent the
load.
4. Record the time to VMEAS.
5. Compare the results of steps 2 and 4. Add (or subtract)
the increase (or decrease) in delay to (or from) the
appropriate Output standard adjustment (Table 2 6 ) to
yield the worst-case delay of the PCB trace.
Simultaneously Switching Output Guidelines
This section provides guidelines for the recommended
maximum allowable number of Simultaneous Switching
Outputs (SSOs). These guidelines describe the maximum
number of user I/O pins of a given output signal standard
that should simultaneously switch in the same direction,
while maintaining a safe level of switching noise. Meeting
these guidelines for the stated test conditions ensures that
the FPGA operates free from the adverse effects of ground
and power bounce.
Ground or power bounce occurs when a large number of
outputs simultaneously switch in the same direction. The
output drive transistors all conduct current to a common
voltage rail. Low-to-High transitions conduct to the VCCO
rail; High-to-Low transitions conduct to the GND rail. The
resulting cumulative current transient induces a voltage
difference across the inductance that exists between the die
pad and the power supply or ground return. The inductance
is associated with bonding wires, the package lead frame,
and any other signal routing inside the package. Other
variables contribute to SSO noise levels, including stray
inductance on the PCB as well as capacitive loading at
receivers. Any SSO-induced voltage consequently affects
internal switching noise margins and ultimately signal
quality.
Table 28 and Ta ble 29 provide the essential SSO guidelines.
For each device/package combination, Table 28 provides
the number of equivalent VCCO/GND pairs. The equivalent
number of pairs is based on characterization and may not
match the physical number of pairs. For each output signal
standard and drive strength, Table 2 9 recommends the
maximum number of SSOs, switching in the same direction,
allowed per VCCO/GND pair within an I/O bank. The
guidelines in Ta bl e 2 9 are categorized by package style,
slew rate, and output drive current. Furthermore, the
number of SSOs is specified by I/O bank. Generally, the left
and right I/O banks (Banks 1 and 3) support higher output
drive current.
Multiply the appropriate numbers from Ta bl e 2 8 and
Table 29 to calculate the maximum number of SSOs allowed
within an I/O bank. Exceeding these SSO guidelines might
result in increased power or ground bounce, degraded
signal integrity, or increased system jitter.
SSOMAX/IO Bank = Table 28 x Table 2 9
The recommended maximum SSO values assume that the
FPGA is soldered on the printed circuit board and that the
board uses sound design practices. The SSO values do not
apply for FPGAs mounted in sockets, due to the lead
inductance introduced by the socket.
The SSO values assume that the VCCAUX is powered at
3.3V. Setting VCCAUX to 2.5V provides better SSO
characteristics.
The number of SSOs allowed for quad-flat packages
(VQ/TQ) is lower than for ball grid array packages (FG) due
to the larger lead inductance of the quad-flat packages. Ball
grid array packages are recommended for applications with
a large number of simultaneously switching outputs.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 39
Table 28: Equivalent VCCO/GND Pairs per Bank
Device
Package Style (including Pb-free)
VQ100 TQ144 FT256 FG320 FG400 FG484 FG676
XC3S50A 1 2 3
XC3S200A 1 –44
XC3S400A 445
XC3S700A –4–55
XC3S1400A –4–69
Table 29: Recommended Number of Simultaneously Switching
Outputs per VCCO-GND Pair (VCCAUX=3.3V)
Signal Standard
(IOSTANDARD)
Package Type
VQ100, TQ144
FT256, FG320,
FG400, FG484,
FG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Single-Ended Standards
LVTTL Slow 2 20 20 60 60
410 10 41 41
610 10 29 29
86 6 22 22
12 6 6 13 13
16 5 5 11 11
24 4 4 9 9
Fast 2 10 10 10 10
46 6 6 6
65 5 5 5
83 3 3 3
12 3 3 3 3
16 3 3 3 3
24 2 2 2 2
QuietIO 2 40 40 80 80
424 24 48 48
620 20 36 36
816 16 27 27
12 12 12 16 16
16 9 9 13 13
24 9 9 12 12
LVCMOS33 Slow 2 24 24 76 76
414 14 46 46
611 11 27 27
810 10 20 20
12 9 9 13 13
16 8 8 10 10
24 –8–9
Fast 2 10 10 10 10
48888
65555
84444
124444
162222
24 –2–2
QuietIO 2 36 36 76 76
432 32 46 46
624 24 32 32
816 16 26 26
12 16 16 18 18
16 12 12 14 14
24 –10–10
Table 29: Recommended Number of Simultaneously Switching
Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued)
Signal Standard
(IOSTANDARD)
Package Type
VQ100, TQ144
FT256, FG320,
FG400, FG484,
FG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
DC and Switching Characteristics
40 www.xilinx.com DS529-3 (v2.0) August 19, 2010
LV C M O S 25 S l o w 2 1 6 1 6 7 6 7 6
410 10 46 46
68 8 33 33
87 7 24 24
12 6 6 18 18
16 –6–11
24 –5–7
Fast 2 12 12 18 18
410 10 14 14
68 8 6 6
86 6 6 6
12 3 3 3 3
16 –3–3
24 –2–2
QuietIO 2 36 36 76 76
430 30 60 60
624 24 48 48
820 20 36 36
12 12 12 36 36
16 –12–36
24 –8–8
LV C M O S 18 S l o w 2 1 3 1 3 6 4 6 4
48 8 34 34
68 8 22 22
87 7 18 18
12 –5–13
16 –5–10
Fast 2 13 13 18 18
48 8 9 9
67 7 7 7
84 4 4 4
12 –4–4
16 –3–3
QuietIO 2 30 30 64 64
424 24 64 64
620 20 48 48
816 16 36 36
12 –12–36
16 –12–24
Table 29: Recommended Number of Simultaneously Switching
Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued)
Signal Standard
(IOSTANDARD)
Package Type
VQ100, TQ144
FT256, FG320,
FG400, FG484,
FG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
LVCMOS15 Slow 2 12 12 55 55
47 7 3131
67 7 18 18
8–6–15
12 –5–10
Fast 2 10 10 25 25
47 7 10 10
66666
8–4–4
12 –3–3
QuietIO 2 30 30 70 70
421 21 40 40
618 18 31 31
8–12–31
12 –12–20
LVCMOS12 Slow 2 17 17 40 40
4–13–25
6–10–18
Fast 2 12 9 31 31
4–9–13
6–9–9
QuietIO 2 36 36 55 55
4–33–36
6–27–36
PCI33_3 9 9 16 16
PCI66_3 –9–13
HSTL_I –11–20
HSTL_III –7–8
HSTL_I_18 13 13 17 17
HSTL_II_18 –5–5
HSTL_III_18 8 8 10 8
SSTL18_I 7 13 7 15
SSTL18_II –9–9
SSTL2_I 10 10 18 18
SSTL2_II –6–9
SSTL3_I 7 8 8 10
SSTL3_II 5 6 6 7
Table 29: Recommended Number of Simultaneously Switching
Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued)
Signal Standard
(IOSTANDARD)
Package Type
VQ100, TQ144
FT256, FG320,
FG400, FG484,
FG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 41
Differential Standards (Number of I/O Pairs or Channels)
LV D S _ 25 8 –22
LV D S _ 33 8 –27
BLVDS_25 1 1 4 4
MINI_LVDS_25 8 –22
MINI_LVDS_33 8 –27
LVPECL_25 Input Only
LVPECL_33 Input Only
RSDS_25 8 –22
RSDS_33 8 –27
TMDS_33 8 –27
PPDS_25 8 –22
PPDS_33 8 –27
DIFF_HSTL_I –5–10
DIFF_HSTL_III –3–4
DIFF_HSTL_I_18 6 6 8 8
DIFF_HSTL_II_18 –2–2
DIFF_HSTL_III_18 4 4 5 4
DIFF_SSTL18_I 3 6 3 7
DIFF_SSTL18_II –4–4
DIFF_SSTL2_I 5 5 9 9
DIFF_SSTL2_II –3–4
DIFF_SSTL3_I 3 4 4 5
DIFF_SSTL3_II 2 3 3 3
Notes:
1. Not all I/O standards are supported on all I/O banks. The left and
right banks (I/O banks 1 and 3) support higher output drive
current than the top and bottom banks (I/O banks 0 and 2).
Similarly, true differential output standards, such as LVDS,
RSDS, PPDS, miniLVDS, and TMDS, are only supported in top
or bottom banks (I/O banks 0 and 2). Refer to UG331: Spartan-3
Generation FPGA User Guide for additional information.
2. The numbers in this table are recommendations that assume
sound board lay out practice. Test limits are the VIL/VIH voltage
limits for the respective I/O standard.
3. If more than one signal standard is assigned to the I/Os of a given
bank, refer to XAPP689: Managing Ground Bounce in Large
FPGAs for information on how to perform weighted average SSO
calculations.
Table 29: Recommended Number of Simultaneously Switching
Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued)
Signal Standard
(IOSTANDARD)
Package Type
VQ100, TQ144
FT256, FG320,
FG400, FG484,
FG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
DC and Switching Characteristics
42 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Configurable Logic Block (CLB) Timing
Table 30: CLB (SLICEM) Timing
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Clock-to-Output Times
TCKO When reading from the FFX (FFY) Flip-Flop, the time
from the active transition at the CLK input to data
appearing at the XQ (YQ) output
–0.60–0.68ns
Setup Times
TAS Time from the setup of data at the F or G input to the
active transition at the CLK input of the CLB 0.18 –0.36–ns
TDICK Time from the setup of data at the BX or BY input to
the active transition at the CLK input of the CLB 1.58 –1.88–ns
Hold Times
TAH Time from the active transition at the CLK input to the
point where data is last held at the F or G input 0–0–ns
TCKDI Time from the active transition at the CLK input to the
point where data is last held at the BX or BY input 0–0–ns
Clock Timing
TCH The High pulse width of the CLB’s CLK signal 0.63 –0.75–ns
TCL The Low pulse width of the CLK signal 0.63 –0.75–ns
FTOG Toggle frequency (for export control) 0 770 0 667 MHz
Propagation Times
TILO The time it takes for data to travel from the CLB’s F
(G) input to the X (Y) output –0.62–0.71ns
Set/Reset Pulse Width
TRPW_CLB The minimum allowable pulse width, High or Low, to
the CLB’s SR input 1.33 –1.61–ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 43
Table 31: CLB Distributed RAM Switching Characteristics
Symbol Description
-5 -4
UnitsMin Max Min Max
Clock-to-Output Times
TSHCKO Time from the active edge at the CLK input to data appearing on
the distributed RAM output –1.69–2.01ns
Setup Times
TDS Setup time of data at the BX or BY input before the active
transition at the CLK input of the distributed RAM 0.07 0.02 –ns
TAS Setup time of the F/G address inputs before the active transition
at the CLK input of the distributed RAM 0.18 –0.36–ns
TWS Setup time of the write enable input before the active transition at
the CLK input of the distributed RAM 0.30 –0.59–ns
Hold Times
TDH Hold time of the BX and BY data inputs after the active transition
at the CLK input of the distributed RAM 0.13 –0.13–ns
TAH, TWH Hold time of the F/G address inputs or the write enable input after
the active transition at the CLK input of the distributed RAM 0.01 –0.01–ns
Clock Pulse Width
TWPH, TWPL Minimum High or Low pulse width at CLK input 0.88 –1.01–ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8.
Table 32: CLB Shift Register Switching Characteristics
Symbol Description
-5 -4
UnitsMin Max Min Max
Clock-to-Output Times
TREG Time from the active edge at the CLK input to data appearing on
the shift register output –4.11–4.82ns
Setup Times
TSRLDS Setup time of data at the BX or BY input before the active
transition at the CLK input of the shift register 0.13 –0.18–ns
Hold Times
TSRLDH Hold time of the BX or BY data input after the active transition at
the CLK input of the shift register 0.16 –0.16–ns
Clock Pulse Width
TWPH, TWPL Minimum High or Low pulse width at CLK input 0.90 –1.01–ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8.
DC and Switching Characteristics
44 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Clock Buffer/Multiplexer Switching Characteristics
Table 33: Clock Distribution Switching Characteristics
Description Symbol Minimum
Maximum
Units
Speed Grade
-5 -4
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to
O-output delay TGIO 0.22 0.23 ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and
I1 inputs. Same as BUFGCE enable CE-input TGSI 0.56 0.63 ns
Frequency of signals distributed on global buffers (all sides) FBUFG 0350334MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 45
18 x 18 Embedded Multiplier Timing
Table 34: 18 x 18 Embedded Multiplier Timing
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Combinatorial Delay
TMULT Combinational multiplier propagation delay from the A and B inputs
to the P outputs, assuming 18-bit inputs and a 36-bit product
(AREG, BREG, and PREG registers unused)
–4.36–4.88ns
Clock-to-Output Times
TMSCKP_P Clock-to-output delay from the active transition of the CLK input to
valid data appearing on the P outputs when using the PREG
register(2,3) –0.84–1.30ns
TMSCKP_A
TMSCKP_B
Clock-to-output delay from the active transition of the CLK input to
valid data appearing on the P outputs when using either the AREG
or BREG register(2,4) –4.44–4.97ns
Setup Times
TMSDCK_P Data setup time at the A or B input before the active transition at the
CLK when using only the PREG output register (AREG, BREG
registers unused)(3) 3.56 –3.98–ns
TMSDCK_A Data setup time at the A input before the active transition at the CLK
when using the AREG input register(4) 0.00 –0.00–ns
TMSDCK_B Data setup time at the B input before the active transition at the CLK
when using the BREG input register(4) 0.00 –0.00–ns
Hold Times
TMSCKD_P Data hold time at the A or B input after the active transition at the
CLK when using only the PREG output register (AREG, BREG
registers unused)(3) 0.00 –0.00–ns
TMSCKD_A Data hold time at the A input after the active transition at the CLK
when using the AREG input register(4) 0.35 –0.45–ns
TMSCKD_B Data hold time at the B input after the active transition at the CLK
when using the BREG input register(4) 0.35 –0.45–ns
Clock Frequency
FMULT Internal operating frequency for a two-stage 18x18 multiplier using
the AREG and BREG input registers and the PREG output
register(1) 02800250MHz
Notes:
1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.
2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.
3. The PREG register is typically used when inferring a single-stage multiplier.
4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.
5. The numbers in this table are based on the operating conditions set forth in Table 8.
DC and Switching Characteristics
46 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Block RAM Timing
Table 35: Block RAM Timing
Symbol Description
Speed Grade
Units
-5 -4
MinMaxMinMax
Clock-to-Output Times
TRCKO When reading from block RAM, the delay from the active
transition at the CLK input to data appearing at the DOUT
output
–2.06–2.49ns
Setup Times
TRCCK_ADDR Setup time for the ADDR inputs before the active transition at
the CLK input of the block RAM 0.32 –0.36–ns
TRDCK_DIB Setup time for data at the DIN inputs before the active
transition at the CLK input of the block RAM 0.28 –0.31–ns
TRCCK_ENB Setup time for the EN input before the active transition at the
CLK input of the block RAM 0.69 –0.77–ns
TRCCK_WEB Setup time for the WE input before the active transition at the
CLK input of the block RAM 1.12 –1.26–ns
Hold Times
TRCKC_ADDR Hold time on the ADDR inputs after the active transition at the
CLK input 0–0–ns
TRCKD_DIB Hold time on the DIN inputs after the active transition at the
CLK input 0–0–ns
TRCKC_ENB Hold time on the EN input after the active transition at the CLK
input 0–0–ns
TRCKC_WEB Hold time on the WE input after the active transition at the CLK
input 0–0–ns
Clock Timing
TBPWH High pulse width of the CLK signal 1.56 –1.79–ns
TBPWL Low pulse width of the CLK signal 1.56 –1.79–ns
Clock Frequency
FBRAM Block RAM clock frequency 0 320 0 280 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 47
Digital Clock Manager (DCM) Timing
For specification purposes, the DCM consists of three key
components: the Delay-Locked Loop (DLL), the Digital
Frequency Synthesizer (DFS), and the Phase Shifter (PS).
Aspects of DLL operation play a role in all DCM applications.
All such applications inevitably use the CLKIN and the
CLKFB inputs connected to either the CLK0 or the CLK2X
feedback, respectively. Thus, specifications in the DLL
tables (Table 36 and Ta b l e 37) apply to any application that
only employs the DLL component. When the DFS and/or the
PS components are used together with the DLL, then the
specifications listed in the DFS and PS tables (Ta b l e 38
through Table 41 ) supersede any corresponding ones in the
DLL tables. DLL specifications that do not change with the
addition of DFS or PS functions are presented in Ta b l e 36
and Ta b l e 37.
Period jitter and cycle-cycle jitter are two of many different
ways of specifying clock jitter. Both specifications describe
statistical variation from a mean value.
Period jitter is the worst-case deviation from the ideal clock
period over a collection of millions of samples. In a
histogram of period jitter, the mean value is the clock period.
Cycle-cycle jitter is the worst-case difference in clock period
between adjacent clock cycles in the collection of clock
periods sampled. In a histogram of cycle-cycle jitter, the
mean value is zero.
Spread Spectrum
DCMs accept typical spread spectrum clocks as long as
they meet the input requirements. The DLL will track the
frequency changes created by the spread spectrum clock to
drive the global clocks to the FPGA logic. See XAPP469,
Spread-Spectrum Clocking Reception for Displays for
details.
Delay-Locked Loop (DLL)
Table 36: Recommended Operating Conditions for the DLL
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Input Frequency Ranges
FCLKIN CLKIN_FREQ_DLL Frequency of the CLKIN clock input 5(2) 280(3) 5(2) 250(3) MHz
Input Pulse Requirements
CLKIN_PULSE CLKIN pulse width as a
percentage of the CLKIN
period
FCLKIN < 150 MHz 40% 60% 40% 60%
FCLKIN > 150 MHz 45% 55% 45% 55%
Input Clock Jitter Tolerance and Delay Path Variation(4)
CLKIN_CYC_JITT_DLL_LF Cycle-to-cycle jitter at the
CLKIN input
FCLKIN < 150 MHz ±300 –±300ps
CLKIN_CYC_JITT_DLL_HF FCLKIN > 150 MHz ±150 –±150ps
CLKIN_PER_JITT_DLL Period jitter at the CLKIN input –±1–±1ns
CLKFB_DELAY_VAR_EXT Allowable variation of off-chip feedback delay
from the DCM output to the CLKFB input ±1 ±1 ns
Notes:
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 38.
3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming
clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.
4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.
5. The DCM specifications are guaranteed when both adjacent DCMs are locked.
DC and Switching Characteristics
48 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Table 37: Switching Characteristics for the DLL
Symbol Description Device
Speed Grade
Units
-5 -4
Min Max Min Max
Output Frequency Ranges
CLKOUT_FREQ_CLK0 Frequency for the CLK0 and CLK180 outputs All 5 280 5 250 MHz
CLKOUT_FREQ_CLK90 Frequency for the CLK90 and CLK270 outputs 5 200 5 200 MHz
CLKOUT_FREQ_2X Frequency for the CLK2X and CLK2X180 outputs 10 334 10 334 MHz
CLKOUT_FREQ_DV Frequency for the CLKDV output 0.3125 186 0.3125 166 MHz
Output Clock Jitter(2,3,4)
CLKOUT_PER_JITT_0 Period jitter at the CLK0 output All ±100 ±100 ps
CLKOUT_PER_JITT_90 Period jitter at the CLK90 output ±150 ±150 ps
CLKOUT_PER_JITT_180 Period jitter at the CLK180 output ±150 ±150 ps
CLKOUT_PER_JITT_270 Period jitter at the CLK270 output ±150 ±150 ps
CLKOUT_PER_JITT_2X Period jitter at the CLK2X and CLK2X180 outputs
±[0.5%
of CLKIN
period
+ 100]
±[0.5%
of CLKIN
period
+ 100]
ps
CLKOUT_PER_JITT_DV1 Period jitter at the CLKDV output when performing integer
division ±150 ±150 ps
CLKOUT_PER_JITT_DV2 Period jitter at the CLKDV output when performing non-integer
division
±[0.5%
of CLKIN
period
+ 100]
±[0.5%
of CLKIN
period
+ 100]
ps
Duty Cycle(4)
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270,
CLK2X, CLK2X180, and CLKDV outputs, including the
BUFGMUX and clock tree duty-cycle distortion
All
±[1% of
CLKIN
period
+ 350]
±[1% of
CLKIN
period
+ 350]
ps
Phase Alignment(4)
CLKIN_CLKFB_PHASE Phase offset between the CLKIN and CLKFB inputs All ±150 ±150 ps
CLKOUT_PHASE_DLL Phase offset between DLL outputs CLK0 to CLK2X
(not CLK2X180)
±[1% of
CLKIN
period
+ 100]
±[1% of
CLKIN
period
+ 100]
ps
All others
±[1% of
CLKIN
period
+ 150]
±[1% of
CLKIN
period
+ 150]
ps
Lock Time
LOCK_DLL(3) When using the DLL alone: The
time from deassertion at the DCM’s
Reset input to the rising transition
at its LOCKED output. When the
DCM is locked, the CLKIN and
CLKFB signals are in phase
5 MHz < FCLKIN < 15 MHz All 55ms
FCLKIN > 15 MHz 600 600 µs
Delay Lines
DCM_DELAY_STEP(5) Finest delay resolution, averaged over all steps All 15 35 15 35 ps
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b le 8 and Table 36.
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of
“±[1% of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps.
According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps.
5. The typical delay step size is 23 ps.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 49
Digital Frequency Synthesizer (DFS)
Table 38: Recommended Operating Conditions for the DFS
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Input Frequency Ranges(2)
FCLKIN CLKIN_FREQ_FX Frequency for the CLKIN input 0.200 333(4) 0.200 333(4) MHz
Input Clock Jitter Tolerance(3)
CLKIN_CYC_JITT_FX_LF Cycle-to-cycle jitter at the CLKIN
input, based on CLKFX output
frequency
FCLKFX < 150 MHz ±300 ±300 ps
CLKIN_CYC_JITT_FX_HF FCLKFX > 150 MHz ±150 ±150 ps
CLKIN_PER_JITT_FX Period jitter at the CLKIN input ±1 ±1 ns
Notes:
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 36.
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming
clock frequency by two as it enters the DCM.
Table 39: Switching Characteristics for the DFS
Symbol Description Device
Speed Grade
Units
-5 -4
Min Max Min Max
Output Frequency Ranges
CLKOUT_FREQ_FX(2) Frequency for the CLKFX and CLKFX180 outputs All 5 350 5 320 MHz
Output Clock Jitter(3,4)
CLKOUT_PER_JITT_FX Period jitter at the CLKFX and CLKFX180
outputs.
All Typ Max Typ Max
CLKIN
20 MHz
Use the Spartan-3A Jitter Calculator:
www.xilinx.com/support/documentatio
n/data_sheets/s3a_jitter_calc.zip
ps
CLKIN
> 20 MHz
±[1% of
CLKFX
period
+ 100]
±[1% of
CLKFX
period
+ 200]
±[1% of
CLKFX
period
+ 100]
±[1% of
CLKFX
period
+ 200]
ps
Duty Cycle(5,6)
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs,
including the BUFGMUX and clock tree duty-cycle distortion
All
±[1% of
CLKFX
period
+ 350]
±[1% of
CLKFX
period
+ 350]
ps
Phase Alignment(6)
CLKOUT_PHASE_FX Phase offset between the DFS CLKFX output and the DLL
CLK0 output when both the DFS and DLL are used
All ±200 ±200 ps
CLKOUT_PHASE_FX180 Phase offset between the DFS CLKFX180 output and the DLL
CLK0 output when both the DFS and DLL are used
All
±[1% of
CLKFX
period
+ 200]
±[1% of
CLKFX
period
+ 200]
ps
DC and Switching Characteristics
50 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Lock Time
LOCK_FX(2, 3) The time from deassertion at the DCM’s
Reset input to the rising transition at its
LOCKED output. The DFS asserts
LOCKED when the CLKFX and CLKFX180
signals are valid. If using both the DLL and
the DFS, use the longer locking time.
5 MHz < FCLKIN
< 15 MHz
All 55ms
FCLKIN >
15 MHz
450
450 µs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 38.
2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching)
on an XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB
utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the
system application.
5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a
maximum CLKFX jitter of “±[1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period
is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.
Table 39: Switching Characteristics for the DFS(Continued)
Symbol Description Device
Speed Grade
Units
-5 -4
Min Max Min Max
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 51
Phase Shifter (PS)
Table 40: Recommended Operating Conditions for the PS in Variable Phase Mode
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Operating Frequency Ranges
PSCLK_FREQ
(FPSCLK)
Frequency for the PSCLK input 1 167 1 167 MHz
Input Pulse Requirements
PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period 40% 60% 40% 60% -
Table 41: Switching Characteristics for the PS in Variable Phase Mode
Symbol Description Phase Shift Amount Units
Phase Shifting Range
MAX_STEPS(2) Maximum allowed number of
DCM_DELAY_STEP steps for a
given CLKIN clock period, where
T = CLKIN clock period in ns. If using
CLKIN_DIVIDE_BY_2 = TRUE,
double the clock effective clock
period.
CLKIN < 60
MHz
±[INTEGER(10 (TCLKIN – 3 ns))] steps
CLKIN 60
MHz
±[INTEGER(15 (TCLKIN – 3 ns))]
FINE_SHIFT_RANGE_MIN Minimum guaranteed delay for variable phase shifting ±[MAX_STEPS
DCM_DELAY_STEP_MIN]
ns
FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting ±[MAX_STEPS
DCM_DELAY_STEP_MAX]
ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta ble 8 and Ta ble 40 .
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the
PHASE_SHIFT attribute is set to 0.
3. The DCM_DELAY_STEP values are provided at the bottom of Table 37.
DC and Switching Characteristics
52 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Miscellaneous DCM Timing
DNA Port Timing
Table 42: Miscellaneous DCM Timing
Symbol Description Min Max Units
DCM_RST_PW_MIN Minimum duration of a RST pulse width 3 CLKIN
cycles
DCM_RST_PW_MAX(2) Maximum duration of a RST pulse width N/A N/A seconds
N/A N/A seconds
DCM_CONFIG_LAG_TIME(3) Maximum duration from VCCINT applied to FPGA configuration
successfully completed (DONE pin goes High) and clocks
applied to DCM DLL
N/A N/A minutes
N/A N/A minutes
Notes:
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV).
The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.
2. This specification is equivalent to the Virtex®-4 DCM_RESET specification. This specification does not apply for Spartan-3A FPGAs.
3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3A FPGAs.
Table 43: DNA_PORT Interface Timing
Symbol Description Min Max Units
TDNASSU Setup time on SHIFT before the rising edge of CLK 1.0 –ns
TDNASH Hold time on SHIFT after the rising edge of CLK 0.5 –ns
TDNADSU Setup time on DIN before the rising edge of CLK 1.0 –ns
TDNADH Hold time on DIN after the rising edge of CLK 0.5 –ns
TDNARSU Setup time on READ before the rising edge of CLK 5.0 10,000 ns
TDNARH Hold time on READ after the rising edge of CLK 0 –ns
TDNADCKO Clock-to-output delay on DOUT after rising edge of CLK 0.5 1.5 ns
TDNACLKF CLK frequency 0 100 MHz
TDNACLKH CLK High time 1.0 ns
TDNACLKL CLK Low time 1.0 ns
Notes:
1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 µs.
2. The numbers in this table are based on the operating conditions set forth in Table 8.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 53
Suspend Mode Timing
Figure 10: Suspend Mode Timing
Table 44: Suspend Mode Timing Parameters
Symbol Description Min Typ Max Units
Entering Suspend Mode
TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter
(suspend_filter:No)
–7–ns
TSUSPENDFILTER Adjustment to SUSPEND pin rising edge parameters when glitch filter
enabled (suspend_filter:Yes)
+160 +300 +600 ns
TSUSPEND_GTS Rising edge of SUSPEND pin until FPGA output pins drive their defined
SUSPEND constraint behavior
–10–ns
TSUSPEND_GWE Rising edge of SUSPEND pin to write-protect lock on all writable clocked
elements
–<5–ns
TSUSPEND_DISABLE Rising edge of the SUSPEND pin to FPGA input pins and interconnect
disabled
–340–ns
Exiting Suspend Mode
TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not
include DCM lock time.
4 to 108 –µs
TSUSPEND_ENABLE Falling edge of the SUSPEND pin to FPGA input pins and interconnect
re-enabled
3.7 to 109 –µs
TAWAKE_GWE1 Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1.
–67–ns
TAWAKE_GWE512 Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512.
–14–µs
TAWAKE_GTS1 Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1.
–57–ns
TAWAKE_GTS512 Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using sw_clk:InternalClock and
sw_gts_cycle:512.
–14–µs
Notes:
1. These parameters based on characterization.
2. For information on using the Spartan-3A Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.
DS610-3_08_061207
Blocked
tSUSPEND_DISABLE
tSUSPEND_GWE
tSUSPENDHIGH_AWAKE
tAWAKE_GWE
tAWAKE_GTS
tSUSPEND_GTS
SUSPEND Input
AWAKE Output
Flip-Flops, Block RAM,
Distributed RAM
FPGA Outputs
FPGA Inputs,
Interconnect
Write Protected
Defined by SUSPEND constraint
Entering Suspend Mode Exiting Suspend Mode
sw_gts_cycle
sw_gwe_cycle
tSUSPEND_ENABLE
tSUSPENDLOW_AWAKE
DC and Switching Characteristics
54 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Configuration and JTAG Timing
General Configuration Power-On/Reconfigure Timing
Figure 11: Waveforms for Power-On and the Beginning of Configuration
Table 45: Power-On Timing and the Beginning of Configuration
Symbol Description Device
All Speed Grades
UnitsMin Max
TPOR(2) The time from the application of VCCINT
, VCCAUX, and VCCO
Bank 2 supply voltage ramps (whichever occurs last) to the
rising transition of the INIT_B pin
All –18ms
TPROG The width of the low-going pulse on the PROG_B pin All 0.5 s
TPL(2) The time from the rising edge of the PROG_B pin to the
rising transition on the INIT_B pin
XC3S50A –0.5ms
XC3S200A –0.5ms
XC3S400A –1ms
XC3S700A –2ms
XC3S1400A –2ms
TINIT Minimum Low pulse width on INIT_B output All 250 –ns
TICCK(3) The time from the rising edge of the INIT_B pin to the
generation of the configuration clock signal at the CCLK
output pin
All 0.5 4 µs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Tabl e 8. This means power must be applied to all VCCINT
, VCCO,
and VCCAUX lines.
2. Power-on reset and the clearing of configuration memory occurs during this period.
3. This specification applies only to the Master Serial, SPI, and BPI modes.
4. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide.
V
CCINT
(Supply)
(Supply)
(Supply)
V
CCAUX
V
CCO
Bank 2
PROG_B
(Output)
(Open-Drain)
(Input)
INIT_B
CCLK
DS529-3_01_052708
1.2V
2.5V
TICCK
TPROG TPL
TPOR
1.0V
2.0V
2.0V 3.3V
or
2.5V
3.3V
or
Notes:
1. The VCCINT
, VCCAUX, and VCCO supplies can be applied in any order.
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 55
Configuration Clock (CCLK) Characteristics
Table 46: Master Mode CCLK Output Period by ConfigRate Opti0on Setting
Symbol Description
ConfigRate
Setting
Temperature
Range Minimum Maximum Units
TCCLK1
CCLK clock period by
ConfigRate setting 1
(power-on value)
Commercial 1,254 2,500 ns
Industrial 1,180 ns
TCCLK3 3Commercial 413 833 ns
Industrial 390 ns
TCCLK6 6 (default) Commercial 207 417 ns
Industrial 195 ns
TCCLK7 7Commercial 178 357 ns
Industrial 168 ns
TCCLK8 8Commercial 156 313 ns
Industrial 147 ns
TCCLK10 10 Commercial 123 250 ns
Industrial 116 ns
TCCLK12 12 Commercial 103 208 ns
Industrial 97 ns
TCCLK13 13 Commercial 93 192 ns
Industrial 88 ns
TCCLK17 17 Commercial 72 147 ns
Industrial 68 ns
TCCLK22 22 Commercial 54 114 ns
Industrial 51 ns
TCCLK25 25 Commercial 47 100 ns
Industrial 45 ns
TCCLK27 27 Commercial 44 93 ns
Industrial 42 ns
TCCLK33 33 Commercial 36 76 ns
Industrial 34 ns
TCCLK44 44 Commercial 26 57 ns
Industrial 25 ns
TCCLK50 50 Commercial 22 50 ns
Industrial 21 ns
TCCLK100 100 Commercial 11.2 25 ns
Industrial 10.6 ns
Notes:
1. Set the ConfigRate option value when generating a configuration bitstream.
DC and Switching Characteristics
56 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Table 47: Master Mode CCLK Output Frequency by ConfigRate Option Setting
Symbol Description
ConfigRate
Setting
Temperature
Range Minimum Maximum Units
FCCLK1
Equivalent CCLK clock frequency
by ConfigRate setting 1
(power-on value)
Commercial 0.400 0.797 MHz
Industrial 0.847 MHz
FCCLK3 3Commercial 1.20 2.42 MHz
Industrial 2.57 MHz
FCCLK6 6
(default)
Commercial 2.40 4.83 MHz
Industrial 5.13 MHz
FCCLK7 7Commercial 2.80 5.61 MHz
Industrial 5.96 MHz
FCCLK8 8Commercial 3.20 6.41 MHz
Industrial 6.81 MHz
FCCLK10 10 Commercial 4.00 8.12 MHz
Industrial 8.63 MHz
FCCLK12 12 Commercial 4.80 9.70 MHz
Industrial 10.31 MHz
FCCLK13 13 Commercial 5.20 10.69 MHz
Industrial 11.37 MHz
FCCLK17 17 Commercial 6.80 13.74 MHz
Industrial 14.61 MHz
FCCLK22 22 Commercial 8.80 18.44 MHz
Industrial 19.61 MHz
FCCLK25 25 Commercial 10.00 20.90 MHz
Industrial 22.23 MHz
FCCLK27 27 Commercial 10.80 22.39 MHz
Industrial 23.81 MHz
FCCLK33 33 Commercial 13.20 27.48 MHz
Industrial 29.23 MHz
FCCLK44 44 Commercial 17.60 37.60 MHz
Industrial 40.00 MHz
FCCLK50 50 Commercial 20.00 44.80 MHz
Industrial 47.66 MHz
FCCLK100 100 Commercial 40.00 88.68 MHz
Industrial 94.34 MHz
Table 48: Master Mode CCLK Output Minimum Low and High Time
Symbol Description
ConfigRate Setting
Units1367810121317222527334450100
TMCCL,
TMCCH
Master Mode
CCLK
Minimum Low
and High Time
Commercial 595 196 98.3 84.5 74.1 58.4 48.9 44.1 34.2 25.6 22.3 20.9 17.1 12.3 10.4 5.3 ns
Industrial 560 185 92.6 79.8 69.8 55.0 46.0 41.8 32.3 24.2 21.4 20.0 16.2 11.9 10.0 5.0 ns
Table 49: Slave Mode CCLK Input Low and High Time
Symbol Description Min Max Units
TSCCL,
TSCCH
CCLK Low and High time 5 ns
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 57
Master Serial and Slave Serial Mode Timing
Figure 12: Waveforms for Master Serial and Slave Serial Configuration
Table 50: Timing for the Master Serial and Slave Serial Configuration Modes
Symbol Description
Slave/
Master
All Speed Grades
UnitsMin Max
Clock-to-Output Times
TCCO The time from the falling transition on the CCLK pin to data appearing at the
DOUT pin
Both 1.5 10 ns
Setup Times
TDCC The time from the setup of data at the DIN pin to the rising transition at the
CCLK pin
Both 7 –ns
Hold Times
TCCD The time from the rising transition at the CCLK pin to the point when data is
last held at the DIN pin
Master 0 ns
Slave 1.0
Clock Timing
TCCH High pulse width at the CCLK input pin Master See Tabl e 48
Slave See Tabl e 49
TCCL Low pulse width at the CCLK input pin Master See Tabl e 48
Slave See Tabl e 49
FCCSER Frequency of the clock signal at the
CCLK input pin
No bitstream compression Slave 0 100 MHz
With bitstream compression 0 100 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8.
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.
DS312-3_05_103105
Bit 0 Bit 1 Bit n Bit n+1
Bit n-64 Bit n-63
1/FCCSER
TSCCL
TDCC
TCCD
TSCCH
TCCO
PROG_B
(Input)
DIN
(Input)
DOUT
(Output)
(Open-Drain)
INIT_B
(Input/Output)
CCLK
TMCCL TMCCH
DC and Switching Characteristics
58 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Slave Parallel Mode Timing
Figure 13: Waveforms for Slave Parallel Configuration
Table 51: Timing for the Slave Parallel Configuration Mode
Symbol Description
All Speed Grades
UnitsMin Max
Setup Times
TSMDCC(2) The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin 7 –ns
TSMCSCC Setup time on the CSI_B pin before the rising transition at the CCLK pin 7 –ns
TSMCCW Setup time on the RDWR_B pin before the rising transition at the CCLK pin 15 –ns
Hold Times
TSMCCD The time from the rising transition at the CCLK pin to the point when data is last held at
the D0-D7 pins
1.0 –ns
TSMCCCS The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the CSO_B pin
0–ns
TSMWCC The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the RDWR_B pin
0–ns
Clock Timing
TCCH The High pulse width at the CCLK input pin 5 –ns
TCCL The Low pulse width at the CCLK input pin 5 –ns
FCCPAR Frequency of the clock signal
at the CCLK input pin
No bitstream compression 0 80 MHz
With bitstream compression 0 80 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Tab le 8 .
2. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.
DS529-3_02_051607
Byte 0 Byte 1 Byte n Byte n+1
TSMWCC
1/F
CCPAR
TSMCCCS
TSCCH
TSMCCW
T
SMCCD
TSMCSCC
T
SMDCC
PROG_B
(Input)
(Open-Drain)
INIT_B
(Input)
CSI_B
RDWR_B
(Input)
(Input)
CCLK
(Inputs)
D0 - D7
TMCCH TSCCL
TMCCL
Notes:
1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent
cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B
switches High, be careful to avoid contention on the D0 - D7 bus.
2. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332 Chapter 7 section “Non-Continuous SelectMAP Data
Loading” for more details.
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 59
Serial Peripheral Interface (SPI) Configuration Timing
Figure 14: Waveforms for Serial Peripheral Interface (SPI) Configuration
Table 52: Timing for Serial Peripheral Interface (SPI) Configuration Mode
Symbol Description Minimum Maximum Units
TCCLK1 Initial CCLK clock period See Table 46
TCCLKnCCLK clock period after FPGA loads ConfigRate bitstream option setting See Table 46
TMINIT Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the
rising edge of INIT_B
50 –ns
TINITM Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the
rising edge of INIT_B
0–ns
TCCO MOSI output valid delay after CCLK falling clock edge See Table 50
TDCC Setup time on the DIN data input before CCLK rising clock edge See Table 50
TCCD Hold time on the DIN data input after CCLK rising clock edge See Table 50
T
DH
T
DSU
Command
(msb)
T
V
T
CSS
<1:1:1>
INIT_B
M[2:0]
T
MINIT
T
INITM
DIN
CCLK
(Input)
T
CCLKn
T
CCLK1
VS[2:0]
(Input)
New ConfigRate active
Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B
goes High. After this point, input values do not matter until DONE goes High, at which
point these pins become user-I/O pins.
<0:0:1>
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B.
T
CCLK1
T
MCCLn
T
MCCHn
(Input)
Data Data Data Data
CSO_B
MOSI
T
CCO
T
MCCL1
T
MCCH1
T
DCC
T
CCD
(Input)
PROG_B
PUDC_B
(Input)
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
DS529-3_06_102506
(Open-Drain)
Shaded values indicate specifications on attached SPI Flash PROM.
Command
(msb-1)
DC and Switching Characteristics
60 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Table 53: Configuration Timing Requirements for Attached SPI Serial Flash
Symbol Description Requirement Units
TCCS SPI serial Flash PROM chip-select time ns
TDSU SPI serial Flash PROM data input setup time ns
TDH SPI serial Flash PROM data input hold time ns
TVSPI serial Flash PROM data clock-to-output time ns
fC or fRMaximum SPI serial Flash PROM clock frequency (also depends on
specific read command used)
MHz
Notes:
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2. Subtract additional printed circuit board routing delay as required by the application.
TCCS TMCCL1TCCO
TDSU TMCCL1TCCO
TDH TMCCH1
TVTMCCLn TDCC
fC
1
TCCLKn min()
---------------------------------
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 61
Byte Peripheral Interface (BPI) Configuration Timing
Figure 15: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration
Table 54: Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode
Symbol Description Minimum Maximum Units
TCCLK1 Initial CCLK clock period See Table 46
TCCLKnCCLK clock period after FPGA loads ConfigRate setting See Ta ble 46
TMINIT Setup time on M[2:0] mode pins before the rising edge of INIT_B 50 –ns
TINITM Hold time on M[2:0] mode pins after the rising edge of INIT_B 0 –ns
TINITADDR Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted
and valid
55T
CCLK1
cycles
TCCO Address A[25:0] outputs valid after CCLK falling edge See Tabl e 50
TDCC Setup time on D[7:0] data inputs before CCLK rising edge See TSMDCC in Table 51
TCCD Hold time on D[7:0] data inputs after CCLK rising edge 0 –ns
(Input) PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
Data DataData
AddressAddress
Data
Address
Byte 0
000_0000
INIT_B
<0:1:0>
M[2:0]
T
MINIT
T
INITM
LDC[2:0]
HDC
CSO_B
Byte 1
000_0001
CCLK
A[25:0]
D[7:0]
T
DCC
T
CCD
T
AVQV
TCCLK1
(Input)
TINITADDR
T
CCLKn
T
CCLK1
T
CCO
PUDC_B
New ConfigRate active
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High.
Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,
input values do not matter until DONE goes High, at which point the mode pins
become user-I/O pins.
(Input)
PROG_B
(Input)
DS529-3_05_021009
Open-Drain)
Shaded values indicate specifications on attached parallel NOR Flash PROM.
DC and Switching Characteristics
62 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Table 55: Configuration Timing Requirements for Attached Parallel NOR BPI Flash
Symbol Description Requirement Units
TCE
(tELQV)
Parallel NOR Flash PROM chip-select time ns
TOE
(tGLQV)
Parallel NOR Flash PROM output-enable time ns
TACC
(tAVQV)
Parallel NOR Flash PROM read access time ns
TBYTE
(tFLQV, tFHQV)
For x8/x16 PROMs only: BYTE# to output valid time(3) ns
Notes:
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2. Subtract additional printed circuit board routing delay as required by the application.
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor
value also depends on whether the FPGA’s PUDC_B pin is High or Low.
TCE TINITADDR
TOE TINITADDR
TACC 50%TCCLKn min()
TCCO TDCC PCB
TBYTE TINITADDR
DC and Switching Characteristics
DS529-3 (v2.0) August 19, 2010 www.xilinx.com 63
IEEE 1149.1/1532 JTAG Test Access Port Timing
Figure 16: JTAG Waveforms
Table 56: Timing for the JTAG Test Access Port
Symbol Description
All Speed
Grades
UnitsMin Max
Clock-to-Output Times
TTCKTDO The time from the falling transition on the TCK pin to data appearing at the TDO pin 1.0 11.0 ns
Setup Times
TTDITCK The time from the setup of data at the
TDI pin to the rising transition at the
TCK pin
All devices and functions except those shown below 7.0 –ns
Boundary scan commands (INTEST, EXTEST,
SAMPLE) on XC3S700A and XC3S1400A FPGAs
11.0
TTMSTCK The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin 7.0 –ns
Hold Times
TTCKTDI The time from the rising transition at
the TCK pin to the point when data is
last held at the TDI pin
All functions except those shown below 0 –ns
Configuration commands (CFG_IN, ISC_PROGRAM) 2.0
TTCKTMS The time from the rising transition at the TCK pin to the point when a logic level is last held at the
TMS pin
0–ns
Clock Timing
TCCH The High pulse width at the TCK pin All functions except ISC_DNA command 5 –ns
TCCL The Low pulse width at the TCK pin 5 –ns
TCCHDNA The High pulse width at the TCK pin During ISC_DNA command 10 10,000 ns
TCCLDNA The Low pulse width at the TCK pin 10 10,000 ns
FTCK Frequency of the TCK signal All operations on XC3S50A, XC3S200A, and
XC3S400A FPGAs and for BYPASS or HIGHZ
instructions on all FPGAs
033MHz
All operations on XC3S700A and XC3S1400A FPGAs,
except for BYPASS or HIGHZ instructions
20
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 8.
2. For details on JTAG see Chapter 9 “JTAG Configuration Mode and Boundary-Scan” in UG332 Spartan-3 Generation Configuration User
Guide.
TCK
TTMSTCK
TMS
TDI
TDO
(Input)
(Input)
(Input)
(Output)
TTCKTMS
T
TCKTDI
TTCKTDO
TTDITCK
DS099_06_020709
TCCH TCCL
1/FTCK
DC and Switching Characteristics
64 www.xilinx.com DS529-3 (v2.0) August 19, 2010
Revision History
The following table shows the revision history for this document.
Date Version Revision
12/05/06 1.0 Initial release.
02/02/07 1.1 Promoted to Preliminary status. Moved Table 15 to under "DC Electrical Characteristics" section. Updated all
timing specifications for the v1.32 speed files. Added recommended Simultaneous Switching Output (SSO)
limits in Table 29. Set a 10 µs maximum pulse width for the DNA_PORT READ signal and the JTAG clock
input during the ISC_DNA command, affecting both Table 43 and Table 56. Described "External Termination
Requirements for Differential I/O." Added separate DIN hold time for Slave mode in Table 50. Corrected
wording in Table 52 and Table 54; no specifications affected.
03/16/07 1.2 Updated all AC timing specifications to the v1.34 speeds file. Promoted the XC3S700A and XC3S1400A
FPGAs offered in the -4 speed grade to Production status, as shown in Table 16. Added Note 2 to Table 39
regarding the extra logic (one LUT) automatically added by ISE 9.1i and later software revisions for any DCM
application that leverages the Digital Frequency Synthesizer (DFS). Separated some JTAG specifications by
array size or function, as shown in Table 56. Updated quiescent current limits in Table 10.
04/23/07 1.3 Updated all AC timing specifications to the v1.35 speeds file. Promoted all devices except the XC3S400A to
Production status, as shown in Tabl e 16.
05/08/07 1.4 Updated XC3S400A to Production and v1.36 speeds file. Added banking rules and other explanatory
footnotes to Table 12 and Tab l e 13. Corrected DIFF_SSTL3_II VOL Max in Table 14. Improved XC3S400A
Pin-to-Pin Clock-to-Output times in Table 18. Updated XC3S400A Pin-to-Pin Setup Times in Tabl e 1 9 .
Updated TIOICKPD for -5 in Table 20. Added SSO numbers to Table 28 and Table 29. Removed invalid
Embedded Multiplier Hold Times in Table 34. Improved CLKOUT_FREQ_CLK90 in Table 37. Improved
TTDITCK and FTCK performance for XC3S400A in Ta ble 5 6 .
07/10/07 1.5 Added DIFF_HSTL_I and DIFF_HSTL_III to Ta bl e 13, Table 14, Ta ble 27 , and Ta bl e 2 9 . Updated TMDS DC
characteristics in Table 14. Updated for speed file v1.37 in ISE 9.2.01i as shown in Tab le 17. Updated
pin-to-pin setup and hold times in Table 19. Updated TMDS output adjustment in Table 26. Updated I/O Test
Method values in Table 27. Added BLVDS SSO numbers inTable 29. For Multiplier block, updated setup times
and added hold times to Table 34. Updated block RAM clock width in Tabl e 35. Updated
CLKOUT_PER_JITT_2X and CLKOUT_PER_JITT_DV2 in Tab l e 37. Added CCLK specifications for
Commercial in Tab le 46 through Table 48.
04/15/08 1.6 Added VIN to Recommended Operating Conditions in Table 8 and added reference to XAPP459, “Eliminating
I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” Reduced typical
ICCINTQ and ICCAUXQ quiescent current values by 12%-58% in Table 10. Increased VIL max to 0.4V for
LVCMOS12/15/18 and improved VIH min to 0.7V for LVCMOS12 in Table 11. Changed VOL max to 0.4V and
VOH min to VCCO-0.4V for LVCMOS15/18 in Table 12. Noted latest speed file v1.39 in ISE 10.1 software in
Table 16. Added new packages to SSO limits in Table 28 and Table 29. Improved SSTL18_II SSO limit for
FG packages in Table 29. Improved FBUFG for -4 to 334 MHz in Table 33. Added references to 375 MHz
performance via SCD 4103 in Table 33,Table 38, Table 39, and Table 40. Restored Units column to Table 44.
Updated CCLK output maximum period in Ta ble 46 to match minimum frequency in Table 47. Corrected BPI
active clock edge in Figure 15 and Table 54.
05/28/08 1.7 Improved VCCAUXT and VCCO2T POR minimum in Table 5 and updated VCCO POR levels in Figure 11.
Clarified recommended VIN in Ta bl e 8 . Added reference to VCCAUX in "Simultaneously Switching Output
Guidelines". Added reference to Sample Window in Table 21. Removed DNA_RETENTION limit of 10 years
in Ta ble 15 since number of Read cycles is the only unique limit. Added references to UG332.
03/06/09 1.8 Changed typical quiescent current temperature from ambient to junction. Updated BPI configuration
waveforms in Figure 15 and updated Table 55. Updated selected I/O standard DC characteristics. Added
TIOPI and TIOPID in Table 22.
Removed references to SCD 4103.
08/19/10 2.0 Added IIK to Ta b l e 4. Updated VIN in Tabl e 8 and footnoted IL in Table 9 to note potential leakage between
pins of a differential pair. Clarified LVPECL notes to Table 13. Corrected symbols for TSUSPEND_GTS and
TSUSPEND_GWE in Table 44.
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 65
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.
Introduction
This section describes how the various pins on a
Spartan®-3A FPGA connect within the supported
component packages, and provides device-specific thermal
characteristics. For general information on the pin functions
and the package characteristics, see the Packaging section
of UG331: Spartan-3 Generation FPGA User Guide.
UG331: Spartan-3 Generation FPGA User Guide
www.xilinx.com/support/documentation
/user_guides/ug331.pdf
Spartan-3A FPGAs are available in both standard and
Pb-free, RoHS versions of each package, with the Pb-free
version adding a “G” to the middle of the package code.
Except for the thermal characteristics, all information for the
standard package applies equally to the Pb-free package.
Pin Types
Most pins on a Spartan-3A FPGA are general-purpose,
user-defined I/O pins. There are, however, up to 12 different
functional types of pins on Spartan-3A FPGA packages, as
outlined in Ta b l e 5 7. In the package footprint drawings that
follow, the individual pins are color-coded according to pin
type as in the table.
132
Spartan-3A FPGA Family:
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 0Product Specification
Table 57: Types of Pins on Spartan-3A FPGAs
Type / Color
Code Description Pin Name(s) in Type
I/O Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form
differential I/Os.
IO_#
IO_Lxxy_#
INPUT Unrestricted, general-purpose input-only pin. This pin does not have an output structure,
differential termination resistor, or PCI clamp diode.
IP_#
IP_Lxxy_#
DUAL
Dual-purpose pin used in some configuration modes during the configuration process and
then usually available as a user I/O after configuration. If the pin is not used during
configuration, this pin behaves as an I/O-type pin. See UG332: Spartan-3 Generation
Configuration User Guide for additional information on these signals.
M[2:0]
PUDC_B
CCLK
MOSI/CSI_B
D[7:1]
D0/DIN
DOUT
CSO_B
RDWR_B
INIT_B
A[25:0]
VS[2:0]
LDC[2:0]
HDC
VREF
Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other
VREF pins in the same bank, provides a reference voltage input for certain I/O standards.
If used for a reference voltage within a bank, all VREF pins within the bank must be
connected.
IP/VREF_#
IP_Lxxy_#/VREF_#
IO/VREF_#
IO_Lxxy_#/VREF_#
CLK
Either a user-I/O pin or an input to a specific clock buffer driver. Most packages have 16
global clock inputs that optionally clock the entire device. The exceptions are the TQ144
and the XC3S50A in the FT256 package). The RHCLK inputs optionally clock the right half
of the device. The LHCLK inputs optionally clock the left half of the device. See the Using
Global Clock Resources chapter in UG331: Spartan-3 Generation FPGA User Guide for
additional information on these signals.
IO_Lxxy_#/GCLK[15:0],
IO_Lxxy_#/LHCLK[7:0],
IO_Lxxy_#/RHCLK[7:0]
CONFIG
Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every
package has two dedicated configuration pins. These pins are powered by VCCAUX. See
the UG332: Spartan-3 Generation Configuration User Guide for additional information on
the DONE and PROG_B signals.
DONE, PROG_B
Pinout Descriptions
66 www.xilinx.com DS529-4 (v2.0) August 19, 2010
Package Pins by Type
Each package has three separate voltage supply
inputs—VCCINT, VCCAUX, and VCCO—and a common
ground return, GND. The numbers of pins dedicated to
these functions vary by package, as shown in Ta bl e 5 8 .
A majority of package pins are user-defined I/O or input
pins. However, the numbers and characteristics of these I/O
depend on the device type and the package in which it is
available, as shown in Table 59. The table shows the
maximum number of single-ended I/O pins available,
assuming that all I/O-, INPUT-, DUAL-, VREF-, and
CLK-type pins are used as general-purpose I/O. AWAKE is
counted here as a dual-purpose I/O pin. Likewise, the table
shows the maximum number of differential pin-pairs
available on the package. Finally, the table shows how the
total maximum user-I/Os are distributed by pin type,
including the number of unconnected—N.C.—pins on the
device.
Not all I/O standards are supported on all I/O banks. The left
and right banks (I/O banks 1 and 3) support higher output
drive current than the top and bottom banks (I/O banks 0
and 2). Similarly, true differential output standards, such as
LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only
supported in the top or bottom banks (I/O banks 0 and 2).
Inputs are unrestricted. For more details, see the chapter
Using I/O Resources” in UG331.
PWR
MGMT
Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated
pin and is powered by VCCAUX. AWAKE is a dual-purpose pin. Unless Suspend mode is
enabled in the application, AWAKE is available as a user-I/O pin.
SUSPEND, AWAKE
JTAG Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has
four dedicated JTAG pins. These pins are powered by VCCAUX.
TDI, TMS, TCK, TDO
GND Dedicated ground pin. The number of GND pins depends on the package used. All must
be connected.
GND
VCCAUX
Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the
package used. All must be connected. VCCAUX can be either 2.5V or 3.3V. Set on board
and using CONFIG VCCAUX constraint.
VCCAUX
VCCINT Dedicated internal core logic power supply pin. The number of VCCINT pins depends on
the package used. All must be connected to +1.2V.
VCCINT
VCCO
Along with all the other VCCO pins in the same bank, this pin supplies power to the output
buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All
must be connected.
VCCO_#
N.C. This package pin is not connected in this specific device/package combination but may be
connected in larger devices in the same package.
N.C.
Notes:
1. # = I/O bank number, an integer between 0 and 3.
Table 57: Types of Pins on Spartan-3A FPGAs(Continued)
Type / Color
Code Description Pin Name(s) in Type
Table 58: Power and Ground Supply Pins by Package
Package VCCINT VCCAUX VCCO GND
VQ100 4 3 6 13
TQ144 4 4 8 13
FT256 (50A/200A/400A) 6 4 16 28
FT256 (700A/1400A) 15 10 13 50
FG320 6 8 16 32
FG400 9 8 22 43
FG484 15 10 24 53
FG676 23 14 36 77
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 67
.
Electronic versions of the package pinout tables and foot-
prints are available for download from the Xilinx website.
Using a spreadsheet program, the data can be sorted and
reformatted according to any specific needs. Similarly, the
ASCII-text file is easily parsed by most scripting programs.
http://www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip
Table 59: Maximum User I/O by Package
Device Package
Maximum
User I/Os
and
Input-Only
Maximum
Input-
Only
Maximum
Differential
Pairs
All Possible I/Os by Type
I/O INPUT DUAL VREF CLK N.C.
XC3S50A VQ100 68 660 17 220 623 0
XC3S200A 68 660 17 220 623 0
XC3S50A TQ144 108 750 42 226 830 0
XC3S50A
FT256
144 32 64 53 20 26 15 30 51
XC3S200A 195 35 90 69 21 52 21 32 0
XC3S400A 195 35 90 69 21 52 21 32 0
XC3S700A 161 13 60 59 252 18 30 0
XC3S1400A 161 13 60 59 252 18 30 0
XC3S200A FG320 248 56 112 101 40 52 23 32 3
XC3S400A 251 59 112 101 42 52 24 32 0
XC3S400A FG400 311 63 142 155 46 52 26 32 0
XC3S700A 311 63 142 155 46 52 26 32 0
XC3S700A FG484 372 84 165 194 61 52 33 32 3
XC3S1400A 375 87 165 195 62 52 34 32 0
XC3S1400A FG676 502 94 227 313 67 52 38 32 17
Notes:
1. Some VREFs are on INPUT pins. See pinout tables for details.
Pinout Descriptions
68 www.xilinx.com DS529-4 (v2.0) August 19, 2010
Package Overview
Table 6 0 shows the six low-cost, space-saving production package styles for the Spartan-3A family.
Each package style is available in an environmentally
friendly lead-free (Pb-free) option. The Pb-free packages
include an extra ‘G’ in the package style name. For example,
the standard “CS484” package becomes “CSG484” when
ordered as the Pb-free option. The mechanical dimensions
of the standard and Pb-free packages are similar, as shown
in the mechanical drawings provided in Table 61.
For additional package information, see UG112: Device
Package User Guide.
Mechanical Drawings
Detailed mechanical drawings for each package type are
available from the Xilinx web site at the specified location in
Table 61.
Material Declaration Data Sheets (MDDS) are also available
on the Xilinx web site for each package.
Table 60: Spartan-3A Family Package Options
Package Leads Type Maximum
I/O
Lead Pitch
(mm)
Body Area
(mm)
Height
(mm)
Mass(1)
(g)
VQ100 / VQG100 100 Very Thin Quad Flat Pack (VQFP) 68 0.5 14 x 14 1.20 0.6
TQ144 / TQG144 144 Thin Quad Flat Pack (TQFP) 108 0.5 20 x 20 1.60 1.4
FT256 / FTG256 256 Fine-pitch Thin Ball Grid Array (FBGA) 195 1.0 17 x 17 1.55 0.9
FG320 / FGG320 320 Fine-pitch Ball Grid Array (FBGA) 251 1.0 19 x 19 2.00 1.4
FG400 / FGG400 400 Fine-pitch Ball Grid Array (FBGA) 311 1.0 21 x 21 2.43 2.2
FG484 / FGG484 484 Fine-pitch Ball Grid Array (FBGA) 375 1.0 23 x 23 2.60 2.2
FG676 / FGG676 676 Fine-pitch Ball Grid Array (FBGA) 502 1.0 27 x 27 2.60 3.4
Notes:
1. Package mass is ±10%.
Table 61: Xilinx Package Documentation
Package Drawing MDDS
VQ100 Package Drawing PK173_VQ100
VQG100 PK130_VQG100
TQ144 Package Drawing PK169_TQ144
TQG144 PK126_TQG144
FT256 Package Drawing PK158_FT256
FTG256 PK115_FTG256
FG320 Package Drawing PK152_FG320
FGG320 PK106_FGG320
FG400 Package Drawing PK182_FG400
FGG400 PK108_FGG400
FG484 Package Drawing PK183_FG484
FGG484 PK110_FGG484
FG676 Package Drawing PK155_FG676
FGG676 PK111_FGG676
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 69
Package Thermal Characteristics
The power dissipated by an FPGA application has
implications on package selection and system design. The
power consumed by a Spartan-3A FPGA is reported using
either the XPower Power Estimator or the XPower Analyzer
calculator integrated in the Xilinx® ISE® development
software. Table 62 provides the thermal characteristics for
the various Spartan-3A FPGA package offerings. This
information is also available using the Thermal Query tool
on xilinx.com (www.xilinx.com/cgi-bin/thermal/thermal.pl).
The junction-to-case thermal resistance (θJC) indicates the
difference between the temperature measured on the
package body (case) and the die junction temperature per
watt of power consumption. The junction-to-board (θJB)
value similarly reports the difference between the board and
junction temperature. The junction-to-ambient (θJA) value
reports the temperature difference between the ambient
environment and the junction temperature. The θJA value is
reported at different air velocities, measured in linear feet
per minute (LFM). The “Still Air (0 LFM)” column shows the
θJA value in a system without a fan. The thermal resistance
drops with increasing air flow.
Table 62: Spartan-3A Package Thermal Characteristics
Package Device
Junction-to-Case
(θJC)
Junction-to-
Board (θJB)
Junction-to-Ambient (θJA)
at Different Air Flows
Units
Still Air
(0 LFM) 250 LFM 500 LFM 750 LFM
VQ100
VQG100
XC3S50A 12.9 30.1 48.5 40.4 37.6 36.6 °C/Watt
XC3S200A 10.9 25.7 42.9 35.7 33.2 32.4 °C/Watt
TQ144
TQG144 XC3S50A 16.5 32.0 42.4 36.3 35.8 34.9 °C/Watt
FT256
FTG256
XC3S50A 16.0 33.5 42.3 35.6 35.5 34.5 °C/Watt
XC3S200A 10.3 23.8 32.7 26.6 26.1 25.2 °C/Watt
XC3S400A 8.4 19.3 29.9 24.9 23.0 22.3 °C/Watt
XC3S700A 7.8 18.6 28.1 22.3 21.2 20.7 °C/Watt
XC3S1400A 5.4 14.1 24.2 18.7 17.5 17.0 °C/Watt
FG320
FGG320
XC3S200A 11.7 18.5 27.8 22.3 21.1 20.3 °C/Watt
XC3S400A 9.9 15.4 25.2 19.8 18.6 17.8 °C/Watt
FG400
FGG400
XC3S400A 9.8 15.5 25.6 19.2 18.0 17.3 °C/Watt
XC3S700A 8.2 13.0 23.1 17.9 16.7 16.0 °C/Watt
FG484
FGG484
XC3S700A 7.9 12.8 22.3 17.4 16.2 15.5 °C/Watt
XC3S1400A 6.0 9.9 19.5 14.7 13.5 12.8 °C/Watt
FG676
FGG676 XC3S1400A 5.8 9.4 17.8 13.5 12.4 11.8 °C/Watt
Pinout Descriptions
70 www.xilinx.com DS529-4 (v2.0) August 19, 2010
VQ100: 100-lead Very Thin Quad Flat Package
The XC3S50A and XC3S200 are available in the 100-lead
very thin quad flat package, VQ100.
Table 6 3 lists all the package pins. They are sorted by bank
number and then by pin name. Pins that form a differential
I/O pair appear together in the table. The table also shows
the pin number for each pin and the pin type, as defined
earlier.
The VQ100 does not support Suspend mode (SUSPEND
and AWAKE are not connected), the address output pins for
the Byte-wide Peripheral Interface (BPI) configuration mode,
or daisy chain configuration (DOUT is not connected).
Table 6 3 also indicates that some differential I/O pairs have
different assignments between the XC3S50A and the
XC3S200A, highlighted in light blue. See "Footprint
Migration Differences," page 72 for additional information.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip.
Pinout Table
Table 63: Spartan-3A VQ100 Pinout
Bank Pin Name Pin Type
0 IO_0/GCLK11 P90 CLK
0 IO_L01N_0 P78 IO
0 IO_L01P_0/VREF_0 P77 VREF
0 IO_L02N_0/GCLK5 P84 CLK
0 IO_L02P_0/GCLK4 P83 CLK
0 IO_L03N_0/GCLK7 P86 CLK
0 IO_L03P_0/GCLK6 P85 CLK
0 IO_L04N_0/GCLK9 P89 CLK
0 IO_L04P_0/GCLK8 P88 CLK
0 IO_L05N_0 P94 IO
0 IO_L05P_0 P93 IO
0 IO_L06N_0/PUDC_B P99 DUAL
0 IO_L06P_0/VREF_0 P98 VREF
0IP_0 P97 IP
0 IP_0/VREF_0 P82 VREF
0 VCCO_0 P79 VCCO
0 VCCO_0 P96 VCCO
1 IO_L01N_1 P57 IO
1 IO_L01P_1 P56 IO
1 IO_L02N_1/RHCLK1 P60 CLK
1 IO_L02P_1/RHCLK0 P59 CLK
1 IO_L03N_1/TRDY1/RHCLK3 P62 CLK
1 IO_L03P_1/RHCLK2 P61 CLK
1 IO_L04N_1/RHCLK7 P65 CLK
1 IO_L04P_1/IRDY1/RHCLK6 P64 CLK
1 IO_L05N_1 P71 IO
1 IO_L05P_1 P70 IO
1 IO_L06N_1 P73 IO
1 IO_L06P_1 P72 IO
1 IP_1/VREF_1 P68 VREF
1 VCCO_1 P67 VCCO
2 IO_2/MOSI/CSI_B P46 DUAL
2 IO_L01N_2/M0 P25 DUAL
2 IO_L01P_2/M1 P23 DUAL
2 IO_L02N_2/CSO_B P27 DUAL
2 IO_L02P_2/M2 P24 DUAL
2IO_L03N_2/VS1 (3S50A)
IO_L04P_2/VS1 (3S200A) P30 DUAL
2 IO_L03P_2/RDWR_B P28 DUAL
2 IO_L04N_2/VS0 P31 DUAL
2IO_L04P_2/VS2 (3S50A)
IO_L03N_2/VS2 (3S200A) P29 DUAL
2IO_L05N_2/D7 (3S50A)
IO_L06P_2/D7 (3S200A) P34 DUAL
2 IO_L05P_2 P32 IO
2 IO_L06N_2/D6 P35 DUAL
2IO_L06P_2 (3S50A)
IO_L05N_2 (3S200A) P33 IO
2 IO_L07N_2/D4 P37 DUAL
2 IO_L07P_2/D5 P36 DUAL
2 IO_L08N_2/GCLK15 P41 CLK
2 IO_L08P_2/GCLK14 P40 CLK
2 IO_L09N_2/GCLK1 P44 CLK
2 IO_L09P_2/GCLK0 P43 CLK
2 IO_L10N_2/D3 P49 DUAL
2 IO_L10P_2/INIT_B P48 DUAL
2
IO_L11N_2/D0/DIN/MISO
(3S50A)
IO_L12P_2/D0/DIN/MISO
(3S200A)
P51 DUAL
2 IO_L11P_2/D2 P50 DUAL
2 IO_L12N_2/CCLK P53 DUAL
Table 63: Spartan-3A VQ100 Pinout(Continued)
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 71
2IO_L12P_2/D1 (3S50A)
IO_L11N_2/D1 (3S200A) P52 DUAL
2 IP_2/VREF_2 P39 VREF
2 VCCO_2 P26 VCCO
2 VCCO_2 P45 VCCO
3 IO_L01N_3 P4 IO
3 IO_L01P_3 P3 IO
3 IO_L02N_3 P6 IO
3 IO_L02P_3 P5 IO
3 IO_L03N_3/LHCLK1 P10 CLK
3 IO_L03P_3/LHCLK0 P9 CLK
3 IO_L04N_3/IRDY2/LHCLK3 P13 CLK
3 IO_L04P_3/LHCLK2 P12 CLK
3 IO_L05N_3/LHCLK7 P16 CLK
3 IO_L05P_3/TRDY2/LHCLK6 P15 CLK
3 IO_L06N_3 P20 IO
3 IO_L06P_3 P19 IO
3IP_3 P21 IP
3 IP_3/VREF_3 P7 VREF
3 VCCO_3 P11 VCCO
GND GND P14 GND
GND GND P18 GND
GND GND P42 GND
GND GND P47 GND
GND GND P58 GND
GND GND P63 GND
GND GND P69 GND
GND GND P74 GND
GND GND P8 GND
GND GND P80 GND
GND GND P87 GND
GND GND P91 GND
GND GND P95 GND
VCCAUX DONE P54 CONFIG
VCCAUX PROG_B P100 CONFIG
VCCAUX TCK P76 JTAG
VCCAUX TDI P2 JTAG
VCCAUX TDO P75 JTAG
VCCAUX TMS P1 JTAG
VCCAUX VCCAUX P22 VCCAUX
VCCAUX VCCAUX P55 VCCAUX
VCCAUX VCCAUX P92 VCCAUX
Table 63: Spartan-3A VQ100 Pinout(Continued)
VCCINT VCCINT P17 VCCINT
VCCINT VCCINT P38 VCCINT
VCCINT VCCINT P66 VCCINT
VCCINT VCCINT P81 VCCINT
Table 63: Spartan-3A VQ100 Pinout(Continued)
Pinout Descriptions
72 www.xilinx.com DS529-4 (v2.0) August 19, 2010
User I/Os by Bank
Table 6 4 indicates how the 68 available user-I/O pins are
distributed between the four I/O banks on the VQ100
package.
Footprint Migration Differences
The XC3S50A and XC3S200 have common VQ100 pinouts
except for some differences in alignment of differential I/O
pairs.
Differential I/O Alignment Differences
Some differential I/O pairs in the VQ100 on the XC3S50A
FPGA are aligned differently than the corresponding pairs
on the XC3S200A FPGAs, as shown in Table 6 5 . All the
mismatched pairs are in I/O Bank 2. These differences are
indicated with the black diamond character () in the
footprint diagrams Figure 17 and Figure 18.
Table 64: User I/Os Per Bank for the XC3S50A and XC3S200A in the VQ100 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 015 31137
Right 113 60016
Bottom 226 2 0 19 1 4
Left 314 61016
TOTAL 68 17 220 623
Table 65: Differential I/O Differences in VQ100
VQ100 Pin Bank XC3S50A XC3S200A
P29
2
IIO_L04P_2/VS2 IO_L03N_2/VS2
P30 IO_L03N_2/VS1 IO_L04P_2/VS1
P33 IO_L06P_2 IO_L05N_2
P34 IO_L05N_2/D7 IO_L06P_2/D7
P51 IO_L11N_2/D0/DIN/
MISO
IO_L12P_2/D0/DIN/
MISO
P52 IO_L12P_2/D1 IO_L11N_2/D1
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 73
VQ100 Footprint (XC3S50A)
Note pin 1 indicator in top-left corner and logo orientation.
Figure 17: VQ100 Package Footprint - XC3S50A (Top View)
17 I/O: Unrestricted, general-purpose
user I/O 20 DUAL: Configuration pins, then
possible user I/O 6VREF: User I/O or input voltage
reference for bank
2INPUT: Unrestricted,
general-purpose input pin 23 CLK: User I/O, input, or global
buffer input 6VCCO: Output voltage supply for
bank
2CONFIG: Dedicated configuration
pins 4JTAG: Dedicated JTAG port pins 4VCCINT: Internal core supply
voltage (+1.2V)
0N.C.: Not connected 13 GND: Ground 3VCCAUX: Auxiliary supply voltage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Bank 0
Bank 3
Bank 1
Bank 2
VCCO_2
IO_L02N_2/CSO_B
IO_L03P_2/RDWR_B
IO_L04P_2/VS2 ()
IO_L03N_2/VS1 ()
IO_L04N_2/VS0
IO_L05P_2
IO_L06P_2 ()
IO_L05N_2/D7 ()
IO_L06N_2/D6
IO_L07P_2/D5
IO_L07N_2/D4
VCCINT
IP_2/VREF_2
IO_L08P_2/GCLK14
IO_L08N_2/GCLK15
GND
IO_L09P_2/GCLK0
IO_L09N_2/GCLK1
VCCO_2
IO_2/MOSI/CSI_B
GND
IO_L10P_2/INIT_B
IO_L10N_2/D3
IO_L11P_2/D2
PROG_B
IO_L06N_0/PUDC_B
IO_L06P_0/VREF_0
IP_0
VCCO_0
GND
IO_L05N_0
IO_L05P_0
VCCAUX
GND
IO_0/GCLK11
IO_L04N_0/GCLK9
IO_L04P_0/GCLK8
GND
IO_L03N_0/GCLK7
IO_L03P_0/GCLK6
IO_L02N_0/GCLK5
IO_L02P_0/GCLK4
IP_0/VREF_0
VCCINT
GND
VCCO_0
IO_L01N_0
IO_L01P_0/VREF_0
TCK
TDO
GND
IO_L06N_1
IO_L06P_1
IO_L05N_1
IO_L05P_1
GND
IP_1/VREF_1
VCCO_1
VCCINT
IO_L04N_1/RHCLK7
IO_L04P_1/IRDY1/RHCLK6
GND
IO_L03N_1/TRDY1/RHCLK3
IO_L03P_1/RHCLK2
IO_L02N_1/RHCLK1
IO_L02P_1/RHCLK0
GND
IO_L01N_1
IO_L01P_1
VCCAUX
DONE
IO_L12N_2/CCLK
IO_L12P_2/D1()
IO_L11N_2/D0/DIN/MISO ()
TMS
TDI
IO_L01P_3
IO_L01N_3
IO_L02P_3
IO_L02N_3
IP_3/VREF_3
GND
IO_L03P_3/LHCLK0
IO_L03N_3/LHCLK1
VCCO_3
IO_L04P_3/LHCLK2
IO_L04N_3/IRDY2/LHCLK3
GND
IO_L05P_3/TRDY2/LHCLK6
IO_L05N_3/LHCLK7
VCCINT
GND
IO_L06P_3
IO_L06N_3
IP_3
VCCAUX
IO_L01P_2/M1
IO_L02P_2/M2
IO_L01N_2/M0
Pinout Descriptions
74 www.xilinx.com DS529-4 (v2.0) August 19, 2010
VQ100 Footprint (XC3S200A)
Note pin 1 indicator in top-left corner and logo orientation.
Figure 18: VQ100 Package Footprint - XC3S200A (Top View)
17 I/O: Unrestricted, general-purpose
user I/O 20 DUAL: Configuration pins, then
possible user I/O 6VREF: User I/O or input voltage
reference for bank
2INPUT: Unrestricted,
general-purpose input pin 23 CLK: User I/O, input, or global
buffer input 6VCCO: Output voltage supply for
bank
2CONFIG: Dedicated configuration
pins 4JTAG: Dedicated JTAG port pins 4VCCINT: Internal core supply
voltage (+1.2V)
0N.C.: Not connected 13 GND: Ground 3VCCAUX: Auxiliary supply voltage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Bank 0
Bank 3
Bank 1
Bank 2
VCCO_2
IO_L02N_2/CSO_B
IO_L03P_2/RDWR_B
IO_L03N_2/VS2 ()
IO_L04P_2/VS1()
IO_L04N_2/VS0
IO_L05P_2
IO_L05N_2 ()
IO_L06P_2/D7 ()
IO_L06N_2/D6
IO_L07P_2/D5
IO_L07N_2/D4
VCCINT
IP_2/VREF_2
IO_L08P_2/GCLK14
IO_L08N_2/GCLK15
GND
IO_L09P_2/GCLK0
IO_L09N_2/GCLK1
VCCO_2
IO_2/MOSI/CSI_B
GND
IO_L10P_2/INIT_B
IO_L10N_2/D3
IO_L11P_2/D2
PROG_B
IO_L06N_0/PUDC_B
IO_L06P_0/VREF_0
IP_0
VCCO_0
GND
IO_L05N_0
IO_L05P_0
VCCAUX
GND
IO_0/GCLK11
IO_L04N_0/GCLK9
IO_L04P_0/GCLK8
GND
IO_L03N_0/GCLK7
IO_L03P_0/GCLK6
IO_L02N_0/GCLK5
IO_L02P_0/GCLK4
IP_0/VREF_0
VCCINT
GND
VCCO_0
IO_L01N_0
IO_L01P_0/VREF_0
TCK
200A
TDO
GND
IO_L06N_1
IO_L06P_1
IO_L05N_1
IO_L05P_1
GND
IP_1/VREF_1
VCCO_1
VCCINT
IO_L04N_1/RHCLK7
IO_L04P_1/IRDY1/RHCLK6
GND
IO_L03N_1/TRDY1/RHCLK3
IO_L03P_1/RHCLK2
IO_L02N_1/RHCLK1
IO_L02P_1/RHCLK0
GND
IO_L01N_1
IO_L01P_1
VCCAUX
DONE
IO_L12N_2/CCLK
IO_L11N_2/D1()
IO_L12P_2/D0/DIN/MISO ()
TMS
TDI
IO_L01P_3
IO_L01N_3
IO_L02P_3
IO_L02N_3
IP_3/VREF_3
GND
IO_L03P_3/LHCLK0
IO_L03N_3/LHCLK1
VCCO_3
IO_L04P_3/LHCLK2
IO_L04N_3/IRDY2/LHCLK3
GND
IO_L05P_3/TRDY2/LHCLK6
IO_L05N_3/LHCLK7
VCCINT
GND
IO_L06P_3
IO_L06N_3
IP_3
VCCAUX
IO_L01P_2/M1
IO_L02P_2/M2
IO_L01N_2/M0
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 75
TQ144: 144-lead Thin Quad Flat Package
The XC3S50A is available in the 144-lead thin quad flat
package, TQ144.
Table 6 6 lists all the package pins. They are sorted by bank
number and then by pin name. Pins that form a differential
I/O pair appear together in the table. The table also shows
the pin number for each pin and the pin type, as defined
earlier.
The XC3S50A does not support the address output pins for
the Byte-wide Peripheral Interface (BPI) configuration mode.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip.
Pinout Table
Table 66: Spartan-3A TQ144 Pinout
Bank Pin Name Pin Type
0 IO_0 P142 I/O
0 IO_L01N_0 P111 I/O
0 IO_L01P_0 P110 I/O
0 IO_L02N_0 P113 I/O
0 IO_L02P_0/VREF_0 P112 VREF
0 IO_L03N_0 P117 I/O
0 IO_L03P_0 P115 I/O
0 IO_L04N_0 P116 I/O
0 IO_L04P_0 P114 I/O
0 IO_L05N_0 P121 I/O
0 IO_L05P_0 P120 I/O
0 IO_L06N_0/GCLK5 P126 GCLK
0 IO_L06P_0/GCLK4 P124 GCLK
0 IO_L07N_0/GCLK7 P127 GCLK
0 IO_L07P_0/GCLK6 P125 GCLK
0 IO_L08N_0/GCLK9 P131 GCLK
0 IO_L08P_0/GCLK8 P129 GCLK
0 IO_L09N_0/GCLK11 P132 GCLK
0 IO_L09P_0/GCLK10 P130 GCLK
0 IO_L10N_0 P135 I/O
0 IO_L10P_0 P134 I/O
0 IO_L11N_0 P139 I/O
0 IO_L11P_0 P138 I/O
0 IO_L12N_0/PUDC_B P143 DUAL
0 IO_L12P_0/VREF_0 P141 VREF
0 IP_0 P140 INPUT
0 IP_0/VREF_0 P123 VREF
0 VCCO_0 P119 VCCO
0 VCCO_0 P136 VCCO
1 IO_1 P79 I/O
1 IO_L01N_1/LDC2 P78 DUAL
1 IO_L01P_1/HDC P76 DUAL
1 IO_L02N_1/LDC0 P77 DUAL
1 IO_L02P_1/LDC1 P75 DUAL
1 IO_L03N_1 P84 I/O
1 IO_L03P_1 P82 I/O
1 IO_L04N_1/RHCLK1 P85 RHCLK
1 IO_L04P_1/RHCLK0 P83 RHCLK
1 IO_L05N_1/TRDY1/RHCLK3 P88 RHCLK
1 IO_L05P_1/RHCLK2 P87 RHCLK
1 IO_L06N_1/RHCLK5 P92 RHCLK
1 IO_L06P_1/RHCLK4 P90 RHCLK
1 IO_L07N_1/RHCLK7 P93 RHCLK
1 IO_L07P_1/IRDY1/RHCLK6 P91 RHCLK
1 IO_L08N_1 P98 I/O
1 IO_L08P_1 P96 I/O
1 IO_L09N_1 P101 I/O
1 IO_L09P_1 P99 I/O
1 IO_L10N_1 P104 I/O
1 IO_L10P_1 P102 I/O
1 IO_L11N_1 P105 I/O
1 IO_L11P_1 P103 I/O
1 IP_1/VREF_1 P80 VREF
1 IP_1/VREF_1 P97 VREF
1 VCCO_1 P86 VCCO
1 VCCO_1 P95 VCCO
2 IO_2/MOSI/CSI_B P62 DUAL
2 IO_L01N_2/M0 P38 DUAL
2 IO_L01P_2/M1 P37 DUAL
2 IO_L02N_2/CSO_B P41 DUAL
2 IO_L02P_2/M2 P39 DUAL
2 IO_L03N_2/VS1 P44 DUAL
2 IO_L03P_2/RDWR_B P42 DUAL
2 IO_L04N_2/VS0 P45 DUAL
2 IO_L04P_2/VS2 P43 DUAL
2 IO_L05N_2/D7 P48 DUAL
Table 66: Spartan-3A TQ144 Pinout(Continued)
Bank Pin Name Pin Type
Pinout Descriptions
76 www.xilinx.com DS529-4 (v2.0) August 19, 2010
2 IO_L05P_2 P46 I/O
2 IO_L06N_2/D6 P49 DUAL
2 IO_L06P_2 P47 I/O
2 IO_L07N_2/D4 P51 DUAL
2 IO_L07P_2/D5 P50 DUAL
2 IO_L08N_2/GCLK15 P55 GCLK
2 IO_L08P_2/GCLK14 P54 GCLK
2 IO_L09N_2/GCLK1 P59 GCLK
2 IO_L09P_2/GCLK0 P57 GCLK
2 IO_L10N_2/GCLK3 P60 GCLK
2 IO_L10P_2/GCLK2 P58 GCLK
2 IO_L11N_2/DOUT P64 DUAL
2 IO_L11P_2/AWAKE P63 PWR
MGMT
2 IO_L12N_2/D3 P68 DUAL
2 IO_L12P_2/INIT_B P67 DUAL
2 IO_L13N_2/D0/DIN/MISO P71 DUAL
2 IO_L13P_2/D2 P69 DUAL
2 IO_L14N_2/CCLK P72 DUAL
2 IO_L14P_2/D1 P70 DUAL
2 IP_2/VREF_2 P53 VREF
2 VCCO_2 P40 VCCO
2 VCCO_2 P61 VCCO
3 IO_L01N_3 P6 I/O
3 IO_L01P_3 P4 I/O
3 IO_L02N_3 P5 I/O
3 IO_L02P_3 P3 I/O
3 IO_L03N_3 P8 I/O
3 IO_L03P_3 P7 I/O
3 IO_L04N_3/VREF_3 P11 VREF
3 IO_L04P_3 P10 I/O
3 IO_L05N_3/LHCLK1 P13 LHCLK
3 IO_L05P_3/LHCLK0 P12 LHCLK
3 IO_L06N_3/IRDY2/LHCLK3 P16 LHCLK
3 IO_L06P_3/LHCLK2 P15 LHCLK
3 IO_L07N_3/LHCLK5 P20 LHCLK
3 IO_L07P_3/LHCLK4 P18 LHCLK
3 IO_L08N_3/LHCLK7 P21 LHCLK
3 IO_L08P_3/TRDY2/LHCLK6 P19 LHCLK
3 IO_L09N_3 P25 I/O
3 IO_L09P_3 P24 I/O
3 IO_L10N_3 P29 I/O
Table 66: Spartan-3A TQ144 Pinout(Continued)
Bank Pin Name Pin Type
3 IO_L10P_3 P27 I/O
3 IO_L11N_3 P30 I/O
3 IO_L11P_3 P28 I/O
3 IO_L12N_3 P32 I/O
3 IO_L12P_3 P31 I/O
3 IP_L13N_3/VREF_3 P35 VREF
3 IP_L13P_3 P33 INPUT
3 VCCO_3 P14 VCCO
3 VCCO_3 P23 VCCO
GND GND P9 GND
GND GND P17 GND
GND GND P26 GND
GND GND P34 GND
GND GND P56 GND
GND GND P65 GND
GND GND P81 GND
GND GND P89 GND
GND GND P100 GND
GND GND P106 GND
GND GND P118 GND
GND GND P128 GND
GND GND P137 GND
VCCAUX SUSPEND P74 PWR
MGMT
VCCAUX DONE P73 CONFIG
VCCAUX PROG_B P144 CONFIG
VCCAUX TCK P109 JTAG
VCCAUX TDI P2 JTAG
VCCAUX TDO P107 JTAG
VCCAUX TMS P1 JTAG
VCCAUX VCCAUX P36 VCCAUX
VCCAUX VCCAUX P66 VCCAUX
VCCAUX VCCAUX P108 VCCAUX
VCCAUX VCCAUX P133 VCCAUX
VCCINT VCCINT P22 VCCINT
VCCINT VCCINT P52 VCCINT
VCCINT VCCINT P94 VCCINT
VCCINT VCCINT P122 VCCINT
Table 66: Spartan-3A TQ144 Pinout(Continued)
Bank Pin Name Pin Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 77
User I/Os by Bank
Table 6 7 indicates how the 108 available user-I/O pins are
distributed between the four I/O banks on the TQ144
package. The AWAKE pin is counted as a dual-purpose I/O.
Footprint Migration Differences
The XC3S50A FPGA is the only Spartan-3A device offered
in the TQ144 package.
Table 67: User I/Os Per Bank for the XC3S50A in the TQ144 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 027 14 1138
Right 125 11 0428
Bottom 230 2 0 21 1 6
Left 326 15 1028
TOTAL 108 42 226 830
Pinout Descriptions
78 www.xilinx.com DS529-4 (v2.0) August 19, 2010
TQ144 Footprint
Note pin 1 indicator in top-left corner and logo orientation.
Figure 19: TQ144 Package Footprint (Top View)
42 I/O: Unrestricted, general-purpose
user I/O 25 DUAL: Configuration pins, then
possible user I/O 8VREF: User I/O or input voltage
reference for bank
2INPUT: Unrestricted,
general-purpose input pin 30 CLK: User I/O, input, or global
buffer input 8VCCO: Output voltage supply for
bank
2CONFIG: Dedicated configuration
pins 4JTAG: Dedicated JTAG port pins 4VCCINT: Internal core supply
voltage (+1.2V)
0N.C.: Not connected 13 GND: Ground 4VCCAUX: Auxiliary supply voltage
2SUSPEND: Dedicated SUSPEND
and dual-purpose AWAKE Power
Management pins
PROG_B
IO_L12N_0/PUDC_B
IO_0
IO_L12P_0/VREF_0
IP_0
IO_L11N_0
IO_L11P_0
GND
VCCO_0
IO_L10N_0
IO_L10P_0
VCCAUX
IO_L09N_0/GCLK11
IO_L08N_0/GCLK9
IO_L09P_0/GCLK10
IO_L08P_0/GCLK8
GND
IO_L07N_0/GCLK7
IO_L06N_0/GCLK5
IO_L07P_0/GCLK6
IO_L06P_0/GCLK4
IP_0/VREF_0
VCCINT
IO_L05N_0
IO_L05P_0
VCCO_0
GND
IO_L03N_0
IO_L04N_0
IO_L03P_0
IO_L04P_0
IO_L02N_0
IO_L02P_0/VREF_0
IO_L01N_0
IO_L01P_0
TCK
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
TMS1108VCCAUX
TDI 2107 TD
O
IO_L02P_33
X
106 GND
IO_L01P_34105 IO_L11N_1
IO_L02N_35 104 IO_L10N_1
IO_L01N_36103IO_L11P_1
IO_L03P_37102 IO_L10P_1
IO_L03N_38 101 IO_L09N_1
GND 9100 GND
IO_L04P_310 99 IO_L09P_1
IO_L04N_3/VREF_
3
11 98IO_L08N_1
IO_L05P_3/LHCLK
0
12 97 IP_1/VREF_1
IO_L05N_3/LHCLK1 1396 IO_L08P_1
VCCO_314 95 VCCO_1
IO_L06P_3/LHCLK2 15 94 VCCINT
IO_L06N_3/LHCLK
3
16 93IO_L07N_1/RHCLK
7
GND 17 92 IO_L06N_1/RHCLK
5
IO_L07P_3/LHCLK
4
1891 IO_L07P_1/RHCLK
6
IO_L08P_3/LHCLK
6
19 90 IO_L06P_1/RHCLK
4
IO_L07N_3/LHCLK
5
20 89GND
IO_L08N_3/LHCLK
7
21 88 IO_L05N_1/RHCLK
3
VCCINT 22 87IO_L05P_1/RHCLK2
VCCO_323 86 VCCO_1
IO_L09P_324 85IO_L04N_1/RHCLK1
IO_L09N_325 84 IO_L03N_1
GND 26 83 IO_L04P_1/RHCLK
0
IO_L10P_327 82 IO_L03P_1
IO_L11P_32881GND
IO_L10N_329 80 IP_1/VREF_1
IO_L11N_33079 IO_1
IO_L12P_331 78IO_L01N_1/LDC2
IO_L12N_332 77 IO_L02N_1/LDC
0
IP_L13P_333 76 I
O
_L01P_1
/
HD
C
G
ND 3475 I
O
_L02P_1
/
LD
C
1
IP_L13N_3/VREF_
3
3574 SUSPEND
V
CC
AUX 36 73DONE
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
IO_L01P_2/M1
IO_L01N_2/M0
IO_L02P_2/M2
VCCO_2
IO_L02N_2/CSO_B
IO_L03P_2/RDWR_B
IO_L04P_2/VS2
IO_L03N_2/VS1
IO_L04N_2/VS0
IO_L05P_2
IO_L06P_2
IO_L05N_2/D7
IO_L06N_2/D6
IO_L07P_2/D5
IO_L07N_2/D4
VCCINT
IP_2/VREF_2
IO_L08P_2/GCLK14
IO_L08N_2/GCLK15
GND
IO_L09P_2/GCLK0
IO_L10P_2/GCLK2
IO_L09N_2/GCLK1
IO_L10N_2/GCLK3
VCCO_2
IO_2/MOSI/CSI_B
IO_L11P_2/AWAKE
IO_L11N_2/DOUT
GND
VCCAUX
IO_L12P_2/INIT_B
IO_L12N_2/D3
IO_L13P_2/D2
IO_L14P_2/D1
IO_L13N_2/D0/DIN/MISO
IO_L14N_2/CCLK
Bank 3
Bank 1
Bank 0
Bank 2
DS529-4_10_031207
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 79
FT256: 256-ball Fine-pitch, Thin Ball Grid Array
The 256-ball fine-pitch, thin ball grid array package, FT256,
supports all five Spartan-3A FPGAs. The XC3S200A and
XC3S400A have identical footprints, and the XC3S700A
and XC3S1400A have identical footprints. The XC3S50A is
compatible with the XC3S200A/XC3S400A but has 51
unconnected balls. The XC3S200A/XC3S400A is similar to
the XC3S700A/XC3S1400A, but the XC3S700A/
XC3S1400A adds more power and ground pins and
therefore is not compatible.
Table 6 8 lists all the package pins for the XC3S50A,
XC3S200A, and XC3S400A. They are sorted by bank
number and then by pin name of the largest device. Pins
that form a differential I/O pair appear together in the table.
The table also shows the pin number for each pin and the
pin type, as defined earlier.
The highlighted rows indicate pinout differences between
the XC3S50A, the XC3S200A, and the XC3S400A FPGAs.
The XC3S50A has 51 unconnected balls, indicated as N.C.
(No Connection) in Table 68 and Figure 20 and with the
black diamond character () in Table 6 8 . Figure 21
provides the common footprint for the XC3S200A and
XC3S400A.
Table 6 8 also indicates that some differential I/O pairs have
different assignments between the XC3S50A and the
XC3S200A/XC3S400A, highlighted in light blue. See
"Footprint Migration Differences," page 99 for additional
information.
All other balls have nearly identical functionality on all three
devices. Table 73 summarizes the XC3S50A FPGA footprint
migration differences for the FT256 package.
The XC3S50A does not support the address output pins for
the Byte-wide Peripheral Interface (BPI) configuration mode.
Table 6 9 lists all the package pins for the XC3S700A and
XC3S1400A. They are sorted by bank number and then by
pin name. Pins that form a differential I/O pair appear
together in the table. The table also shows the pin number
for each pin and the pin type, as defined earlier. Figure 22
provides the common footprint for the XC3S200A and
XC3S400A.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip.
Pinout Table
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type
0 IO_L01N_0 IO_L01N_0 C13 I/O
0 IO_L01P_0 IO_L01P_0 D13 I/O
0 IO_L02N_0 IO_L02N_0 B14 I/O
0IO_L02P_0/
VREF_0
IO_L02P_0/
VREF_0 B15 VREF
0 IO_L03N_0 IO_L03N_0 D11 I/O
0 IO_L03P_0 IO_L03P_0 C12 I/O
0 IO_L04N_0 IO_L04N_0 A13 I/O
0 IO_L04P_0 IO_L04P_0 A14 I/O
0N.C. () IO_L05N_0 A12 I/O
0 IP_0 IO_L05P_0 B12 I/O
0N.C. () IO_L06N_0/
VREF_0 E10 VREF
0N.C. () IO_L06P_0 D10 I/O
0 IO_L07N_0 IO_L07N_0 A11 I/O
0 IO_L07P_0 IO_L07P_0 C11 I/O
0 IO_L08N_0 IO_L08N_0 A10 I/O
0 IO_L08P_0 IO_L08P_0 B10 I/O
0IO_L09N_0/
GCLK5
IO_L09N_0/
GCLK5 D9 GCLK
0IO_L09P_0/
GCLK4
IO_L09P_0/
GCLK4 C10 GCLK
0IO_L10N_0/
GCLK7
IO_L10N_0/
GCLK7 A9 GCLK
0IO_L10P_0/
GCLK6
IO_L10P_0/
GCLK6 C9 GCLK
0IO_L11N_0/
GCLK9
IO_L11N_0/
GCLK9 D8 GCLK
0IO_L11P_0/
GCLK8
IO_L11P_0/
GCLK8 C8 GCLK
0IO_L12N_0/
GCLK11
IO_L12N_0/
GCLK11 B8 GCLK
0IO_L12P_0/
GCLK10
IO_L12P_0/
GCLK10 A8 GCLK
0N.C. () IO_L13N_0 C7 I/O
0N.C. () IO_L13P_0 A7 I/O
0N.C. () IO_L14N_0/
VREF_0 E7 VREF
0N.C. () IO_L14P_0 F8 I/O
0 IO_L15N_0 IO_L15N_0 B6 I/O
0 IO_L15P_0 IO_L15P_0 A6 I/O
0 IO_L16N_0 IO_L16N_0 C6 I/O
0 IO_L16P_0 IO_L16P_0 D7 I/O
0 IO_L17N_0 IO_L17N_0 C5 I/O
Pinout Descriptions
80 www.xilinx.com DS529-4 (v2.0) August 19, 2010
0 IO_L17P_0 IO_L17P_0 A5 I/O
0 IO_L18N_0 IO_L18N_0 B4 I/O
0 IO_L18P_0 IO_L18P_0 A4 I/O
0 IO_L19N_0 IO_L19N_0 B3 I/O
0 IO_L19P_0 IO_L19P_0 A3 I/O
0IO_L20N_0/
PUDC_B
IO_L20N_0/
PUDC_B D5 DUAL
0IO_L20P_0/
VREF_0
IO_L20P_0/
VREF_0 C4 VREF
0 IP_0 IP_0 D6 INPUT
0 IP_0 IP_0 D12 INPUT
0 IP_0 IP_0 E6 INPUT
0 IP_0 IP_0 F7 INPUT
0 IP_0 IP_0 F9 INPUT
0 IP_0 IP_0 F10 INPUT
0 IP_0/VREF_0 IP_0/VREF_0 E9 VREF
0 VCCO_0 VCCO_0 B5 VCCO
0 VCCO_0 VCCO_0 B9 VCCO
0 VCCO_0 VCCO_0 B13 VCCO
0 VCCO_0 VCCO_0 E8 VCCO
1IO_L01N_1/
LDC2
IO_L01N_1/
LDC2 N14 DUAL
1IO_L01P_1/
HDC
IO_L01P_1/
HDC N13 DUAL
1IO_L02N_1/
LDC0
IO_L02N_1/
LDC0 P15 DUAL
1IO_L02P_1/
LDC1
IO_L02P_1/
LDC1 R15 DUAL
1IO_L03N_1 IO_L03N_1/A1 N16 DUAL
1IO_L03P_1 IO_L03P_1/A0 P16 DUAL
1N.C. () IO_L05N_1/
VREF_1 M14 VREF
1N.C. () IO_L05P_1 M13 I/O
1N.C. () IO_L06N_1/A3 K13 DUAL
1N.C. () IO_L06P_1/A2 L13 DUAL
1N.C. () IO_L07N_1/A5 M16 DUAL
1N.C. () IO_L07P_1/A4 M15 DUAL
1N.C. () IO_L08N_1/A7 L16 DUAL
1N.C. () IO_L08P_1/A6 L14 DUAL
1IO_L10N_1 IO_L10N_1/A9 J13 DUAL
1IO_L10P_1 IO_L10P_1/A8 J12 DUAL
1IO_L11N_1/
RHCLK1
IO_L11N_1/
RHCLK1 K14 RHCLK
1IO_L11P_1/
RHCLK0
IO_L11P_1/
RHCLK0 K15 RHCLK
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400) (Continued)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type
1IO_L12N_1/
TRDY1/RHCLK3
IO_L12N_1/
TRDY1/RHCLK3 J16 RHCLK
1IO_L12P_1/
RHCLK2
IO_L12P_1/
RHCLK2 K16 RHCLK
1IO_L14N_1/
RHCLK5
IO_L14N_1/
RHCLK5 H14 RHCLK
1IO_L14P_1/
RHCLK4
IO_L14P_1/
RHCLK4 J14 RHCLK
1IO_L15N_1/
RHCLK7
IO_L15N_1/
RHCLK7 H16 RHCLK
1IO_L15P_1/
IRDY1/RHCLK6
IO_L15P_1/
IRDY1/RHCLK6 H15 RHCLK
1N.C. () IO_L16N_1/A11 F16 DUAL
1N.C. () IO_L16P_1/A10 G16 DUAL
1N.C. () IO_L17N_1/A13 G14 DUAL
1N.C. () IO_L17P_1/A12 H13 DUAL
1N.C. () IO_L18N_1/A15 F15 DUAL
1N.C. () IO_L18P_1/A14 E16 DUAL
1N.C. () IO_L19N_1/A17 F14 DUAL
1N.C. () IO_L19P_1/A16 G13 DUAL
1IO_L20N_1 IO_L20N_1/A19 F13 DUAL
1IO_L20P_1 IO_L20P_1/A18 E14 DUAL
1IO_L22N_1 IO_L22N_1/A21 D15 DUAL
1IO_L22P_1 IO_L22P_1/A20 D16 DUAL
1IO_L23N_1 IO_L23N_1/A23 D14 DUAL
1IO_L23P_1 IO_L23P_1/A22 E13 DUAL
1IO_L24N_1 IO_L24N_1/A25 C15 DUAL
1IO_L24P_1 IO_L24P_1/A24 C16 DUAL
1IP_L04N_1/
VREF_1
IP_L04N_1/
VREF_1 K12 VREF
1 IP_L04P_1 IP_L04P_1 K11 INPUT
1N.C. () IP_L09N_1 J11 INPUT
1N.C. () IP_L09P_1/
VREF_1 J10 VREF
1 IP_L13N_1 IP_L13N_1 H11 INPUT
1 IP_L13P_1 IP_L13P_1 H10 INPUT
1 IP_L21N_1 IP_L21N_1 G11 INPUT
1IP_L21P_1/
VREF_1
IP_L21P_1/
VREF_1 G12 VREF
1 IP_L25N_1 IP_L25N_1 F11 INPUT
1IP_L25P_1/
VREF_1
IP_L25P_1/
VREF_1 F12 VREF
1 VCCO_1 VCCO_1 E15 VCCO
1 VCCO_1 VCCO_1 H12 VCCO
1 VCCO_1 VCCO_1 J15 VCCO
1 VCCO_1 VCCO_1 N15 VCCO
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400) (Continued)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 81
2 IO_L01N_2/M0 IO_L01N_2/M0 P4 DUAL
2 IO_L01P_2/M1 IO_L01P_2/M1 N4 DUAL
2IO_L02N_2/
CSO_B
IO_L02N_2/
CSO_B T2 DUAL
2 IO_L02P_2/M2 IO_L02P_2/M2 R2 DUAL
2IO_L04P_2/VS2 IO_L03N_2/VS2 T3 DUAL
2IO_L03P_2/
RDWR_B
IO_L03P_2/
RDWR_B R3 DUAL
2 IO_L04N_2/VS0 IO_L04N_2/VS0 P5 DUAL
2IO_L03N_2/VS1 IO_L04P_2/VS1 N6 DUAL
2IO_L06P_2 IO_L05N_2 R5 I/O
2 IO_L05P_2 IO_L05P_2 T4 I/O
2 IO_L06N_2/D6 IO_L06N_2/D6 T6 DUAL
2IO_L05N_2/D7 IO_L06P_2/D7 T5 DUAL
2N.C. () IO_L07N_2 P6 I/O
2N.C. () IO_L07P_2 N7 I/O
2 IO_L08N_2/D4 IO_L08N_2/D4 N8 DUAL
2 IO_L08P_2/D5 IO_L08P_2/D5 P7 DUAL
2N.C. () IO_L09N_2/
GCLK13 T7 GCLK
2N.C. () IO_L09P_2/
GCLK12 R7 GCLK
2IO_L10N_2/
GCLK15
IO_L10N_2/
GCLK15 T8 GCLK
2IO_L10P_2/
GCLK14
IO_L10P_2/
GCLK14 P8 GCLK
2IO_L11N_2/
GCLK1
IO_L11N_2/
GCLK1 P9 GCLK
2IO_L11P_2/
GCLK0
IO_L11P_2/
GCLK0 N9 GCLK
2IO_L12N_2/
GCLK3
IO_L12N_2/
GCLK3 T9 GCLK
2IO_L12P_2/
GCLK2
IO_L12P_2/
GCLK2 R9 GCLK
2N.C. () IO_L13N_2 M10 I/O
2N.C. () IO_L13P_2 N10 I/O
2IO_L14P_2/
MOSI/CSI_B
IO_L14N_2/
MOSI/CSI_B P10 DUAL
2IO_L14N_2 IO_L14P_2 T10 I/O
2IO_L15N_2/
DOUT
IO_L15N_2/
DOUT R11 DUAL
2IO_L15P_2/
AWAKE
IO_L15P_2/
AWAKE T11 PWR
MGMT
2 IO_L16N_2 IO_L16N_2 N11 I/O
2 IO_L16P_2 IO_L16P_2 P11 I/O
2 IO_L17N_2/D3 IO_L17N_2/D3 P12 DUAL
2IO_L17P_2/
INIT_B
IO_L17P_2/
INIT_B T12 DUAL
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400) (Continued)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type
2IO_L20P_2/D1 IO_L18N_2/D1 R13 DUAL
2 IO_L18P_2/D2 IO_L18P_2/D2 T13 DUAL
2N.C. () IO_L19N_2 P13 I/O
2N.C. () IO_L19P_2 N12 I/O
2IO_L20N_2/
CCLK
IO_L20N_2/
CCLK R14 DUAL
2IO_L18N_2/D0/
DIN/MISO
IO_L20P_2/D0/
DIN/MISO T14 DUAL
2IP_2 IP_2 L7 INPUT
2IP_2 IP_2 L8 INPUT
2 IP_2/VREF_2 IP_2/VREF_2 L9 VREF
2 IP_2/VREF_2 IP_2/VREF_2 L10 VREF
2 IP_2/VREF_2 IP_2/VREF_2 M7 VREF
2 IP_2/VREF_2 IP_2/VREF_2 M8 VREF
2 IP_2/VREF_2 IP_2/VREF_2 M11 VREF
2 IP_2/VREF_2 IP_2/VREF_2 N5 VREF
2 VCCO_2 VCCO_2 M9 VCCO
2 VCCO_2 VCCO_2 R4 VCCO
2 VCCO_2 VCCO_2 R8 VCCO
2 VCCO_2 VCCO_2 R12 VCCO
3 IO_L01N_3 IO_L01N_3 C1 I/O
3 IO_L01P_3 IO_L01P_3 C2 I/O
3 IO_L02N_3 IO_L02N_3 D3 I/O
3 IO_L02P_3 IO_L02P_3 D4 I/O
3 IO_L03N_3 IO_L03N_3 E1 I/O
3 IO_L03P_3 IO_L03P_3 D1 I/O
3N.C. () IO_L05N_3 E2 I/O
3N.C. () IO_L05P_3 E3 I/O
3N.C. () IO_L07N_3 G4 I/O
3N.C. () IO_L07P_3 F3 I/O
3IO_L08N_3/
VREF_3
IO_L08N_3/
VREF_3 G1 VREF
3 IO_L08P_3 IO_L08P_3 F1 I/O
3N.C. () IO_L09N_3 H4 I/O
3N.C. () IO_L09P_3 G3 I/O
3N.C. () IO_L10N_3 H5 I/O
3N.C. () IO_L10P_3 H6 I/O
3IO_L11N_3/
LHCLK1
IO_L11N_3/
LHCLK1 H1 LHCLK
3IO_L11P_3/
LHCLK0
IO_L11P_3/
LHCLK0 G2 LHCLK
3IO_L12N_3/
IRDY2/LHCLK3
IO_L12N_3/
IRDY2/LHCLK3 J3 LHCLK
3IO_L12P_3/
LHCLK2
IO_L12P_3/
LHCLK2 H3 LHCLK
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400) (Continued)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type
Pinout Descriptions
82 www.xilinx.com DS529-4 (v2.0) August 19, 2010
3IO_L14N_3/
LHCLK5
IO_L14N_3/
LHCLK5 J1 LHCLK
3IO_L14P_3/
LHCLK4
IO_L14P_3/
LHCLK4 J2 LHCLK
3IO_L15N_3/
LHCLK7
IO_L15N_3/
LHCLK7 K1 LHCLK
3IO_L15P_3/
TRDY2/LHCLK6
IO_L15P_3/
TRDY2/LHCLK6 K3 LHCLK
3N.C. () IO_L16N_3 L2 I/O
3N.C. () IO_L16P_3/
VREF_3 L1 VREF
3N.C. () IO_L17N_3 J6 I/O
3N.C. () IO_L17P_3 J4 I/O
3N.C. () IO_L18N_3 L3 I/O
3N.C. () IO_L18P_3 K4 I/O
3N.C. () IO_L19N_3 L4 I/O
3N.C. () IO_L19P_3 M3 I/O
3 IO_L20N_3 IO_L20N_3 N1 I/O
3 IO_L20P_3 IO_L20P_3 M1 I/O
3 IO_L22N_3 IO_L22N_3 P1 I/O
3 IO_L22P_3 IO_L22P_3 N2 I/O
3 IO_L23N_3 IO_L23N_3 P2 I/O
3 IO_L23P_3 IO_L23P_3 R1 I/O
3 IO_L24N_3 IO_L24N_3 M4 I/O
3 IO_L24P_3 IO_L24P_3 N3 I/O
3IP_L04N_3/
VREF_3
IP_L04N_3/
VREF_3 F4 VREF
3 IP_L04P_3 IP_L04P_3 E4 INPUT
3N.C. () IP_L06N_3/
VREF_3 G5 VREF
3N.C. () IP_L06P_3 G6 INPUT
3 IP_L13N_3 IP_L13N_3 J7 INPUT
3 IP_L13P_3 IP_L13P_3 H7 INPUT
3 IP_L21N_3 IP_L21N_3 K6 INPUT
3 IP_L21P_3 IP_L21P_3 K5 INPUT
3IP_L25N_3/
VREF_3
IP_L25N_3/
VREF_3 L6 VREF
3 IP_L25P_3 IP_L25P_3 L5 INPUT
3 VCCO_3 VCCO_3 D2 VCCO
3 VCCO_3 VCCO_3 H2 VCCO
3 VCCO_3 VCCO_3 J5 VCCO
3 VCCO_3 VCCO_3 M2 VCCO
GND GND GND A1 GND
GND GND GND A16 GND
GND GND GND B7 GND
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400) (Continued)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type
GND GND GND B11 GND
GND GND GND C3 GND
GND GND GND C14 GND
GND GND GND E5 GND
GND GND GND E12 GND
GND GND GND F2 GND
GND GND GND F6 GND
GND GND GND G8 GND
GND GND GND G10 GND
GND GND GND G15 GND
GND GND GND H9 GND
GND GND GND J8 GND
GND GND GND K2 GND
GND GND GND K7 GND
GND GND GND K9 GND
GND GND GND L11 GND
GND GND GND L15 GND
GND GND GND M5 GND
GND GND GND M12 GND
GND GND GND P3 GND
GND GND GND P14 GND
GND GND GND R6 GND
GND GND GND R10 GND
GND GND GND T1 GND
GND GND GND T16 GND
VCCAUX SUSPEND SUSPEND R16 PWR
MGMT
VCCAUX DONE DONE T15 CONFIG
VCCAUX PROG_B PROG_B A2 CONFIG
VCCAUX TCK TCK A15 JTAG
VCCAUX TDI TDI B1 JTAG
VCCAUX TDO TDO B16 JTAG
VCCAUX TMS TMS B2 JTAG
VCCAUX VCCAUX VCCAUX E11 VCCAUX
VCCAUX VCCAUX VCCAUX F5 VCCAUX
VCCAUX VCCAUX VCCAUX L12 VCCAUX
VCCAUX VCCAUX VCCAUX M6 VCCAUX
VCCINT VCCINT VCCINT G7 VCCINT
VCCINT VCCINT VCCINT G9 VCCINT
VCCINT VCCINT VCCINT H8 VCCINT
VCCINT VCCINT VCCINT J9 VCCINT
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400) (Continued)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 83
VCCINT VCCINT VCCINT K8 VCCINT
VCCINT VCCINT VCCINT K10 VCCINT
Table 69: Spartan-3A FT256 Pinout (XC3S700A, XC3S1400A)
Bank XC3S700A
XC3S1400A
FT256
Ball Type
0 IO_L01N_0 C13 I/O
0 IO_L01P_0 D13 I/O
0 IO_L02N_0 B14 I/O
0 IO_L02P_0/VREF_0 B15 VREF
0 IO_L03N_0 D12 I/O
0 IO_L03P_0 C12 I/O
0 IO_L04N_0 A13 I/O
0 IO_L04P_0 A14 I/O
0 IO_L05N_0 A12 I/O
0 IO_L05P_0 B12 I/O
0 IO_L06N_0/VREF_0 D10 VREF
0 IO_L06P_0 D11 I/O
0 IO_L07N_0 A11 I/O
0 IO_L07P_0 C11 I/O
0 IO_L08N_0 A10 I/O
0 IO_L08P_0 B10 I/O
0 IO_L09N_0/GCLK5 D9 GCLK
0 IO_L09P_0/GCLK4 C10 GCLK
0 IO_L10N_0/GCLK7 A9 GCLK
0 IO_L10P_0/GCLK6 C9 GCLK
0 IO_L11N_0/GCLK9 D8 GCLK
0 IO_L11P_0/GCLK8 C8 GCLK
0 IO_L12N_0/GCLK11 B8 GCLK
0 IO_L12P_0/GCLK10 A8 GCLK
0 IO_L13N_0 C7 I/O
0 IO_L13P_0 A7 I/O
0 IO_L14N_0/VREF_0 E7 VREF
0 IO_L14P_0 E9 I/O
0 IO_L15N_0 B6 I/O
0 IO_L15P_0 A6 I/O
0 IO_L16N_0 C6 I/O
0 IO_L16P_0 D7 I/O
0 IO_L17N_0 C5 I/O
0 IO_L17P_0 A5 I/O
Table 68: Spartan-3A FT256 Pinout (XC3S50A,
XC3S200A, XC3S400) (Continued)
Bank XC3S50A
XC3S200A
XC3S400A
FT256
Ball Type 0 IO_L18N_0 B4 I/O
0 IO_L18P_0 A4 I/O
0 IO_L19N_0 B3 I/O
0 IO_L19P_0 A3 I/O
0 IO_L20N_0/PUDC_B D5 DUAL
0 IO_L20P_0/VREF_0 C4 VREF
0 IP_0 E6 INPUT
0 VCCO_0 B13 VCCO
0 VCCO_0 B5 VCCO
0 VCCO_0 B9 VCCO
0 VCCO_0 E8 VCCO
1 IO_L01N_1/LDC2 N14 DUAL
1 IO_L01P_1/HDC N13 DUAL
1 IO_L02N_1/LDC0 P15 DUAL
1 IO_L02P_1/LDC1 R15 DUAL
1 IO_L03N_1/A1 N16 DUAL
1 IO_L03P_1/A0 P16 DUAL
1 IO_L06N_1/A3 K13 DUAL
1 IO_L06P_1/A2 L13 DUAL
1 IO_L07N_1/A5 M16 DUAL
1 IO_L07P_1/A4 M15 DUAL
1 IO_L08N_1/A7 L16 DUAL
1 IO_L08P_1/A6 L14 DUAL
1 IO_L10N_1/A9 J13 DUAL
1 IO_L10P_1/A8 J12 DUAL
1 IO_L11N_1/RHCLK1 K14 RHCLK
1 IO_L11P_1/RHCLK0 K15 RHCLK
1 IO_L12N_1/TRDY1/RHCLK3 J16 RHCLK
1 IO_L12P_1/RHCLK2 K16 RHCLK
1 IO_L15N_1/RHCLK7 H16 RHCLK
1 IO_L15P_1/IRDY1/RHCLK6 H15 RHCLK
1 IO_L16N_1/A11 F16 DUAL
1 IO_L16P_1/A10 G16 DUAL
1 IO_L17N_1/A13 G14 DUAL
1 IO_L17P_1/A12 H13 DUAL
1 IO_L18N_1/A15 F15 DUAL
1 IO_L18P_1/A14 E16 DUAL
1 IO_L19N_1/A17 F14 DUAL
1 IO_L19P_1/A16 G13 DUAL
1 IO_L20N_1/A19 F13 DUAL
Table 69: Spartan-3A FT256 Pinout (XC3S700A,
Bank XC3S700A
XC3S1400A
FT256
Ball Type
Pinout Descriptions
84 www.xilinx.com DS529-4 (v2.0) August 19, 2010
1 IO_L20P_1/A18 E14 DUAL
1 IO_L22N_1/A21 D15 DUAL
1 IO_L22P_1/A20 D16 DUAL
1 IO_L23N_1/A23 D14 DUAL
1 IO_L23P_1/A22 E13 DUAL
1 IO_L24N_1/A25 C15 DUAL
1 IO_L24P_1/A24 C16 DUAL
1 IP_1/VREF_1 H12 VREF
1 IP_1/VREF_1 J14 VREF
1 IP_1/VREF_1 M13 VREF
1 IP_1/VREF_1 M14 VREF
1 VCCO_1 E15 VCCO
1 VCCO_1 J15 VCCO
1 VCCO_1 N15 VCCO
2 IO_L01N_2/M0 P4 DUAL
2 IO_L01P_2/M1 N4 DUAL
2 IO_L02N_2/CSO_B T2 DUAL
2 IO_L02P_2/M2 R2 DUAL
2 IO_L03N_2/VS2 T3 DUAL
2 IO_L03P_2/RDWR_B R3 DUAL
2 IO_L04N_2/VS0 P5 DUAL
2 IO_L04P_2/VS1 N6 DUAL
2 IO_L05N_2 R5 I/O
2 IO_L05P_2 T4 I/O
2 IO_L06N_2/D6 T6 DUAL
2 IO_L06P_2/D7 T5 DUAL
2 IO_L08N_2/D4 N8 DUAL
2 IO_L08P_2/D5 P7 DUAL
2 IO_L09N_2/GCLK13 T7 GCLK
2 IO_L09P_2/GCLK12 R7 GCLK
2 IO_L10N_2/GCLK15 T8 GCLK
2 IO_L10P_2/GCLK14 P8 GCLK
2 IO_L11N_2/GCLK1 P9 GCLK
2 IO_L11P_2/GCLK0 N9 GCLK
2 IO_L12N_2/GCLK3 T9 GCLK
2 IO_L12P_2/GCLK2 R9 GCLK
2 IO_L14N_2/MOSI/CSI_B P10 DUAL
2 IO_L14P_2 T10 I/O
2 IO_L15N_2/DOUT R11 DUAL
2 IO_L15P_2/AWAKE T11 PWRMGT
Table 69: Spartan-3A FT256 Pinout (XC3S700A,
Bank XC3S700A
XC3S1400A
FT256
Ball Type
2 IO_L16N_2 N11 I/O
2 IO_L16P_2 P11 I/O
2 IO_L17N_2/D3 P12 DUAL
2 IO_L17P_2/INIT_B T12 DUAL
2 IO_L18N_2/D1 R13 DUAL
2 IO_L18P_2/D2 T13 DUAL
2 IO_L19N_2 P13 I/O
2 IO_L19P_2 N12 I/O
2 IO_L20N_2/CCLK R14 DUAL
2 IO_L20P_2/D0/DIN/MISO T14 DUAL
2 IP_2/VREF_2 M11 VREF
2 IP_2/VREF_2 M7 VREF
2 IP_2/VREF_2 M9 VREF
2 IP_2/VREF_2 N5 VREF
2 IP_2/VREF_2 P6 VREF
2 VCCO_2 R12 VCCO
2 VCCO_2 R4 VCCO
2 VCCO_2 R8 VCCO
3 IO_L01N_3 C1 I/O
3 IO_L01P_3 C2 I/O
3 IO_L02N_3 D3 I/O
3 IO_L02P_3 D4 I/O
3 IO_L03N_3 E1 I/O
3 IO_L03P_3 D1 I/O
3 IO_L04N_3 F4 I/O
3 IO_L04P_3 E4 I/O
3 IO_L05N_3 E2 I/O
3 IO_L05P_3 E3 I/O
3 IO_L07N_3 G3 I/O
3 IO_L07P_3 F3 I/O
3 IO_L08N_3/VREF_3 G1 VREF
3 IO_L08P_3 F1 I/O
3 IO_L11N_3/LHCLK1 H1 LHCLK
3 IO_L11P_3/LHCLK0 G2 LHCLK
3 IO_L12N_3/IRDY2/LHCLK3 J3 LHCLK
3 IO_L12P_3/LHCLK2 H3 LHCLK
3 IO_L14N_3/LHCLK5 J1 LHCLK
3 IO_L14P_3/LHCLK4 J2 LHCLK
3 IO_L15N_3/LHCLK7 K1 LHCLK
3 IO_L15P_3/TRDY2/LHCLK6 K3 LHCLK
Table 69: Spartan-3A FT256 Pinout (XC3S700A,
Bank XC3S700A
XC3S1400A
FT256
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 85
3 IO_L16N_3 L2 I/O
3 IO_L16P_3/VREF_3 L1 VREF
3 IO_L18N_3 L3 I/O
3 IO_L18P_3 K4 I/O
3 IO_L19N_3 L4 I/O
3 IO_L19P_3 M3 I/O
3 IO_L20N_3 N1 I/O
3 IO_L20P_3 M1 I/O
3 IO_L22N_3 P1 I/O
3 IO_L22P_3/VREF_3 N2 VREF
3 IO_L23N_3 P2 I/O
3 IO_L23P_3 R1 I/O
3 IO_L24N_3 M4 I/O
3 IO_L24P_3 N3 I/O
3 IP_3 J4 INPUT
3 IP_3/VREF_3 G4 VREF
3 IP_3/VREF_3 J5 VREF
3 VCCO_3 D2 VCCO
3 VCCO_3 H2 VCCO
3 VCCO_3 M2 VCCO
GND GND A1 GND
GND GND A16 GND
GND GND B11 GND
GND GND B7 GND
GND GND C14 GND
GND GND C3 GND
GND GND E10 GND
GND GND E12 GND
GND GND E5 GND
GND GND F11 GND
GND GND F2 GND
GND GND F6 GND
GND GND F7 GND
GND GND F8 GND
GND GND F9 GND
GND GND G10 GND
GND GND G12 GND
GND GND G15 GND
GND GND G5 GND
GND GND G6 GND
Table 69: Spartan-3A FT256 Pinout (XC3S700A,
Bank XC3S700A
XC3S1400A
FT256
Ball Type
GND GND G8 GND
GND GND H11 GND
GND GND H5 GND
GND GND H7 GND
GND GND H9 GND
GND GND J10 GND
GND GND J6 GND
GND GND J8 GND
GND GND K11 GND
GND GND K12 GND
GND GND K2 GND
GND GND K5 GND
GND GND K7 GND
GND GND K9 GND
GND GND L10 GND
GND GND L11 GND
GND GND L15 GND
GND GND L6 GND
GND GND L8 GND
GND GND M12 GND
GND GND M5 GND
GND GND M8 GND
GND GND N10 GND
GND GND N7 GND
GND GND P14 GND
GND GND P3 GND
GND GND R10 GND
GND GND R6 GND
GND GND T1 GND
GND GND T16 GND
VCCAUX SUSPEND R16 PWRMGT
VCCAUX DONE T15 CONFIG
VCCAUX PROG_B A2 CONFIG
VCCAUX TCK A15 JTAG
VCCAUX TDI B1 JTAG
VCCAUX TDO B16 JTAG
VCCAUX TMS B2 JTAG
VCCAUX VCCAUX D6 VCCAUX
VCCAUX VCCAUX E11 VCCAUX
VCCAUX VCCAUX F12 VCCAUX
Table 69: Spartan-3A FT256 Pinout (XC3S700A,
Bank XC3S700A
XC3S1400A
FT256
Ball Type
Pinout Descriptions
86 www.xilinx.com DS529-4 (v2.0) August 19, 2010
VCCAUX VCCAUX F5 VCCAUX
VCCAUX VCCAUX H14 VCCAUX
VCCAUX VCCAUX H4 VCCAUX
VCCAUX VCCAUX L12 VCCAUX
VCCAUX VCCAUX L5 VCCAUX
VCCAUX VCCAUX M10 VCCAUX
VCCAUX VCCAUX M6 VCCAUX
VCCINT VCCINT F10 VCCINT
VCCINT VCCINT G11 VCCINT
VCCINT VCCINT G7 VCCINT
VCCINT VCCINT G9 VCCINT
VCCINT VCCINT H10 VCCINT
VCCINT VCCINT H6 VCCINT
VCCINT VCCINT H8 VCCINT
VCCINT VCCINT J11 VCCINT
VCCINT VCCINT J7 VCCINT
VCCINT VCCINT J9 VCCINT
VCCINT VCCINT K10 VCCINT
VCCINT VCCINT K6 VCCINT
VCCINT VCCINT K8 VCCINT
VCCINT VCCINT L7 VCCINT
VCCINT VCCINT L9 VCCINT
Table 69: Spartan-3A FT256 Pinout (XC3S700A,
Bank XC3S700A
XC3S1400A
FT256
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 87
User I/Os by Bank
Table 7 0 , Ta bl e 7 1, and Table 72 indicate how the available
user-I/O pins are distributed between the four I/O banks on
the FT256 package. The AWAKE pin is counted as a
dual-purpose I/O.
The XC3S50A FPGA in the FT256 package has 51
unconnected balls, labeled with an “N.C.” type. These pins
are also indicated in Figure 20.
.
Table 70: User I/Os Per Bank on XC3S50A in the FT256 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 040 21 7 1 3 8
Right 132 12 5 4 3 8
Bottom 240 5 2 21 6 6
Left 332 15 6 0 3 8
TOTAL 144 53 20 26 15 30
Table 71: User I/Os Per Bank on XC3S200A and XC3S400A in the FT256 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 047 27 6158
Right 150 1 6 30 5 8
Bottom 248 11 221 6 8
Left 350 30 7058
TOTAL 195 69 21 52 21 32
Table 72: User I/Os Per Bank on XC3S700A and XC3S1400A in the FT256 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 041 27 1148
Right 140 0 0 30 4 6
Bottom 241 7 0 21 5 8
Left 339 25 1058
TOTAL 161 59 252 18 30
Pinout Descriptions
88 www.xilinx.com DS529-4 (v2.0) August 19, 2010
Footprint Migration Differences
Unconnected Balls on XC3S50A
Table 7 3 summarizes any footprint and functionality
differences between the XC3S50A and the XC3S200A or
XC3S400A FPGAs that might affect easy migration between
these devices in the FT256 package. The XC3S200A and
XC3S400A have identical pinouts. The XC3S50A pinout is
compatible, but there are 52 balls that are different.
Generally, designs easily migrate upward from the
XC3S50A to either the XC3S200A or XC3S400A. If using
differential I/O, see Tabl e 7 4 . If using the BPI configuration
mode (parallel Flash), see Table 7 5 .
Table 73: FT256 XC3S50A Footprint Migration Difference
FT256
Ball Bank
XC3S50A
Type Migration
XC3S200A/
XC3S400A
Type
A7 0N.C. ÆI/O
A12 0N.C. ÆI/O
B12 0INPUT ÆI/O
C7 0N.C. ÆI/O
D10 0N.C. ÆI/O
E2 3N.C. ÆI/O
E3 3N.C. ÆI/O
E7 0N.C. ÆI/O
E10 0N.C. ÆI/O
E16 1N.C. ÆI/O
F3 3N.C. ÆI/O
F8 0N.C. ÆI/O
F14 1N.C. ÆI/O
F15 1N.C. ÆI/O
F16 1N.C. ÆI/O
G3 3N.C. ÆI/O
G4 3N.C. ÆI/O
G5 3N.C. ÆINPUT
G6 3N.C. ÆINPUT
G13 1N.C. ÆI/O
G14 1N.C. ÆI/O
G16 1N.C. ÆI/O
H4 3N.C. ÆI/O
H5 3N.C. ÆI/O
H6 3N.C. ÆI/O
H13 1N.C. ÆI/O
J4 3N.C. ÆI/O
J6 3N.C. ÆI/O
J10 1N.C. ÆINPUT
J11 1N.C. ÆINPUT
K4 3N.C. ÆI/O
K13 1N.C. ÆI/O
L1 3N.C. ÆI/O
L2 3N.C. ÆI/O
L3 3N.C. ÆI/O
L4 3N.C. ÆI/O
L13 1N.C. ÆI/O
L14 1N.C. ÆI/O
L16 1N.C. ÆI/O
M3 3N.C. ÆI/O
M10 2N.C. ÆI/O
M13 1N.C. ÆI/O
M14 1N.C. ÆI/O
M15 1N.C. ÆI/O
M16 1N.C. ÆI/O
N7 2N.C. ÆI/O
N10 2N.C. ÆI/O
N12 2N.C. ÆI/O
P6 2N.C. ÆI/O
P13 2N.C. ÆI/O
R7 2N.C. ÆI/O
T7 2N.C. ÆI/O
DIFFERENCES 52
Legend:
ÆThis pin can unconditionally migrate from the device
on the left to the device on the right. Migration in the
other direction is possible depending on how the pin is
configured for the device on the right.
Table 73: FT256 XC3S50A Footprint Migration
FT256
Ball Bank
XC3S50A
Type Migration
XC3S200A/
XC3S400A
Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 89
XC3S50A Differential I/O Alignment Differences
Also, some differential I/O pairs on the XC3S50A FPGA are
aligned differently than the corresponding pairs on the
XC3S200A or XC3S400A FPGAs, as shown in Ta bl e 7 4. All
the mismatched pairs are in I/O Bank 2. The shading
highlights the N side of each pair.
XC3S50A Does Not Have BPI Mode Address Outputs
The XC3S50A FPGA does not generate the BPI-mode
address pins during configuration. Table 75 summarizes
these differences.
Table 74: Differential I/O Differences in FT256
FT256
Ball Bank XC3S50A XC3S200A
XC3S400A
T3
2
IO_L04P_2/VS2 IO_L03N_2/VS2
N6 IO_L03N_2/VS1 IO_L04P_2/VS1
R5 IO_L06P_2 IO_L05N_2
T5 IO_L05N_2/D7 IO_L06P_2/D7
P10 IO_L14P_2/MOSI
/CSI_B
IO_L14N_2/MOSI
/CSI_B
T10 IO_L14N_2 IO_L14P_2
R13 IO_L20P_2 IO_L18N_2
T14 IO_L18N_2 IO_L20P_2
Table 75: XC3S50A BPI Functional Differences
FT256
Ball Bank XC3S50A XC3S200A
XC3S400A
N16
1
IO_L03N_1 IO_L03N_1/A1
P16 IO_L03P_1 IO_L03P_1/A0
J13 IO_L10N_1 IO_L10N_1/A9
J12 IO_L10P_1 IO_L10P_1/A8
F13 IO_L20N_1 IO_L20N_1/A19
E14 IO_L20P_1 IO_L20P_1/A18
D15 IO_L22N_1 IO_L22N_1/A21
D16 IO_L22P_1 IO_L22P_1/A20
D14 IO_L23N_1 IO_L23N_1/A23
E13 IO_L23P_1 IO_L23P_1/A22
C15 IO_L24N_1 IO_L24N_1/A25
C16 IO_L24P_1 IO_L24P_1/A24
Pinout Descriptions
90 www.xilinx.com DS529-4 (v2.0) August 19, 2010
Differences Between XC3S200A/XC3S400A and XC3S700A/XC3S1400A
The XC3S700A and XC3S1400A FPGAs have several
additional power and ground pins as compared to the
XC3S200A and XC3S400A. Ta ble 76 summarizes all the
differences. All dedicated and dual-purpose configuration
pins are in the same location.
Table 76: Differences Between XC3S200A/XC3S400A
and XC3S700A/XC3S1400A
FT256
Ball Bank
XC3S200A
XC3S400A
XC3S700A
XC3S1400A
Pin Name Type Pin Name Type
F8 0 IO_L14P_0 I/O GND GND
D11 0 IO_L03N_0 I/O IO_L06P_0 I/O
D10 0 IO_L06P_0 I/O IO_L06N_0/
VREF_0 VREF
F7 0 IP_0 INPUT GND GND
F9 0 IP_0 INPUT GND GND
D12 0 IP_0 INPUT IO_L03N_0 I/O
E9 0 IP_0/
VREF_0 INPUT IO_L14P_0 I/O
D6 0 IP_0 INPUT VCCAUX VCCAUX
F10 0 IP_0 INPUT VCCINT VCCINT
E10 0 IO_L06N_0/
VREF_0 VREF GND GND
M13 1 IO_L05P_1 I/O IP_1/
VREF_1 VREF
F11 1 IP_L25N_1 INPUT GND GND
H11 1 IP_L13N_1 INPUT GND GND
K11 1 IP_L04P_1 INPUT GND GND
G11 1 IP_L21N_1 INPUT VCCINT VCCINT
H10 1 IP_L13P_1 INPUT VCCINT VCCINT
J11 1 IP_L09N_1 INPUT VCCINT VCCINT
H14 1 IO_L14N_1/
RHCLK5 RHCLK VCCAUX VCCAUX
J14 1 IO_L14P_1/
RHCLK4 RHCLK IP_1/
VREF_1 VREF
H12 1 VCCO_1 VCCO IP_1/
VREF_1 VREF
G12 1 IP_L21P_1/
VREF_1 VREF GND GND
J10 1 IP_L09P_1/
VREF_1 VREF GND GND
K12 1 IP_L04N_1/
VREF_1 VREF GND GND
F12 1 IP_L25P_1/
VREF_1 VREF VCCAUX VCCAUX
M14 1 IO_L05N_1/
VREF_1 VREF IP_1/
VREF_1 VREF
N7 2 IO_L07P_2 I/O GND GND
N10 2 IO_L13P_2 I/O GND GND
M10 2 IO_L13N_2 I/O VCCAUX VCCAUX
P6 2 IO_L07N_2 I/O IP_2/
VREF_2 VREF
L8 2 IP_2 INPUT GND GND
L7 2 IP_2 INPUT VCCINT VCCINT
M9 2 VCCO_2 VCCO IP_2/
VREF_2 VREF
L10 2 IP_2/
VREF_2 VREF GND GND
M8 2 IP_2/
VREF_2 VREF GND GND
L9 2 IP_2/
VREF_2 VREF VCCINT VCCINT
H5 3 IO_L10N_3 I/O GND GND
J6 3 IO_L17N_3 I/O GND GND
G3 3 IO_L09P_3 I/O IO_L07N_3 I/O
J4 3 IO_L17P_3 I/O IP_3 IP
H4 3 IO_L09N_3 I/O VCCAUX VCCAUX
H6 3 IO_L10P_3 I/O VCCINT VCCINT
N2 3 IO_L22P_3 I/O IO_L22P_3/
VREF_3 VREF
G4 3 IO_L07N_3 I/O IP_3/
VREF_3 VREF
G6 3 IP_L06P_3 INPUT GND GND
H7 3 IP_L13P_3 INPUT GND GND
K5 3 IP_L21P_3 INPUT GND GND
E4 3 IP_L04P_3 INPUT IO_L04P_3 I/O
L5 3 IP_L25P_3 INPUT VCCAUX VCCAUX
J7 3 IP_L13N_3 INPUT VCCINT VCCINT
K6 3 IP_L21N_3 INPUT VCCINT VCCINT
J5 3 VCCO_3 VCCO IP_3/
VREF_3 VREF
G5 3 IP_L06N_3/
VREF_3 VREF GND GND
L6 3 IP_L25N_3/
VREF_3 VREF GND GND
F4 3 IP_L04N_3/
VREF_3 VREF IO_L04N_3 I/O
Table 76: Differences Between XC3S200A/XC3S400A
and XC3S700A/XC3S1400A (Continued)
FT256
Ball Bank
XC3S200A
XC3S400A
XC3S700A
XC3S1400A
Pin Name Type Pin Name Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 91
FT256 Footprint (XC3S50A)
Figure 20: XC3S50A FT256 Package Footprint (Top View)
DS529-4_09_012009
12345678910111213141516
A
GND
PROG_B
I/O
L19P_0
I/O
L18P_0
I/O
L17P_0
I/O
L15P_0 N.C.
I/O
L12P_0
GCLK10
I/O
L10N_0
GCLK7
I/O
L08N_0
I/O
L07N_0 N.C. I/O
L04N_0
I/O
L04P_0 TCK GND
B
TDI TMS I/O
L19N_0
I/O
L18N_0 VCCO_0 I/O
L15N_0 GND
I/O
L12N_0
GCLK11
VCCO_0 I/O
L08P_0 GND INPUT VCCO_0 I/O
L02N_0
I/O
L02P_0
VREF_0
TDO
C
I/O
L01N_3
I/O
L01P_3 GND
I/O
L20P_0
VREF_0
I/O
L17N_0
I/O
L16N_0 N.C.
I/O
L11P_0
GCLK8
I/O
L10P_0
GCLK6
I/O
L09P_0
GCLK4
I/O
L07P_0
I/O
L03P_0
I/O
L01N_0 GND I/O
L24N_1
I/O
L24P_1
D
I/O
L03P_3 VCCO_3 I/O
L02N_3
I/O
L02P_3
I/O
L20N_0
PUDC_B
INPUT I/O
L16P_0
I/O
L11N_0
GCLK9
I/O
L09N_0
GCLK5
N.C. I/O
L03N_0 INPUT I/O
L01P_0
I/O
L23N_1
I/O
L22N_1
I/O
L22P_1
E
I/O
L03N_3 N.C. N.C. INPUT
L04P_3 GND INPUT N.C. VCCO_0 INPUT
VREF_0 N.C. VCCAUX GND I/O
L23P_1
I/O
L20P_1 VCCO_1 N.C.
F
I/O
L08P_3 GND N.C.
INPUT
L04N_3
VREF_3
VCCAUX GND INPUT N.C. INPUT INPUT INPUT
L25N_1
INPUT
L25P_1
VREF_1
I/O
L20N_1 N.C. N.C. N.C.
G
I/O
L08N_3
VREF_3
I/O
L11P_3
LHCLK0
N.C. N.C. N.C. N.C. VCCINT GND VCCINT GND INPUT
L21N_1
INPUT
L21P_1
VREF_1
N.C. N.C. GND N.C.
H
I/O
L11N_3
LHCLK1
VCCO_3
I/O
L12P_3
LHCLK2
N.C. N.C. N.C. INPUT
L13P_3 VCCINT GND INPUT
L13P_1
INPUT
L13N_1 VCCO_1 N.C.
I/O
L14N_1
RHCLK5
I/O
L15P_1
IRDY1
RHCLK
6
I/O
L15N_1
RHCLK7
J
I/O
L14N_3
LHCLK5
I/O
L14P_3
LHCLK4
I/O
L12N_3
IRDY2
LHCLK3
N.C. VCCO_3 N.C. INPUT
L13N_3 GND VCCINT N.C. N.C. I/O
L10P_1
I/O
L10N_1
I/O
L14P_1
RHCLK4
VCCO_1
I/O
L12N_1
TRDY1
RHCLK
3
K
I/O
L15N_3
LHCLK7
GND
I/O
L15P_3
TRDY2
LHCLK6
N.C. INPUT
L21P_3
INPUT
L21N_3 GND VCCINT GND VCCINT INPUT
L04P_1
INPUT
L04N_1
VREF_1
N.C.
I/O
L11N_1
RHCLK1
I/O
L11P_1
RHCLK0
I/O
L12P_1
RHCLK2
L
N.C. N.C. N.C. N.C. INPUT
L25P_3
INPUT
L25N_3
VREF_3
INPUT INPUT INPUT
VREF_2
INPUT
VREF_2 GND VCCAUX N.C. N.C. GND N.C.
M
I/O
L20P_3 VCCO_3 N.C. I/O
L24N_3 GND VCCAUX INPUT
VREF_2
INPUT
VREF_2 VCCO_2 N.C. INPUT
VREF_2 GND N.C. N.C. N.C. N.C.
N
I/O
L20N_3
I/O
L22P_3
I/O
L24P_3
I/O
L01P_2
M1
INPUT
VREF_2
I/O
L03N_2
VS1
N.C.
I/O
L08N_2
D4
I/O
L11P_2
GCLK0
N.C. I/O
L16N_2 N.C.
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
VCCO_1 I/O
L03N_1
P
I/O
L22N_3
I/O
L23N_3 GND
I/O
L01N_2
M0
I/O
L04N_2
VS0
N.C.
I/O
L08P_2
D5
I/O
L10P_2
GCLK14
I/O
L11N_2
GCLK1
I/O
L14P_2
MOSI
CSI_B
I/O
L16P_2
I/O
L17N_2
D3
N.C. GND
I/O
L02N_1
LDC0
I/O
L03P_1
R
I/O
L23P_3
I/O
L02P_2
M2
I/O
L03P_2
RDWR_B
VCCO_2 I/O
L06P_2 GND N.C. VCCO_2
I/O
L12P_2
GCLK2
GND
I/O
L15N_2
DOUT
VCCO_2
I/O
L20P_2
D1
I/O
L20N_2
CCLK
I/O
L02P_1
LDC1
SUSPEND
T
GND
I/O
L02N_2
CSO_B
I/O
L04P_2
VS2
I/O
L05P_2
I/O
L05N_2
D7
I/O
L06N_2
D6
N.C.
I/O
L10N_2
GCLK15
I/O
L12N_2
GCLK3
I/O
L14N_2
I/O
L15P_2
AWAKE
I/O
L17P_2
INIT_B
I/O
L18P_2
D2
I/O
L18N_2
D0
DIN/MISO
DONE GND
Bank 3
Bank 0
Bank 1
Bank 2
(Differential Outputs)
(Differential Outputs)
(Differential Outputs)(Differential Outputs)
(High Output Drive)
(High Output Drive) (High Output Drive)
(High Output Drive)
53 I/O: Unrestricted,
general-purpose user I/O 25 DUAL: Configuration pins,
then possible user I/O 15 VREF: User I/O or input
voltage reference for bank 2SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
20 INPUT: Unrestricted,
general-purpose input pin 30 CLK: User I/O, input, or
global buffer input 16 VCCO: Output voltage
supply for bank
2CONFIG: Dedicated
configuration pins 4JTAG: Dedicated JTAG
port pins 6VCCINT: Internal core
supply voltage (+1.2V)
51 N.C.: Not connected
(XC3S50A only) 28 GND: Ground 4VCCAUX: Auxiliary supply
voltage
Pinout Descriptions
92 www.xilinx.com DS529-4 (v2.0) August 19, 2010
FT256 Footprint (XC3S200A, XC3S400A)
Figure 21: XC3S200A and XC3S400A FT256 Package Footprint (Top View)
12345678910111213141516
AGND
PROG_B
I/O
L19P_0
I/O
L18P_0
I/O
L17P_0
I/O
L15P_0
I/O
L13P_0
I/O
L12P_0
GCLK10
I/O
L10N_0
GCLK7
I/O
L08N_0
I/O
L07N_0
I/O
L05N_0
I/O
L04N_0
I/O
L04P_0 TCK GND
BTDI TMS I/O
L19N_0
I/O
L18N_0 VCCO_0 I/O
L15N_0 GND
I/O
L12N_0
GCLK11
VCCO_0 I/O
L08P_0 GND I/O
L05P_0 VCCO_0 I/O
L02N_0
I/O
L02P_0
VREF_0
TDO
CI/O
L01N_3
I/O
L01P_3 GND
I/O
L20P_0
VREF_0
I/O
L17N_0
I/O
L16N_0
I/O
L13N_0
I/O
L11P_0
GCLK8
I/O
L10P_0
GCLK6
I/O
L09P_0
GCLK4
I/O
L07P_0
I/O
L03P_0
I/O
L01N_0 GND
I/O
L24N_1
A25
I/O
L24P_1
A24
DI/O
L03P_3 VCCO_3 I/O
L02N_3
I/O
L02P_3
I/O
L20N_0
PUDC_B
INPUT I/O
L16P_0
I/O
L11N_0
GCLK9
I/O
L09N_0
GCLK5
I/O
L06P_0
I/O
L03N_0 INPUT I/O
L01P_0
I/O
L23N_1
A23
I/O
L22N_1
A21
I/O
L22P_1
A20
EI/O
L03N_3
I/O
L05N_3
I/O
L05P_3
INPUT
L04P_3 GND INPUT
I/O
L14N_0
VREF_0
VCCO_0 INPUT
VREF_0
I/O
L06N_0
VREF_0
VCCAUX GND
I/O
L23P_1
A22
I/O
L20P_1
A18
VCCO_1
I/O
L18P_1
A14
FI/O
L08P_3 GND I/O
L07P_3
INPUT
L04N_3
VREF_3
VCCAUX GND INPUT I/O
L14P_0 INPUT INPUT INPUT
L25N_1
INPUT
L25P_1
VREF_1
I/O
L20N_1
A19
I/O
L19N_1
A17
I/O
L18N_1
A15
I/O
L16N_1
A11
G
I/O
L08N_3
VREF_3
I/O
L11P_3
LHCLK0
I/O
L09P_3
I/O
L07N_3
INPUT
L06N_3
VREF_3
INPUT
L06P_3 VCCINT GND VCCINT GND INPUT
L21N_1
INPUT
L21P_1
VREF_1
I/O
L19P_1
A16
I/O
L17N_1
A13
GND
I/O
L16P_1
A10
H
I/O
L11N_3
LHCLK1
VCCO_3
I/O
L12P_3
LHCLK2
I/O
L09N_3
I/O
L10N_3
I/O
L10P_3
INPUT
L13P_3 VCCINT GND INPUT
L13P_1
INPUT
L13N_1 VCCO_1
I/O
L17P_1
A12
I/O
L14N_1
RHCLK5
I/O
L15P_1
IRDY1
RHCLK6
I/O
L15N_1
RHCLK7
J
I/O
L14N_3
LHCLK5
I/O
L14P_3
LHCLK4
I/O
L12N_3
IRDY2
LHCLK3
I/O
L17P_3 VCCO_3 I/O
L17N_3
INPUT
L13N_3 GND VCCINT
INPUT
L09P_1
VREF_1
INPUT
L09N_1
I/O
L10P_1
A8
I/O
L10N_1
A9
I/O
L14P_1
RHCLK4
VCCO_1
I/O
L12N_1
TRDY1
RHCLK3
K
I/O
L15N_3
LHCLK7
GND
I/O
L15P_3
TRDY2
LHCLK6
I/O
L18P_3
INPUT
L21P_3
INPUT
L21N_3 GND VCCINT GND VCCINT INPUT
L04P_1
INPUT
L04N_1
VREF_1
I/O
L06N_1
A3
I/O
L11N_1
RHCLK1
I/O
L11P_1
RHCLK0
I/O
L12P_1
RHCLK2
L
I/O
L16P_3
VREF_3
I/O
L16N_3
I/O
L18N_3
I/O
L19N_3
INPUT
L25P_3
INPUT
L25N_3
VREF_3
INPUT INPUT INPUT
VREF_2
INPUT
VREF_2 GND VCCAUX
I/O
L06P_1
A2
I/O
L08P_1
A6
GND
I/O
L08N_1
A7
MI/O
L20P_3 VCCO_3 I/O
L19P_3
I/O
L24N_3 GND VCCAUX INPUT
VREF_2
INPUT
VREF_2 VCCO_2 I/O
L13N_2
INPUT
VREF_2 GND I/O
L05P_1
I/O
L05N_1
VREF_1
I/O
L07P_1
A4
I/O
L07N_1
A5
NI/O
L20N_3
I/O
L22P_3
I/O
L24P_3
I/O
L01P_2
M1
INPUT
VREF_2
I/O
L04P_2
VS1
I/O
L07P_2
I/O
L08N_2
D4
I/O
L11P_2
GCLK0
I/O
L13P_2
I/O
L16N_2
I/O
L19P_2
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
VCCO_1
I/O
L03N_1
A1
PI/O
L22N_3
I/O
L23N_3 GND
I/O
L01N_2
M0
I/O
L04N_2
VS0
I/O
L07N_2
I/O
L08P_2
D5
I/O
L10P_2
GCLK14
I/O
L11N_2
GCLK1
I/O
L14N_2
MOSI
CSI_B
I/O
L16P_2
I/O
L17N_2
D3
I/O
L19N_2 GND
I/O
L02N_1
LDC0
I/O
L03P_1
A0
RI/O
L23P_3
I/O
L02P_2
M2
I/O
L03P_2
RDWR_B
VCCO_2 I/O
L05N_2 GND
I/O
L09P_2
GCLK12
VCCO_2
I/O
L12P_2
GCLK2
GND
I/O
L15N_2
DOUT
VCCO_2
I/O
L18N_2
D1
I/O
L20N_2
CCLK
I/O
L02P_1
LDC1
SUSPEND
TGND
I/O
L02N_2
CSO_B
I/O
L03N_2
VS2
I/O
L05P_2
I/O
L06P_2
D7
I/O
L06N_2
D6
I/O
L09N_2
GCLK13
I/O
L10N_2
GCLK15
I/O
L12N_2
GCLK3
I/O
L14P_2
I/O
L15P_2
AWAKE
I/O
L17P_2
INIT_B
I/O
L18P_2
D2
I/O
L20P_2
D0
DIN/MISO
DONE GND
Bank 2
Bank 3
Bank 1
Bank 0
DS529-4_06_012009
69 I/O: Unrestricted,
general-purpose user I/O 51 DUAL: Configuration pins,
then possible user I/O 21 VREF: User I/O or input
voltage reference for bank 2SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
21 INPUT: Unrestricted,
general-purpose input pin 32 CLK: User I/O, input, or
global buffer input 16 VCCO: Output voltage
supply for bank
2CONFIG: Dedicated
configuration pins 4JTAG: Dedicated JTAG
port pins 6VCCINT: Internal core
supply voltage (+1.2V)
0N.C.: Not connected 28 GND: Ground 4VCCAUX: Auxiliary supply
voltage
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 93
FT256 Footprint (XC3S700A, XC3S1400A)
Figure 22: XC3S700A and XC3S1400A FT256 Package Footprint (Top View)
1615141312
11
10987654321
A
B
C
D
E
F
G
H
N
P
R
T
J
K
L
M
Bank 0
Bank 2
Bank 3
Bank 1
GND PROG_B I/O
L19P_0
I/O
L17P_0
I/O
L15P_0
I/O
L13P_0
I/O
L12P_0
GCLK10
L10N_0
GCLK7
I/O
L08N_0
I/O
L07N_0
I/O
L05N_0
I/O
L04N_0
I/O
L04P_0 TCK GND
TDI TMS I/O
L19N_0
I/O
L18N_0 VCCO_0 I/O
L15N_0 GND
I/O
L12N_0
GCLK11
VCCO_0 I/O
L08P_0 GND
I/O
L05P_0 VCCO_0 I/O
L02N_0
I/O
L02P_0
VREF_0
TDO
I/O
L01N_3
I/O
L01P_3 GND
I/O
L20P_0
VREF_0
I/O
L17N_0
I/O
L16N_0
I/O
L13N_0
I/O
L11P_0
GCLK8
I/O
L10P_0
GCLK6
I/O
L09P_0
GCLK4
I/O
L07P_0
I/O
L03P_0
I/O
L01N_0 GND
I/O
L24N_1
A25
I/O
L24P_1
A24
I/O
L03P_3 VCCO_3 I/O
L02N_3
I/O
L02P_3
I/O
L20N_0
PUDC_B
VCCAUX I/O
L16P_0
I/O
L11N_0
GCLK9
I/O
L09N_0
GCLK5
I/O
L06N_0
VREF_0
I/O
L06P_0
I/O
L03N_0
I/O
L01P_0
I/O
L23N_1
A23
I/O
L22N_1
A21
I/O
L22P_1
A20
I/O
L03N_3 L05N_3
I/O
L05P_3
I/O
L04P_3 GND INPUT
I/O
L14N_0
VREF_0
VCCO_0 I/O
L14P_0 GND VCCAUX GND
I/O
L23P_1
A22
I/O
L20P_1
A18
VCCO_1
I/O
L18P_1
A14
I/O
L08P_3 GND I/O
L04N_3 VCCAUX GND GND GND GND VCCINT GND VCCAUX
I/O
L20N_1
A19
I/O
L19N_1
A17
I/O
L18N_1
A15
I/O
L16N_1
A11
I/O
L08N_3
VREF_3
I/O
L11P_3
LHCLK0
I/O
L07N_3
INPUT
VREF_3 GND GND VCCINT GND VCCINT GND VCCINT GND
I/O
L19P_1
A16
I/O
L17N_1
A13
GND
I/O
L16P_1
A10
I/O
L11N_3
LHCLK1
VCCO_3
I/O
L12P_3
LHCLK2
VCCAUX GND VCCINT GND VCCINT GND VCCINT GND INPUT
VREF_1
I/O
L17P_1
A12
VCCAUX
I/O
L15P_1
IRDY1
RHCLK6
I/O
L15N_1
RHCLK7
I/O
L14N_3
LHCLK5
I/O
L14P_3
LHCLK4
I/O
L12N_3
IRDY2
LHCLK3
INPUT INPUT
VREF_3 GND VCCINT GND VCCINT GND VCCINT
I/O
L10P_1
A8
I/O
L10N_1
A9
INPUT
VREF_1 VCCO_1
I/O
L12N_1
TRDY1
RHCLK3
I/O
L15N_3
LHCLK7
GND
I/O
L15P_3
TRDY2
LHCLK6
I/O
L18P_3 GND VCCINT GND VCCINT GND VCCINT GND GND
I/O
L06N_1
A3
I/O
L11N_1
RHCLK1
I/O
L11P_1
RHCLK0
I/O
L12P_1
RHCLK2
I/O
L16P_3
VREF_3
I/O
L16N_3
I/O
L18N_3
I/O
L19N_3 VCCAUX GND VCCINT GND VCCINT GND GND VCCAUX
I/O
L06P_1
A2
I/O
L08P_1
A6
GND
I/O
L08N_1
A7
I/O
L20P_3 VCCO_3 I/O
L19P_3
I/O
L24N_3 GND VCCAUX INPUT
VREF_2 GND INPUT
VREF_2 VCCAUX INPUT
VREF_2 GND INPUT
VREF_1
INPUT
VREF_1
I/O
L07P_1
A4
I/O
L07N_1
A5
I/O
L20N_3
I/O
L22P_3
VREF_3
I/O
L24P_3
I/O
L01P_2
M1
INPUT
VREF_2
I/O
L04P_2
VS1
GND
I/O
L08N_2
D4
I/O
L11P_2
GCLK0
GND I/O
L16N_2
I/O
L19P_2
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
VCCO_1
I/O
L03N_1
A1
I/O
L22N_3
I/O
L23N_3 GND
I/O
L01N_2
M0
I/O
L04N_2
VS0
INPUT
VREF_2
I/O
L08P_2
D5
I/O
L10P_2
GCLK14
I/O
L11N_2
GCLK1
I/O
L14N_2
MOSI
CSI_B
I/O
L16P_2
I/O
L17N_2
D3
I/O
L19N_2 GND
I/O
L02N_1
LDC0
I/O
L03P_1
A0
I/O
L23P_3
I/O
L02P_2
M2
I/O
L03P_2
RDWR_B
VCCO_2 I/O
L05N_2 GND
I/O
L09P_2
GCLK12
VCCO_2
I/O
L12P_2
GCLK2
GND
I/O
L15N_2
DOUT
VCCO_2
I/O
L18N_2
D1
I/O
L20N_2
CCLK
I/O
L02P_1
LDC1
SUSPEND
GND
I/O
L02N_2
CSO_B
I/O
L03N_2
VS2
I/O
L05P_2
I/O
L06P_2
D7
I/O
L06N_2
D6
I/O
L09N_2
GCLK13
I/O
L10N_2
GCLK15
I/O
L12N_2
GCLK3
I/O
L14P_2
I/O
L15P_2
AWAKE
I/O
L17P_2
INIT_B
I/O
L18P_2
D2
I/O
L20P_2
D0/DIN
MISO
DONE GND
I/O
L18P_0
I/O
I/O
L07P_3
I/O
DS529-4_012009
59 I/O: Unrestricted,
general-purpose user I/O 51 DUAL: Configuration, then
possible user I/O 18 VREF: User I/O or input
voltage reference for bank 2SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
2INPUT: Unrestricted,
general-purpose input pin 30 CLK: User I/O, input, or
global buffer input 13 VCCO: Output voltage
supply for bank
2CONFIG: Dedicated
configuration pins 4JTAG: Dedicated JTAG
port pins 15 VCCINT: Internal core
supply voltage (+1.2V)
0N.C.: Not connected 50 GND: Ground 10 VCCAUX: Auxiliary supply
voltage
Pinout Descriptions
94 www.xilinx.com DS529-4 (v2.0) August 19, 2010
FG320: 320-ball Fine-pitch Ball Grid Array
The 320-ball fine-pitch ball grid array package, FG320,
supports two Spartan-3A FPGAs, the XC3S200A and the
XC3S400A, as shown in Table 7 7 and Figure 23.
The FG320 package is an 18 x 18 array of solder balls
minus the four center balls.
Table 7 7 lists all the package pins. They are sorted by bank
number and then by pin name of the largest device. Pins
that form a differential I/O pair appear together in the table.
The table also shows the pin number for each pin and the
pin type, as defined earlier.
The shaded rows indicate pinout differences between the
XC3S200A and the XC3S400A FPGAs. The XC3S200A
has three unconnected balls, indicated as N.C. (No
Connection) in Ta ble 7 7 and with the black diamond
character () in Table 7 7 and Figure 23.
All other balls have nearly identical functionality on all three
devices. Tabl e 8 0 summarizes the Spartan-3A FPGA
footprint migration differences for the FG320 package.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip.
Pinout Table
Table 77: Spartan-3A FG320 Pinout
Bank Pin Name
FG320
Ball Type
0 IO_L01N_0 C15 I/O
0 IO_L01P_0 C16 I/O
0 IO_L02N_0 A16 I/O
0 IO_L02P_0/VREF_0 B16 VREF
0 IO_L03N_0 A14 I/O
0 IO_L03P_0 A15 I/O
0 IO_L04N_0 C14 I/O
0 IO_L04P_0 B15 I/O
0 IO_L05N_0 D12 I/O
0 IO_L05P_0 C13 I/O
0 IO_L06N_0/VREF_0 A13 VREF
0 IO_L06P_0 B13 I/O
0 IO_L07N_0 B12 I/O
0 IO_L07P_0 C12 I/O
0 IO_L08N_0 F11 I/O
0 IO_L08P_0 E11 I/O
0 IO_L09N_0 A11 I/O
0 IO_L09P_0 B11 I/O
0 IO_L10N_0 D10 I/O
0 IO_L10P_0 C11 I/O
0 IO_L11N_0/GCLK5 C9 GCLK
0 IO_L11P_0/GCLK4 B10 GCLK
0 IO_L12N_0/GCLK7 B9 GCLK
0 IO_L12P_0/GCLK6 A10 GCLK
0 IO_L13N_0/GCLK9 B7 GCLK
0 IO_L13P_0/GCLK8 A8 GCLK
0 IO_L14N_0/GCLK11 C8 GCLK
0 IO_L14P_0/GCLK10 B8 GCLK
0 IO_L15N_0 C7 I/O
0 IO_L15P_0 D8 I/O
0 IO_L16N_0 E9 I/O
0 IO_L16P_0 D9 I/O
0 IO_L17N_0 B6 I/O
0 IO_L17P_0 A6 I/O
0 IO_L18N_0/VREF_0 A4 VREF
0 IO_L18P_0 A5 I/O
0 IO_L19N_0 E7 I/O
0 IO_L19P_0 F8 I/O
0 IO_L20N_0 D6 I/O
0 IO_L20P_0 C6 I/O
0 IO_L21N_0 A3 I/O
0 IO_L21P_0 B4 I/O
0 IO_L22N_0 D5 I/O
0 IO_L22P_0 C5 I/O
0 IO_L23N_0 A2 I/O
0 IO_L23P_0 B3 I/O
0 IO_L24N_0/PUDC_B E5 DUAL
0 IO_L24P_0/VREF_0 E6 VREF
0 IP_0 D13 INPUT
0 IP_0 D14 INPUT
0 IP_0 E12 INPUT
0XC3S400A: IP_0
XC3S200A: N.C. ()E13 INPUT
0 IP_0 F7 INPUT
0 IP_0 F9 INPUT
0 IP_0 F10 INPUT
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 95
0 IP_0 F12 INPUT
0 IP_0 G7 INPUT
0 IP_0 G8 INPUT
0 IP_0 G9 INPUT
0 IP_0 G11 INPUT
0 IP_0/VREF_0 E10 VREF
0 VCCO_0 B5 VCCO
0 VCCO_0 B14 VCCO
0 VCCO_0 D11 VCCO
0 VCCO_0 E8 VCCO
1 IO_L01N_1/LDC2 T17 DUAL
1 IO_L01P_1/HDC R16 DUAL
1 IO_L02N_1/LDC0 U18 DUAL
1 IO_L02P_1/LDC1 U17 DUAL
1 IO_L03N_1/A1 R17 DUAL
1 IO_L03P_1/A0 T18 DUAL
1 IO_L05N_1 N16 I/O
1 IO_L05P_1 P16 I/O
1 IO_L06N_1 M14 I/O
1 IO_L06P_1 N15 I/O
1 IO_L07N_1/VREF_1 P18 VREF
1 IO_L07P_1 R18 I/O
1 IO_L09N_1/A3 M17 DUAL
1 IO_L09P_1/A2 M16 DUAL
1 IO_L10N_1/A5 N18 DUAL
1 IO_L10P_1/A4 N17 DUAL
1 IO_L11N_1/A7 L12 DUAL
1 IO_L11P_1/A6 L13 DUAL
1 IO_L13N_1/A9 K16 DUAL
1 IO_L13P_1/A8 L17 DUAL
1 IO_L14N_1/RHCLK1 K17 RHCLK
1 IO_L14P_1/RHCLK0 L18 RHCLK
1 IO_L15N_1/TRDY1/RHCLK3 J17 RHCLK
1 IO_L15P_1/RHCLK2 K18 RHCLK
1 IO_L17N_1/RHCLK5 K15 RHCLK
1 IO_L17P_1/RHCLK4 J16 RHCLK
1 IO_L18N_1/RHCLK7 H17 RHCLK
1 IO_L18P_1/IRDY1/RHCLK6 H18 RHCLK
1 IO_L19N_1/A11 G16 DUAL
1 IO_L19P_1/A10 H16 DUAL
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
1 IO_L21N_1 F17 I/O
1 IO_L21P_1 G17 I/O
1 IO_L22N_1/A13 E18 DUAL
1 IO_L22P_1/A12 F18 DUAL
1 IO_L23N_1/A15 H15 DUAL
1 IO_L23P_1/A14 J14 DUAL
1 IO_L25N_1 D17 I/O
1 IO_L25P_1 D18 I/O
1 IO_L26N_1/A17 E16 DUAL
1 IO_L26P_1/A16 F16 DUAL
1 IO_L27N_1/A19 F15 DUAL
1 IO_L27P_1/A18 G15 DUAL
1 IO_L29N_1/A21 E15 DUAL
1 IO_L29P_1/A20 D16 DUAL
1 IO_L30N_1/A23 B18 DUAL
1 IO_L30P_1/A22 C18 DUAL
1 IO_L31N_1/A25 B17 DUAL
1 IO_L31P_1/A24 C17 DUAL
1 IP_L04N_1/VREF_1 N14 VREF
1 IP_L04P_1 P15 INPUT
1 IP_L08N_1/VREF_1 L14 VREF
1 IP_L08P_1 M13 INPUT
1 IP_L12N_1 L16 INPUT
1 IP_L12P_1/VREF_1 M15 VREF
1 IP_L16N_1 K14 INPUT
1 IP_L16P_1 K13 INPUT
1 IP_L20N_1 J13 INPUT
1 IP_L20P_1/VREF_1 K12 VREF
1 IP_L24N_1 G14 INPUT
1 IP_L24P_1 H13 INPUT
1 IP_L28N_1 G13 INPUT
1 IP_L28P_1/VREF_1 H12 VREF
1 IP_L32N_1 F13 INPUT
1 IP_L32P_1/VREF_1 F14 VREF
1 VCCO_1 E17 VCCO
1 VCCO_1 H14 VCCO
1 VCCO_1 L15 VCCO
1 VCCO_1 P17 VCCO
2 IO_L01N_2/M0 U3 DUAL
2 IO_L01P_2/M1 T3 DUAL
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
Pinout Descriptions
96 www.xilinx.com DS529-4 (v2.0) August 19, 2010
2 IO_L02N_2/CSO_B V3 DUAL
2 IO_L02P_2/M2 V2 DUAL
2 IO_L03N_2/VS2 U4 DUAL
2 IO_L03P_2/RDWR_B T4 DUAL
2 IO_L04N_2 T5 I/O
2 IO_L04P_2 R5 I/O
2 IO_L05N_2/VS0 V5 DUAL
2 IO_L05P_2/VS1 V4 DUAL
2 IO_L06N_2 U6 I/O
2 IO_L06P_2 T6 I/O
2 IO_L07N_2 P8 I/O
2 IO_L07P_2 N8 I/O
2 IO_L08N_2/D6 T7 DUAL
2 IO_L08P_2/D7 R7 DUAL
2 IO_L09N_2 R9 I/O
2 IO_L09P_2 T8 I/O
2 IO_L10N_2/D4 V6 DUAL
2 IO_L10P_2/D5 U7 DUAL
2 IO_L11N_2/GCLK13 V8 GCLK
2 IO_L11P_2/GCLK12 U8 GCLK
2 IO_L12N_2/GCLK15 V9 GCLK
2 IO_L12P_2/GCLK14 U9 GCLK
2 IO_L13N_2/GCLK1 T10 GCLK
2 IO_L13P_2/GCLK0 U10 GCLK
2 IO_L14N_2/GCLK3 U11 GCLK
2 IO_L14P_2/GCLK2 V11 GCLK
2 IO_L15N_2 R10 I/O
2 IO_L15P_2 P10 I/O
2 IO_L16N_2/MOSI/CSI_B T11 DUAL
2 IO_L16P_2 R11 I/O
2 IO_L17N_2 V13 I/O
2 IO_L17P_2 U12 I/O
2 IO_L18N_2/DOUT U13 DUAL
2 IO_L18P_2/AWAKE T12 PWR
MGMT
2 IO_L19N_2 P12 I/O
2 IO_L19P_2 N12 I/O
2 IO_L20N_2/D3 R13 DUAL
2 IO_L20P_2/INIT_B T13 DUAL
2 IO_L21N_2 T14 I/O
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
2 IO_L21P_2 V14 I/O
2 IO_L22N_2/D1 U15 DUAL
2 IO_L22P_2/D2 V15 DUAL
2 IO_L23N_2 T15 I/O
2 IO_L23P_2 R14 I/O
2 IO_L24N_2/CCLK U16 DUAL
2 IO_L24P_2/D0/DIN/MISO V16 DUAL
2 IP_2 M8 INPUT
2 IP_2 M9 INPUT
2 IP_2 M12 INPUT
2XC3S400A: IP_2
XC3S200A: N.C. ()N7 INPUT
2 IP_2 N9 INPUT
2 IP_2 N11 INPUT
2 IP_2 R6 INPUT
2 IP_2/VREF_2 M11 VREF
2 IP_2/VREF_2 N10 VREF
2 IP_2/VREF_2 P6 VREF
2 IP_2/VREF_2 P7 VREF
2 IP_2/VREF_2 P9 VREF
2 IP_2/VREF_2 P13 VREF
2XC3S400A: IP_2/VREF_2
XC3S200A: N.C. ()P14 VREF
2 VCCO_2 P11 VCCO
2 VCCO_2 R8 VCCO
2 VCCO_2 U5 VCCO
2 VCCO_2 U14 VCCO
3 IO_L01N_3 C1 I/O
3 IO_L01P_3 C2 I/O
3 IO_L02N_3 B1 I/O
3 IO_L02P_3 B2 I/O
3 IO_L03N_3 D2 I/O
3 IO_L03P_3 D3 I/O
3 IO_L05N_3 G5 I/O
3 IO_L05P_3 F5 I/O
3 IO_L06N_3 E3 I/O
3 IO_L06P_3 F4 I/O
3 IO_L07N_3 E1 I/O
3 IO_L07P_3 D1 I/O
3 IO_L09N_3 G4 I/O
3 IO_L09P_3 F3 I/O
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 97
3 IO_L10N_3/VREF_3 F1 VREF
3 IO_L10P_3 F2 I/O
3 IO_L11N_3 J6 I/O
3 IO_L11P_3 J7 I/O
3 IO_L13N_3 H1 I/O
3 IO_L13P_3 H2 I/O
3 IO_L14N_3/LHCLK1 J3 LHCLK
3 IO_L14P_3/LHCLK0 H3 LHCLK
3 IO_L15N_3/IRDY2/LHCLK3 J1 LHCLK
3 IO_L15P_3/LHCLK2 J2 LHCLK
3 IO_L17N_3/LHCLK5 K5 LHCLK
3 IO_L17P_3/LHCLK4 J4 LHCLK
3 IO_L18N_3/LHCLK7 K3 LHCLK
3 IO_L18P_3/TRDY2/LHCLK6 K2 LHCLK
3 IO_L19N_3 L2 I/O
3 IO_L19P_3/VREF_3 L1 VREF
3 IO_L21N_3 M2 I/O
3 IO_L21P_3 N1 I/O
3 IO_L22N_3 N2 I/O
3 IO_L22P_3 P1 I/O
3 IO_L23N_3 L4 I/O
3 IO_L23P_3 L3 I/O
3 IO_L25N_3 R2 I/O
3 IO_L25P_3 R1 I/O
3 IO_L26N_3 N4 I/O
3 IO_L26P_3 N3 I/O
3 IO_L27N_3 T2 I/O
3 IO_L27P_3 T1 I/O
3 IO_L29N_3 N6 I/O
3 IO_L29P_3 N5 I/O
3 IO_L30N_3 R3 I/O
3 IO_L30P_3 P3 I/O
3 IO_L31N_3 U2 I/O
3 IO_L31P_3 U1 I/O
3 IP_L04N_3/VREF_3 H7 VREF
3 IP_L04P_3 G6 INPUT
3 IP_L08N_3/VREF_3 H5 VREF
3 IP_L08P_3 H6 INPUT
3 IP_L12N_3 G2 INPUT
3 IP_L12P_3 G3 INPUT
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
3 IP_L16N_3 K6 INPUT
3 IP_L16P_3 J5 INPUT
3 IP_L20N_3 L6 INPUT
3 IP_L20P_3 L7 INPUT
3 IP_L24N_3 M4 INPUT
3 IP_L24P_3 M3 INPUT
3 IP_L28N_3 M5 INPUT
3 IP_L28P_3 M6 INPUT
3 IP_L32N_3/VREF_3 P4 VREF
3 IP_L32P_3 P5 INPUT
3 VCCO_3 E2 VCCO
3 VCCO_3 H4 VCCO
3 VCCO_3 L5 VCCO
3 VCCO_3 P2 VCCO
GND GND A1 GND
GND GND A7 GND
GND GND A12 GND
GND GND A18 GND
GND GND C10 GND
GND GND D4 GND
GND GND D7 GND
GND GND D15 GND
GND GND F6 GND
GND GND G1 GND
GND GND G12 GND
GND GND G18 GND
GND GND H8 GND
GND GND H10 GND
GND GND J11 GND
GND GND J15 GND
GND GND K4 GND
GND GND K8 GND
GND GND L9 GND
GND GND L11 GND
GND GND M1 GND
GND GND M7 GND
GND GND M18 GND
GND GND N13 GND
GND GND R4 GND
GND GND R12 GND
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
Pinout Descriptions
98 www.xilinx.com DS529-4 (v2.0) August 19, 2010
GND GND R15 GND
GND GND T9 GND
GND GND V1 GND
GND GND V7 GND
GND GND V12 GND
GND GND V18 GND
VCCAUX SUSPEND T16 PWR
MGMT
VCCAUX DONE V17 CONFIG
VCCAUX PROG_B C4 CONFIG
VCCAUX TCK A17 JTAG
VCCAUX TDI E4 JTAG
VCCAUX TDO E14 JTAG
VCCAUX TMS C3 JTAG
VCCAUX VCCAUX A9 VCCAUX
VCCAUX VCCAUX G10 VCCAUX
VCCAUX VCCAUX J12 VCCAUX
VCCAUX VCCAUX J18 VCCAUX
VCCAUX VCCAUX K1 VCCAUX
VCCAUX VCCAUX K7 VCCAUX
VCCAUX VCCAUX M10 VCCAUX
VCCAUX VCCAUX V10 VCCAUX
VCCINT VCCINT H9 VCCINT
VCCINT VCCINT H11 VCCINT
VCCINT VCCINT J8 VCCINT
VCCINT VCCINT K11 VCCINT
VCCINT VCCINT L8 VCCINT
VCCINT VCCINT L10 VCCINT
Table 77: Spartan-3A FG320 Pinout(Continued)
Bank Pin Name
FG320
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 99
User I/Os by Bank
Table 7 8 and Ta ble 79 indicate how the available user-I/O
pins are distributed between the four I/O banks on the
FG320 package. The AWAKE pin is counted as a
dual-purpose I/O.
Footprint Migration Differences
Table 8 0 summarizes any footprint and functionality
differences between the XC3S200A and the XC3S400A
FPGAs that might affect easy migration between devices
available in the FG320 package. There are three such balls.
All other pins not listed in Tabl e 8 0 unconditionally migrate
between Spartan-3A devices available in the FG320
package.
The arrows indicate the direction for easy migration.
Table 78: User I/Os Per Bank for XC3S200A in the FG320 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 060 35 11 158
Right 164 910 30 7 8
Bottom 260 19 621 6 8
Left 364 38 13 058
TOTAL 248 101 40 52 23 32
Table 79: User I/Os Per Bank for XC3S400A in the FG320 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 061 35 12 1 5 8
Right 164 910 30 7 8
Bottom 262 19 721 7 8
Left 364 38 13 0 5 8
TOTAL 251 101 42 52 24 32
Table 80: FG320 Footprint Migration Differences
Pin Bank XC3S200A Migration XC3S400A
E13 0 N.C. ÆINPUT
N7 2 N.C. ÆINPUT
P14 2 N.C. ÆINPUT/VREF
DIFFERENCES 3
Legend:
ÆThis pin can unconditionally migrate from the device
on the left to the device on the right. Migration in the
other direction is possible depending on how the pin is
configured for the device on the right.
Pinout Descriptions
100 www.xilinx.com DS529-4 (v2.0) August 19, 2010
FG320 Footprint
Figure 23: FG320 Package Footprint (Top View)
101 I/O: Unrestricted,
general-purpose user I/O 51 DUAL: Configuration
pins, then possible
user-I/O
23 -
24
VREF: User I/O or input
voltage reference for
bank 2SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
40 -
42
INPUT: Unrestricted,
general-purpose input
pin 32 CLK: User I/O, input, or
global buffer input 16 VCCO: Output voltage
supply for bank
2CONFIG: Dedicated
configuration pins 4JTAG: Dedicated JTAG
port pins 6VCCINT: Internal core
supply voltage (+1.2V)
3N.C.: Not connected.
Only the XC3S200A has
these pins (). 32 GND: Ground 8VCCAUX: Auxiliary
supply voltage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
AGND I/O
L23N_0
I/O
L21N_0
I/O
L18N_0
VREF_0
I/O
L18P_0
I/O
L17P_0 GND
I/O
L13P_0
GCLK8
VCCAUX
I/O
L12P_0
GCLK6
I/O
L09N_0 GND
I/O
L06N_0
VREF_0
I/O
L03N_0
I/O
L03P_0
I/O
L02N_0 TCK GND
BI/O
L02N_3
I/O
L02P_3
I/O
L23P_0
I/O
L21P_0 VCCO_0 I/O
L17N_0
I/O
L13N_0
GCLK9
I/O
L14P_0
GCLK10
I/O
L12N_0
GCLK7
I/O
L11P_0
GCLK4
I/O
L09P_0
I/O
L07N_0
I/O
L06P_0 VCCO_0 I/O
L04P_0
I/O
L02P_0
VREF_0
I/O
L31N_1
A25
I/O
L30N_1
A23
CI/O
L01N_3
I/O
L01P_3 TMS
PROG_B
I/O
L22P_0
I/O
L20P_0
I/O
L15N_0
I/O
L14N_0
GCLK11
I/O
L11N_0
GCLK5
GND I/O
L10P_0
I/O
L07P_0
I/O
L05P_0
I/O
L04N_0
I/O
L01N_0
I/O
L01P_0
I/O
L31P_1
A24
I/O
L30P_1
A22
DI/O
L07P_3
I/O
L03N_3
I/O
L03P_3 GND I/O
L22N_0
I/O
L20N_0 GND I/O
L15P_0
I/O
L16P_0
I/O
L10N_0 VCCO_0 I/O
L05N_0 INPUT INPUT GND
I/O
L29P_1
A20
I/O
L25N_1
I/O
L25P_1
EI/O
L07N_3 VCCO_3 I/O
L06N_3 TDI
I/O
L24N_0
PUDC_B
I/O
L24P_0
VREF_0
I/O
L19N_0 VCCO_0 I/O
L16N_0
INPUT
VREF_0
I/O
L08P_0 INPUT
INPUT
TDO
I/O
L29N_1
A21
I/O
L26N_1
A17
VCCO_1
I/O
L22N_1
A13
F
I/O
L10N_3
VREF_3
I/O
L10P_3
I/O
L09P_3
I/O
L06P_3
I/O
L05P_3 GND INPUT I/O
L19P_0 INPUT INPUT I/O
L08N_0 INPUT INPUT
L32N_1
INPUT
L32P_1
VREF_1
I/O
L27N_1
A19
I/O
L26P_1
A16
I/O
L21N_1
I/O
L22P_1
A12
GGND INPUT
L12N_3
INPUT
L12P_3
I/O
L09N_3
I/O
L05N_3
INPUT
L04P_3 INPUT INPUT INPUT VCCAUX INPUT GND INPUT
L28N_1
INPUT
L24N_1
I/O
L27P_1
A18
I/O
L19N_1
A11
I/O
L21P_1 GND
HI/O
L13N_3
I/O
L13P_3
I/O
L14P_3
LHCLK0
VCCO_3
INPUT
L08N_3
VREF_3
INPUT
L08P_3
INPUT
L04N_3
VREF_3
GND VCCINT GND VCCINT
INPUT
L28P_1
VREF_1
INPUT
L24P_1 VCCO_1
I/O
L23N_1
A15
I/O
L19P_1
A10
I/O
L18N_1
RHCLK7
I/O
L18P_1
IRDY1
RHCLK6
J
I/O
L15N_3
IRDY2
LHCLK3
I/O
L15P_3
LHCLK2
I/O
L14N_3
LHCLK1
I/O
L17P_3
LHCLK4
INPUT
L16P_3
I/O
L11N_3
I/O
L11P_3 DNGTNICCV VCCAUX INPUT
L20N_1
I/O
L23P_1
A14
GND
I/O
L17P_1
RHCLK4
I/O
L15N_1
TRDY1
RHCLK3
VCCAUX
KVCCAUX
I/O
L18P_3
TRDY2
LHCLK6
I/O
L18N_3
LHCLK7
GND
I/O
L17N_3
LHCLK5
INPUT
L16N_3 VCCAUX TNICCVDNG
INPUT
L20P_1
VREF_1
INPUT
L16P_1
INPUT
L16N_1
I/O
L17N_1
RHCLK5
I/O
L13N_1
A9
I/O
L14N_1
RHCLK1
I/O
L15P_1
RHCLK2
L
I/O
L19P_3
VREF_3
I/O
L19N_3
I/O
L23P_3
I/O
L23N_3 VCCO_3 INPUT
L20N_3
INPUT
L20P_3 VCCINT GND VCCINT GND
I/O
L11N_1
A7
I/O
L11P_1
A6
INPUT
L08N_1
VREF_1
VCCO_1 INPUT
L12N_1
I/O
L13P_1
A8
I/O
L14P_1
RHCLK0
MGND I/O
L21N_3
INPUT
L24P_3
INPUT
L24N_3
INPUT
L28N_3
INPUT
L28P_3 GND INPUT INPUT VCCAUX INPUT
VREF_2 INPUT INPUT
L08P_1
I/O
L06N_1
INPUT
L12P_1
VREF_1
I/O
L09P_1
A2
I/O
L09N_1
A3
GND
NI/O
L21P_3
I/O
L22N_3
I/O
L26P_3
I/O
L26N_3
I/O
L29P_3
I/O
L29N_3
INPUT
I/O
L07P_2 INPUT INPUT
VREF_2 INPUT I/O
L19P_2 GND
INPUT
L04N_1
VREF_1
I/O
L06P_1
I/O
L05N_1
I/O
L10P_1
A4
I/O
L10N_1
A5
PI/O
L22P_3 VCCO_3 I/O
L30P_3
INPUT
L32N_3
VREF_3
INPUT
L32P_3
INPUT
VREF_2
INPUT
VREF_2
I/O
L07N_2
INPUT
VREF_2
I/O
L15P_2 VCCO_2 I/O
L19N_2
INPUT
VREF_2
INPUT
VREF_2
INPUT
L04P_1
I/O
L05P_1 VCCO_1
I/O
L07N_1
VREF_1
RI/O
L25P_3
I/O
L25N_3
I/O
L30N_3 GND I/O
L04P_2 INPUT
I/O
L08P_2
D7
VCCO_2 I/O
L09N_2
I/O
L15N_2
I/O
L16P_2 GND
I/O
L20N_2
D3
I/O
L23P_2 GND
I/O
L01P_1
HDC
I/O
L03N_1
A1
I/O
L07P_1
TI/O
L27P_3
I/O
L27N_3
I/O
L01P_2
M1
I/O
L03P_2
RDWR_B
I/O
L04N_2
I/O
L06P_2
I/O
L08N_2
D6
I/O
L09P_2 GND
I/O
L13N_2
GCLK1
I/O
L16N_2
MOSI
CSI_B
I/O
L18P_2
AWAKE
I/O
L20P_2
INIT_B
I/O
L21N_2
I/O
L23N_2
SUSPEND
I/O
L01N_1
LDC2
I/O
L03P_1
A0
UI/O
L31P_3
I/O
L31N_3
I/O
L01N_2
M0
I/O
L03N_2
VS2
VCCO_2 I/O
L06N_2
I/O
L10P_2
D5
I/O
L11P_2
GCLK12
I/O
L12P_2
GCLK14
I/O
L13P_2
GCLK0
I/O
L14N_2
GCLK3
I/O
L17P_2
I/O
L18N_2
DOUT
VCCO_2
I/O
L22N_2
D1
I/O
L24N_2
CCLK
I/O
L02P_1
LDC1
I/O
L02N_1
LDC0
VGND
I/O
L02P_2
M2
I/O
L02N_2
CSO_B
I/O
L05P_2
VS1
I/O
L05N_2
VS0
I/O
L10N_2
D4
GND
I/O
L11N_2
GCLK13
I/O
L12N_2
GCLK15
VCCAUX
I/O
L14P_2
GCLK2
GND I/O
L17N_2
I/O
L21P_2
I/O
L22P_2
D2
I/O
L24P_2
D0
DIN/MISO
DONE GND
Bank 1
Bank 2
Bank 3
Bank 0
DS529-4_05_012009
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 101
FG400: 400-ball Fine-pitch Ball Grid Array
The 400-ball fine-pitch ball grid array, FG400, supports two
different Spartan-3A FPGAs, the XC3S400A and the
XC3S700A. Both devices share a common footprint for this
package as shown in Ta ble 8 1 and Figure 24.
Table 8 1 lists all the FG400 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip.
Pinout Table
Table 81: Spartan-3A FG400 Pinout
Bank Pin Name
FG400
Ball Type
0 IO_L01N_0 A18 I/O
0 IO_L01P_0 B18 I/O
0 IO_L02N_0 C17 I/O
0 IO_L02P_0/VREF_0 D17 VREF
0 IO_L03N_0 E15 I/O
0 IO_L03P_0 D16 I/O
0 IO_L04N_0 A17 I/O
0 IO_L04P_0/VREF_0 B17 VREF
0 IO_L05N_0 A16 I/O
0 IO_L05P_0 C16 I/O
0 IO_L06N_0 C15 I/O
0 IO_L06P_0 D15 I/O
0 IO_L07N_0 A14 I/O
0 IO_L07P_0 C14 I/O
0 IO_L08N_0 A15 I/O
0 IO_L08P_0 B15 I/O
0 IO_L09N_0 F13 I/O
0 IO_L09P_0 E13 I/O
0 IO_L10N_0/VREF_0 C13 VREF
0 IO_L10P_0 D14 I/O
0 IO_L11N_0 C12 I/O
0 IO_L11P_0 B13 I/O
0 IO_L12N_0 F12 I/O
0 IO_L12P_0 D12 I/O
0 IO_L13N_0 A12 I/O
0 IO_L13P_0 B12 I/O
0 IO_L14N_0 C11 I/O
0 IO_L14P_0 B11 I/O
0 IO_L15N_0/GCLK5 E11 GCLK
0 IO_L15P_0/GCLK4 D11 GCLK
0 IO_L16N_0/GCLK7 C10 GCLK
0 IO_L16P_0/GCLK6 A10 GCLK
0 IO_L17N_0/GCLK9 E10 GCLK
0 IO_L17P_0/GCLK8 D10 GCLK
0 IO_L18N_0/GCLK11 A8 GCLK
0 IO_L18P_0/GCLK10 A9 GCLK
0 IO_L19N_0 C9 I/O
0 IO_L19P_0 B9 I/O
0 IO_L20N_0 C8 I/O
0 IO_L20P_0 B8 I/O
0 IO_L21N_0 D8 I/O
0 IO_L21P_0 C7 I/O
0 IO_L22N_0/VREF_0 F9 VREF
0 IO_L22P_0 E9 I/O
0 IO_L23N_0 F8 I/O
0 IO_L23P_0 E8 I/O
0 IO_L24N_0 A7 I/O
0 IO_L24P_0 B7 I/O
0 IO_L25N_0 C6 I/O
0 IO_L25P_0 A6 I/O
0 IO_L26N_0 B5 I/O
0 IO_L26P_0 A5 I/O
0 IO_L27N_0 F7 I/O
0 IO_L27P_0 E7 I/O
0 IO_L28N_0 D6 I/O
0 IO_L28P_0 C5 I/O
0 IO_L29N_0 C4 I/O
0 IO_L29P_0 A4 I/O
0 IO_L30N_0 B3 I/O
0 IO_L30P_0 A3 I/O
0 IO_L31N_0 F6 I/O
0 IO_L31P_0 E6 I/O
0 IO_L32N_0/PUDC_B B2 DUAL
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
102 www.xilinx.com DS529-4 (v2.0) August 19, 2010
0 IO_L32P_0/VREF_0 A2 VREF
0 IP_0 E14 INPUT
0 IP_0 F11 INPUT
0 IP_0 F14 INPUT
0 IP_0 G8 INPUT
0 IP_0 G9 INPUT
0 IP_0 G10 INPUT
0 IP_0 G12 INPUT
0 IP_0 G13 INPUT
0 IP_0 H9 INPUT
0 IP_0 H10 INPUT
0 IP_0 H11 INPUT
0 IP_0 H12 INPUT
0 IP_0/VREF_0 G11 VREF
0 VCCO_0 B4 VCCO
0VCCO_0 B10VCCO
0VCCO_0 B16VCCO
0 VCCO_0 D7 VCCO
0VCCO_0 D13VCCO
0VCCO_0 F10VCCO
1 IO_L01N_1/LDC2 V20 DUAL
1 IO_L01P_1/HDC W20 DUAL
1 IO_L02N_1/LDC0 U18 DUAL
1 IO_L02P_1/LDC1 V19 DUAL
1 IO_L03N_1/A1 R16 DUAL
1 IO_L03P_1/A0 T17 DUAL
1 IO_L05N_1 T20 I/O
1 IO_L05P_1 T18 I/O
1 IO_L06N_1 U20 I/O
1 IO_L06P_1 U19 I/O
1 IO_L07N_1 P17 I/O
1 IO_L07P_1 P16 I/O
1 IO_L08N_1 R17 I/O
1 IO_L08P_1 R18 I/O
1 IO_L09N_1 R20 I/O
1 IO_L09P_1 R19 I/O
1 IO_L10N_1/VREF_1 P20 VREF
1 IO_L10P_1 P18 I/O
1 IO_L12N_1/A3 N17 DUAL
1 IO_L12P_1/A2 N15 DUAL
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
1 IO_L13N_1/A5 N19 DUAL
1 IO_L13P_1/A4 N18 DUAL
1 IO_L14N_1/A7 M18 DUAL
1 IO_L14P_1/A6 M17 DUAL
1 IO_L16N_1/A9 L16 DUAL
1 IO_L16P_1/A8 L15 DUAL
1 IO_L17N_1/RHCLK1 M20 RHCLK
1 IO_L17P_1/RHCLK0 M19 RHCLK
1 IO_L18N_1/TRDY1/RHCLK3 L18 RHCLK
1 IO_L18P_1/RHCLK2 L19 RHCLK
1 IO_L20N_1/RHCLK5 L17 RHCLK
1 IO_L20P_1/RHCLK4 K18 RHCLK
1 IO_L21N_1/RHCLK7 J20 RHCLK
1 IO_L21P_1/IRDY1/RHCLK6 K20 RHCLK
1 IO_L22N_1/A11 J18 DUAL
1 IO_L22P_1/A10 J19 DUAL
1 IO_L24N_1 K16 I/O
1 IO_L24P_1 J17 I/O
1 IO_L25N_1/A13 H18 DUAL
1 IO_L25P_1/A12 H19 DUAL
1 IO_L26N_1/A15 G20 DUAL
1 IO_L26P_1/A14 H20 DUAL
1 IO_L28N_1 H17 I/O
1 IO_L28P_1 G18 I/O
1 IO_L29N_1/A17 F19 DUAL
1 IO_L29P_1/A16 F20 DUAL
1 IO_L30N_1/A19 F18 DUAL
1 IO_L30P_1/A18 G17 DUAL
1 IO_L32N_1 E19 I/O
1 IO_L32P_1 E20 I/O
1 IO_L33N_1 F17 I/O
1 IO_L33P_1 E18 I/O
1 IO_L34N_1 D18 I/O
1 IO_L34P_1 D20 I/O
1 IO_L36N_1/A21 F16 DUAL
1 IO_L36P_1/A20 G16 DUAL
1 IO_L37N_1/A23 C19 DUAL
1 IO_L37P_1/A22 C20 DUAL
1 IO_L38N_1/A25 B19 DUAL
1 IO_L38P_1/A24 B20 DUAL
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 103
1 IP_1/VREF_1 N14 VREF
1 IP_L04N_1/VREF_1 P15 VREF
1 IP_L04P_1 P14 INPUT
1 IP_L11N_1/VREF_1 M15 VREF
1 IP_L11P_1 M16 INPUT
1 IP_L15N_1 M13 INPUT
1 IP_L15P_1/VREF_1 M14 VREF
1 IP_L19N_1 L13 INPUT
1 IP_L19P_1 L14 INPUT
1 IP_L23N_1 K14 INPUT
1 IP_L23P_1/VREF_1 K15 VREF
1 IP_L27N_1 J15 INPUT
1 IP_L27P_1 J16 INPUT
1 IP_L31N_1 J13 INPUT
1 IP_L31P_1/VREF_1 J14 VREF
1 IP_L35N_1 H14 INPUT
1 IP_L35P_1 H15 INPUT
1 IP_L39N_1 G14 INPUT
1 IP_L39P_1/VREF_1 G15 VREF
1VCCO_1 D19VCCO
1VCCO_1 H16VCCO
1VCCO_1 K19VCCO
1VCCO_1 N16VCCO
1VCCO_1 T19VCCO
2 IO_L01N_2/M0 V4 DUAL
2 IO_L01P_2/M1 U4 DUAL
2 IO_L02N_2/CSO_B Y2 DUAL
2 IO_L02P_2/M2 W3 DUAL
2 IO_L03N_2 W4 I/O
2 IO_L03P_2 Y3 I/O
2 IO_L04N_2 R7 I/O
2 IO_L04P_2 T6 I/O
2 IO_L05N_2 U5 I/O
2 IO_L05P_2 V5 I/O
2 IO_L06N_2 U6 I/O
2 IO_L06P_2 T7 I/O
2 IO_L07N_2/VS2 U7 DUAL
2 IO_L07P_2/RDWR_B T8 DUAL
2 IO_L08N_2 Y5 I/O
2 IO_L08P_2 Y4 I/O
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
2 IO_L09N_2/VS0 W6 DUAL
2 IO_L09P_2/VS1 V6 DUAL
2 IO_L10N_2 Y7 I/O
2 IO_L10P_2 Y6 I/O
2 IO_L11N_2 U9 I/O
2 IO_L11P_2 T9 I/O
2 IO_L12N_2/D6 W8 DUAL
2 IO_L12P_2/D7 V7 DUAL
2 IO_L13N_2 V9 I/O
2 IO_L13P_2 V8 I/O
2 IO_L14N_2/D4 T10 DUAL
2 IO_L14P_2/D5 U10 DUAL
2 IO_L15N_2/GCLK13 Y9 GCLK
2 IO_L15P_2/GCLK12 W9 GCLK
2 IO_L16N_2/GCLK15 W10 GCLK
2 IO_L16P_2/GCLK14 V10 GCLK
2 IO_L17N_2/GCLK1 V11 GCLK
2 IO_L17P_2/GCLK0 Y11 GCLK
2 IO_L18N_2/GCLK3 V12 GCLK
2 IO_L18P_2/GCLK2 U11 GCLK
2 IO_L19N_2 R12 I/O
2 IO_L19P_2 T12 I/O
2 IO_L20N_2/MOSI/CSI_B W12 DUAL
2 IO_L20P_2 Y12 I/O
2 IO_L21N_2 W13 I/O
2 IO_L21P_2 Y13 I/O
2 IO_L22N_2/DOUT V13 DUAL
2IO_L22P_2/AWAKE U13 PWR
MGMT
2 IO_L23N_2 R13 I/O
2 IO_L23P_2 T13 I/O
2 IO_L24N_2/D3 W14 DUAL
2 IO_L24P_2/INIT_B Y14 DUAL
2 IO_L25N_2 T14 I/O
2 IO_L25P_2 V14 I/O
2 IO_L26N_2/D1 V15 DUAL
2 IO_L26P_2/D2 Y15 DUAL
2 IO_L27N_2 T15 I/O
2 IO_L27P_2 U15 I/O
2 IO_L28N_2 W16 I/O
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
104 www.xilinx.com DS529-4 (v2.0) August 19, 2010
2 IO_L28P_2 Y16 I/O
2 IO_L29N_2 U16 I/O
2 IO_L29P_2 V16 I/O
2 IO_L30N_2 Y18 I/O
2 IO_L30P_2 Y17 I/O
2 IO_L31N_2 U17 I/O
2 IO_L31P_2 V17 I/O
2 IO_L32N_2/CCLK Y19 DUAL
2 IO_L32P_2/D0/DIN/MISO W18 DUAL
2 IP_2 P9 INPUT
2 IP_2 P12 INPUT
2 IP_2 P13 INPUT
2 IP_2 R8 INPUT
2 IP_2 R10 INPUT
2 IP_2 T11 INPUT
2 IP_2/VREF_2 N9 VREF
2 IP_2/VREF_2 N12 VREF
2 IP_2/VREF_2 P8 VREF
2 IP_2/VREF_2 P10 VREF
2 IP_2/VREF_2 P11 VREF
2 IP_2/VREF_2 R14 VREF
2VCCO_2 R11VCCO
2 VCCO_2 U8 VCCO
2VCCO_2 U14VCCO
2 VCCO_2 W5 VCCO
2VCCO_2 W11VCCO
2VCCO_2 W17VCCO
3 IO_L01N_3 D3 I/O
3 IO_L01P_3 D4 I/O
3 IO_L02N_3 C2 I/O
3 IO_L02P_3 B1 I/O
3 IO_L03N_3 D2 I/O
3 IO_L03P_3 C1 I/O
3 IO_L05N_3 E1 I/O
3 IO_L05P_3 D1 I/O
3 IO_L06N_3 G5 I/O
3 IO_L06P_3 F4 I/O
3 IO_L07N_3 J5 I/O
3 IO_L07P_3 J6 I/O
3 IO_L08N_3 H4 I/O
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
3 IO_L08P_3 H6 I/O
3 IO_L09N_3 G4 I/O
3 IO_L09P_3 F3 I/O
3 IO_L10N_3 F2 I/O
3 IO_L10P_3 E3 I/O
3 IO_L12N_3 H2 I/O
3 IO_L12P_3 G3 I/O
3 IO_L13N_3/VREF_3 G1 VREF
3 IO_L13P_3 F1 I/O
3 IO_L14N_3 H3 I/O
3 IO_L14P_3 J4 I/O
3 IO_L16N_3 J2 I/O
3 IO_L16P_3 J3 I/O
3 IO_L17N_3/LHCLK1 K2 LHCLK
3 IO_L17P_3/LHCLK0 J1 LHCLK
3 IO_L18N_3/IRDY2/LHCLK3 L3 LHCLK
3 IO_L18P_3/LHCLK2 K3 LHCLK
3 IO_L20N_3/LHCLK5 L5 LHCLK
3 IO_L20P_3/LHCLK4 K4 LHCLK
3 IO_L21N_3/LHCLK7 M1 LHCLK
3 IO_L21P_3/TRDY2/LHCLK6 L1 LHCLK
3 IO_L22N_3 M3 I/O
3 IO_L22P_3/VREF_3 M2 VREF
3 IO_L24N_3 M5 I/O
3 IO_L24P_3 M4 I/O
3 IO_L25N_3 N2 I/O
3 IO_L25P_3 N1 I/O
3 IO_L26N_3 N4 I/O
3 IO_L26P_3 N3 I/O
3 IO_L28N_3 R1 I/O
3 IO_L28P_3 P1 I/O
3 IO_L29N_3 P4 I/O
3 IO_L29P_3 P3 I/O
3 IO_L30N_3 R3 I/O
3 IO_L30P_3 R2 I/O
3 IO_L32N_3 T2 I/O
3 IO_L32P_3/VREF_3 T1 VREF
3 IO_L33N_3 R4 I/O
3 IO_L33P_3 T3 I/O
3 IO_L34N_3 U3 I/O
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 105
3 IO_L34P_3 U1 I/O
3 IO_L36N_3 T4 I/O
3 IO_L36P_3 R5 I/O
3 IO_L37N_3 V2 I/O
3 IO_L37P_3 V1 I/O
3 IO_L38N_3 W2 I/O
3 IO_L38P_3 W1 I/O
3 IP_3 H7 INPUT
3 IP_L04N_3/VREF_3 G6 VREF
3 IP_L04P_3 G7 INPUT
3 IP_L11N_3/VREF_3 J7 VREF
3 IP_L11P_3 J8 INPUT
3 IP_L15N_3 K7 INPUT
3 IP_L15P_3 K8 INPUT
3 IP_L19N_3 K5 INPUT
3 IP_L19P_3 K6 INPUT
3 IP_L23N_3 L6 INPUT
3 IP_L23P_3 L7 INPUT
3 IP_L27N_3 M7 INPUT
3 IP_L27P_3 M8 INPUT
3 IP_L31N_3 N7 INPUT
3 IP_L31P_3 M6 INPUT
3 IP_L35N_3 N6 INPUT
3 IP_L35P_3 P5 INPUT
3 IP_L39N_3/VREF_3 P7 VREF
3 IP_L39P_3 P6 INPUT
3 VCCO_3 E2 VCCO
3 VCCO_3 H5 VCCO
3 VCCO_3 L2 VCCO
3 VCCO_3 N5 VCCO
3 VCCO_3 U2 VCCO
GND GND A1 GND
GND GND A11 GND
GND GND A20 GND
GND GND B6 GND
GND GND B14 GND
GND GND C3 GND
GND GND C18 GND
GND GND D9 GND
GND GND E5 GND
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
GND GND E12 GND
GND GND F15 GND
GND GND G2 GND
GND GND G19 GND
GND GND H8 GND
GND GND H13 GND
GND GND J9 GND
GND GND J11 GND
GND GND K1 GND
GND GND K10 GND
GND GND K12 GND
GND GND K17 GND
GND GND L4 GND
GND GND L9 GND
GND GND L11 GND
GND GND L20 GND
GND GND M10 GND
GND GND M12 GND
GND GND N8 GND
GND GND N11 GND
GND GND N13 GND
GND GND P2 GND
GND GND P19 GND
GND GND R6 GND
GND GND R9 GND
GND GND T16 GND
GND GND U12 GND
GND GND V3 GND
GND GND V18 GND
GND GND W7 GND
GND GND W15 GND
GND GND Y1 GND
GND GND Y10 GND
GND GND Y20 GND
VCCAUX SUSPEND R15 PWR
MGMT
VCCAUX DONE W19 CONFIG
VCCAUX PROG_B D5 CONFIG
VCCAUX TCK A19 JTAG
VCCAUX TDI F5 JTAG
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
106 www.xilinx.com DS529-4 (v2.0) August 19, 2010
User I/Os by Bank
Table 8 2 indicates how the 311 available user-I/O pins are
distributed between the four I/O banks on the FG400
package. The AWAKE pin is counted as a dual-purpose I/O.
Footprint Migration Differences
The XC3S400A and XC3S700A FPGAs have identical
footprints in the FG400 package. Designs can migrate
between the XC3S400A and XC3S700A FPGAs without
further consideration.
VCCAUX TDO E17 JTAG
VCCAUX TMS E4 JTAG
VCCAUX VCCAUX A13 VCCAUX
VCCAUX VCCAUX E16 VCCAUX
VCCAUX VCCAUX H1 VCCAUX
VCCAUX VCCAUX K13 VCCAUX
VCCAUX VCCAUX L8 VCCAUX
VCCAUX VCCAUX N20 VCCAUX
VCCAUX VCCAUX T5 VCCAUX
VCCAUX VCCAUX Y8 VCCAUX
VCCINT VCCINT J10 VCCINT
VCCINT VCCINT J12 VCCINT
VCCINT VCCINT K9 VCCINT
VCCINT VCCINT K11 VCCINT
VCCINT VCCINT L10 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT M9 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT N10 VCCINT
Table 81: Spartan-3A FG400 Pinout(Continued)
Bank Pin Name
FG400
Ball Type
Table 82: User I/Os Per Bank for the XC3S400A and XC3S700A in the FG400 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 077 50 12 1 6 8
Right 179 21 12 30 8 8
Bottom 276 35 621 6 8
Left 379 49 16 0 6 8
TOTAL 311 155 46 52 26 32
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 107
FG400 Footprint
Left Half of FG400
Package (Top View)
155
I/O: Unrestricted,
general-purpose user I/O
46
INPUT: Unrestricted,
general-purpose input pin
51 DUAL: Configuration pins,
then possible user I/O
26
VREF: User I/O or input
voltage reference for bank
32
CLK: User I/O, input, or
clock buffer input
2CONFIG: Dedicated
configuration pins
4
JTAG: Dedicated JTAG
port pins
2
SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
43
GND: Ground
22
VCCO: Output voltage
supply for bank
9
VCCINT: Internal core
supply voltage (+1.2V)
8
VCCAUX: Auxiliary supply
voltage
Figure 24: FG400 Package Footprint (Top View)
12345678910
AGND
I/O
L32P_0
VREF_0
I/O
L30P_0
I/O
L29P_0
I/O
L26P_0
I/O
L25P_0
I/O
L24N_0
I/O
L18N_0
GCLK11
I/O
L18P_0
GCLK10
I/O
L16P_0
GCLK6
BI/O
L02P_3
I/O
L32N_0
PUDC_B
I/O
L30N_0 VCCO_0
I/O
L26N_0
GND I/O
L24P_0
I/O
L20P_0
I/O
L19P_0 VCCO_0
CI/O
L03P_3
I/O
L02N_3
GND I/O
L29N_0
I/O
L28P_0
I/O
L25N_0
I/O
L21P_0
I/O
L20N_0
I/O
L19N_0
I/O
L16N_0
GCLK7
DI/O
L05P_3
I/O
L03N_3
I/O
L01N_3
I/O
L01P_3
PROG_B
I/O
L28N_0 VCCO_0
I/O
L21N_0
GND
I/O
L17P_0
GCLK8
EI/O
L05N_3 VCCO_3
I/O
L10P_3
TMS GND I/O
L31P_0
I/O
L27P_0
I/O
L23P_0
I/O
L22P_0
I/O
L17N_0
GCLK9
FI/O
L13P_3
I/O
L10N_3
I/O
L09P_3
I/O
L06P_3
TDI I/O
L31N_0
I/O
L27N_0
I/O
L23N_0
I/O
L22N_0
VREF_0
VCCO_0
G
I/O
L13N_3
VREF_3
GND I/O
L12P_3
I/O
L09N_3
I/O
L06N_3
INPUT
L04N_3
VREF_3
INPUT
L04P_3
INPUT INPUT INPUT
H
VCCAUX
I/O
L12N_3
I/O
L14N_3
I/O
L08N_3 VCCO_3
I/O
L08P_3
INPUT GND INPUT INPUT
J
I/O
L17P_3
LHCLK0
I/O
L16N_3
I/O
L16P_3
I/O
L14P_3
I/O
L07N_3
I/O
L07P_3
INPUT
L11N_3
VREF_3
INPUT
L11P_3
GND VCCINT
KGND
I/O
L17N_3
LHCLK1
I/O
L18P_3
LHCLK2
I/O
L20P_3
LHCLK4
INPUT
L19N_3
INPUT
L19P_3
INPUT
L15N_3
INPUT
L15P_3
VCCINT GND
L
I/O
L21P_3
TRDY2
LHCLK6
VCCO_3
I/O
L18N_3
IRDY2
LHCLK3
GND
I/O
L20N_3
LHCLK5
INPUT
L23N_3
INPUT
L23P_3 VCCAUX
GND VCCINT
M
I/O
L21N_3
LHCLK7
I/O
L22P_3
VREF_3
I/O
L22N_3
I/O
L24P_3
I/O
L24N_3
INPUT
L31P_3
INPUT
L27N_3
INPUT
L27P_3
VCCINT GND
NI/O
L25P_3
I/O
L25N_3
I/O
L26P_3
I/O
L26N_3 VCCO_3
INPUT
L35N_3
INPUT
L31N_3
GND INPUT
VREF_2
VCCINT
PI/O
L28P_3
GND I/O
L29P_3
I/O
L29N_3
INPUT
L35P_3
INPUT
L39P_3
INPUT
L39N_3
VREF_3
INPUT
VREF_2
INPUT INPUT
VREF_2
RI/O
L28N_3
I/O
L30P_3
I/O
L30N_3
I/O
L33N_3
I/O
L36P_3
GND I/O
L04N_2
INPUT GND INPUT
T
I/O
L32P_3
VREF_3
I/O
L32N_3
I/O
L33P_3
I/O
L36N_3 VCCAUX
I/O
L04P_2
I/O
L06P_2
I/O
L07P_2
RDWR_B
I/O
L11P_2
I/O
L14N_2
D4
UI/O
L34P_3 VCCO_3
I/O
L34N_3
I/O
L01P_2
M1
I/O
L05N_2
I/O
L06N_2
I/O
L07N_2
VS2
VCCO_2
I/O
L11N_2
I/O
L14P_2
D5
VI/O
L37P_3
I/O
L37N_3
GND
I/O
L01N_2
M0
I/O
L05P_2
I/O
L09P_2
VS1
I/O
L12P_2
D7
I/O
L13P_2
I/O
L13N_2
I/O
L16P_2
GCLK14
WI/O
L38P_3
I/O
L38N_3
I/O
L02P_2
M2
I/O
L03N_2 VCCO_2
I/O
L09N_2
VS0
GND
I/O
L12N_2
D6
I/O
L15P_2
GCLK12
I/O
L16N_2
GCLK15
YGND
I/O
L02N_2
CSO_B
I/O
L03P_2
I/O
L08P_2
I/O
L08N_2
I/O
L10P_2
I/O
L10N_2 VCCAUX
I/O
L15N_2
GCLK13
GND
Bank 2
Bank 3
Bank 0
DS529-4_03_011608
Pinout Descriptions
108 www.xilinx.com DS529-4 (v2.0) August 19, 2010
Right Half of FG400
Package (Top View)
11 12 13 14 15 16 17 18 19 20
GND I/O
L13N_0 VCCAUX
I/O
L07N_0
I/O
L08N_0
I/O
L05N_0
I/O
L04N_0
I/O
L01N_0
TCK GND
A
I/O
L14P_0
I/O
L13P_0
I/O
L11P_0
GND I/O
L08P_0 VCCO_0
I/O
L04P_0
VREF_0
I/O
L01P_0
I/O
L38N_1
A25
I/O
L38P_1
A24
B
I/O
L14N_0
I/O
L11N_0
I/O
L10N_0
VREF_0
I/O
L07P_0
I/O
L06N_0
I/O
L05P_0
I/O
L02N_0
GND
I/O
L37N_1
A23
I/O
L37P_1
A22
C
I/O
L15P_0
GCLK4
I/O
L12P_0 VCCO_0
I/O
L10P_0
I/O
L06P_0
I/O
L03P_0
I/O
L02P_0
VREF_0
I/O
L34N_1 VCCO_1
I/O
L34P_1
D
I/O
L15N_0
GCLK5
GND I/O
L09P_0
INPUT I/O
L03N_0 VCCAUX
TDO I/O
L33P_1
I/O
L32N_1
I/O
L32P_1
E
INPUT I/O
L12N_0
I/O
L09N_0
INPUT GND
I/O
L36N_1
A21
I/O
L33N_1
I/O
L30N_1
A19
I/O
L29N_1
A17
I/O
L29P_1
A16
F
INPUT
VREF_0
INPUT INPUT INPUT
L39N_1
INPUT
L39P_1
VREF_1
I/O
L36P_1
A20
I/O
L30P_1
A18
I/O
L28P_1
GND
I/O
L26N_1
A15
G
INPUT INPUT GND INPUT
L35N_1
INPUT
L35P_1 VCCO_1
I/O
L28N_1
I/O
L25N_1
A13
I/O
L25P_1
A12
I/O
L26P_1
A14
H
GND VCCINT INPUT
L31N_1
INPUT
L31P_1
VREF_1
INPUT
L27N_1
INPUT
L27P_1
I/O
L24P_1
I/O
L22N_1
A11
I/O
L22P_1
A10
I/O
L21N_1
RHCLK7
J
VCCINT GND
VCCAUX
INPUT
L23N_1
INPUT
L23P_1
VREF_1
I/O
L24N_1
GND
I/O
L20P_1
RHCLK4
VCCO_1
I/O
L21P_1
IRDY1
RHCLK6
K
GND VCCINT INPUT
L19N_1
INPUT
L19P_1
I/O
L16P_1
A8
I/O
L16N_1
A9
I/O
L20N_1
RHCLK5
I/O
L18N_1
TRDY1
RHCLK3
I/O
L18P_1
RHCLK2
GND
L
VCCINT GND INPUT
L15N_1
INPUT
L15P_1
VREF_1
INPUT
L11N_1
VREF_1
INPUT
L11P_1
I/O
L14P_1
A6
I/O
L14N_1
A7
I/O
L17P_1
RHCLK0
I/O
L17N_1
RHCLK1
M
GND INPUT
VREF_2
GND INPUT
VREF_1
I/O
L12P_1
A2
VCCO_1
I/O
L12N_1
A3
I/O
L13P_1
A4
I/O
L13N_1
A5
VCCAUX
N
INPUT
VREF_2
INPUT INPUT INPUT
L04P_1
INPUT
L04N_1
VREF_1
I/O
L07P_1
I/O
L07N_1
I/O
L10P_1
GND
I/O
L10N_1
VREF_1
P
VCCO_2
I/O
L19N_2
I/O
L23N_2
INPUT
VREF_2
SUSPEND
I/O
L03N_1
A1
I/O
L08N_1
I/O
L08P_1
I/O
L09P_1
I/O
L09N_1
R
INPUT I/O
L19P_2
I/O
L23P_2
I/O
L25N_2
I/O
L27N_2
GND
I/O
L03P_1
A0
I/O
L05P_1 VCCO_1
I/O
L05N_1
T
I/O
L18P_2
GCLK2
GND
I/O
L22P_2
AWAKE
VCCO_2
I/O
L27P_2
I/O
L29N_2
I/O
L31N_2
I/O
L02N_1
LDC0
I/O
L06P_1
I/O
L06N_1
U
I/O
L17N_2
GCLK1
I/O
L18N_2
GCLK3
I/O
L22N_2
DOUT
I/O
L25P_2
I/O
L26N_2
D1
I/O
L29P_2
I/O
L31P_2
GND
I/O
L02P_1
LDC1
I/O
L01N_1
LDC2
V
VCCO_2
I/O
L20N_2
MOSI
CSI_B
I/O
L21N_2
I/O
L24N_2
D3
GND I/O
L28N_2 VCCO_2
I/O
L32P_2
D0
DIN/MISO
DONE
I/O
L01P_1
HDC
W
I/O
L17P_2
GCLK0
I/O
L20P_2
I/O
L21P_2
I/O
L24P_2
INIT_B
I/O
L26P_2
D2
I/O
L28P_2
I/O
L30P_2
I/O
L30N_2
I/O
L32N_2
CCLK
GND
Y
Bank 2
Bank 1
Bank 0
DS529-4_04_012009
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 109
FG484: 484-ball Fine-pitch Ball Grid Array
The 484-ball fine-pitch ball grid array, FG484, supports both
the XC3S700A and the XC3S1400A FPGAs. There are
three pinout differences, as described in Table 86.
Table 8 3 lists all the FG484 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
The shaded rows indicate pinout differences between the
XC3S700A and the XC3S1400A FPGAs. The XC3S700A
has three unconnected balls, indicated as N.C. (No
Connection) in Ta ble 8 3 and with the black diamond
character () in Table 8 3 and Figure 25.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip.
Pinout Table
Table 83: Spartan-3A FG484 Pinout
Bank Pin Name
FG484
Ball Type
0 IO_L01N_0 D18 I/O
0 IO_L01P_0 E17 I/O
0 IO_L02N_0 C19 I/O
0 IO_L02P_0/VREF_0 D19 VREF
0 IO_L03N_0 A20 I/O
0 IO_L03P_0 B20 I/O
0 IO_L04N_0 F15 I/O
0 IO_L04P_0 E15 I/O
0 IO_L05N_0 A18 I/O
0 IO_L05P_0 C18 I/O
0 IO_L06N_0 A19 I/O
0 IO_L06P_0/VREF_0 B19 VREF
0 IO_L07N_0 C17 I/O
0 IO_L07P_0 D17 I/O
0 IO_L08N_0 C16 I/O
0 IO_L08P_0 D16 I/O
0 IO_L09N_0 E14 I/O
0 IO_L09P_0 C14 I/O
0 IO_L10N_0 A17 I/O
0 IO_L10P_0 B17 I/O
0 IO_L11N_0 C15 I/O
0 IO_L11P_0 D15 I/O
0 IO_L12N_0/VREF_0 A15 VREF
0 IO_L12P_0 A16 I/O
0 IO_L13N_0 A14 I/O
0 IO_L13P_0 B15 I/O
0 IO_L14N_0 E13 I/O
0 IO_L14P_0 F13 I/O
0 IO_L15N_0 C13 I/O
0 IO_L15P_0 D13 I/O
0 IO_L16N_0 A13 I/O
0 IO_L16P_0 B13 I/O
0 IO_L17N_0/GCLK5 E12 GCLK
0 IO_L17P_0/GCLK4 C12 GCLK
0 IO_L18N_0/GCLK7 A11 GCLK
0 IO_L18P_0/GCLK6 A12 GCLK
0 IO_L19N_0/GCLK9 C11 GCLK
0 IO_L19P_0/GCLK8 B11 GCLK
0 IO_L20N_0/GCLK11 E11 GCLK
0 IO_L20P_0/GCLK10 D11 GCLK
0 IO_L21N_0 C10 I/O
0 IO_L21P_0 A10 I/O
0 IO_L22N_0 A8 I/O
0 IO_L22P_0 A9 I/O
0 IO_L23N_0 E10 I/O
0 IO_L23P_0 D10 I/O
0 IO_L24N_0/VREF_0 C9 VREF
0 IO_L24P_0 B9 I/O
0 IO_L25N_0 C8 I/O
0 IO_L25P_0 B8 I/O
0 IO_L26N_0 A6 I/O
0 IO_L26P_0 A7 I/O
0 IO_L27N_0 C7 I/O
0 IO_L27P_0 D7 I/O
0 IO_L28N_0 A5 I/O
0 IO_L28P_0 B6 I/O
0 IO_L29N_0 D6 I/O
0 IO_L29P_0 C6 I/O
0 IO_L30N_0 D8 I/O
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
110 www.xilinx.com DS529-4 (v2.0) August 19, 2010
0 IO_L30P_0 E9 I/O
0 IO_L31N_0 B4 I/O
0 IO_L31P_0 A4 I/O
0 IO_L32N_0 D5 I/O
0 IO_L32P_0 C5 I/O
0 IO_L33N_0 B3 I/O
0 IO_L33P_0 A3 I/O
0 IO_L34N_0 F8 I/O
0 IO_L34P_0 E7 I/O
0 IO_L35N_0 E6 I/O
0 IO_L35P_0 F7 I/O
0 IO_L36N_0/PUDC_B A2 DUAL
0 IO_L36P_0/VREF_0 B2 VREF
0 IP_0 E16 INPUT
0IP_0 E8INPUT
0 IP_0 F10 INPUT
0 IP_0 F12 INPUT
0 IP_0 F16 INPUT
0 IP_0 G10 INPUT
0 IP_0 G11 INPUT
0 IP_0 G12 INPUT
0 IP_0 G13 INPUT
0 IP_0 G14 INPUT
0 IP_0 G15 INPUT
0 IP_0 G16 INPUT
0 IP_0 G7 INPUT
0 IP_0 G9 INPUT
0 IP_0 H10 INPUT
0 IP_0 H13 INPUT
0 IP_0 H14 INPUT
0 IP_0/VREF_0 G8 VREF
0 IP_0/VREF_0 H12 VREF
0 IP_0/VREF_0 H9 VREF
0 VCCO_0 B10 VCCO
0 VCCO_0 B14 VCCO
0 VCCO_0 B18 VCCO
0 VCCO_0 B5 VCCO
0 VCCO_0 F14 VCCO
0 VCCO_0 F9 VCCO
1 IO_L01N_1/LDC2 Y21 DUAL
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
1 IO_L01P_1/HDC AA22 DUAL
1 IO_L02N_1/LDC0 W20 DUAL
1 IO_L02P_1/LDC1 W19 DUAL
1 IO_L03N_1/A1 T18 DUAL
1 IO_L03P_1/A0 T17 DUAL
1 IO_L05N_1 W21 I/O
1 IO_L05P_1 Y22 I/O
1 IO_L06N_1 V20 I/O
1 IO_L06P_1 V19 I/O
1 IO_L07N_1 V22 I/O
1 IO_L07P_1 W22 I/O
1 IO_L09N_1 U21 I/O
1 IO_L09P_1 U22 I/O
1 IO_L10N_1 U19 I/O
1 IO_L10P_1 U20 I/O
1 IO_L11N_1 T22 I/O
1 IO_L11P_1 T20 I/O
1 IO_L13N_1 T19 I/O
1 IO_L13P_1 R20 I/O
1 IO_L14N_1 R22 I/O
1 IO_L14P_1 R21 I/O
1 IO_L15N_1/VREF_1 P22 VREF
1 IO_L15P_1 P20 I/O
1 IO_L17N_1/A3 P18 DUAL
1 IO_L17P_1/A2 R19 DUAL
1 IO_L18N_1/A5 N21 DUAL
1 IO_L18P_1/A4 N22 DUAL
1 IO_L19N_1/A7 N19 DUAL
1 IO_L19P_1/A6 N20 DUAL
1 IO_L20N_1/A9 N17 DUAL
1 IO_L20P_1/A8 N18 DUAL
1 IO_L21N_1/RHCLK1 L22 RHCLK
1 IO_L21P_1/RHCLK0 M22 RHCLK
1 IO_L22N_1/TRDY1/RHCLK3 L20 RHCLK
1 IO_L22P_1/RHCLK2 L21 RHCLK
1 IO_L24N_1/RHCLK5 M20 RHCLK
1 IO_L24P_1/RHCLK4 M18 RHCLK
1 IO_L25N_1/RHCLK7 K19 RHCLK
1 IO_L25P_1/IRDY1/RHCLK6 K20 RHCLK
1 IO_L26N_1/A11 J22 DUAL
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 111
1 IO_L26P_1/A10 K22 DUAL
1 IO_L28N_1 L19 I/O
1 IO_L28P_1 L18 I/O
1 IO_L29N_1/A13 J20 DUAL
1 IO_L29P_1/A12 J21 DUAL
1 IO_L30N_1/A15 G22 DUAL
1 IO_L30P_1/A14 H22 DUAL
1 IO_L32N_1 K18 I/O
1 IO_L32P_1 K17 I/O
1 IO_L33N_1/A17 H20 DUAL
1 IO_L33P_1/A16 H21 DUAL
1 IO_L34N_1/A19 F21 DUAL
1 IO_L34P_1/A18 F22 DUAL
1 IO_L36N_1 G20 I/O
1 IO_L36P_1 G19 I/O
1 IO_L37N_1 H19 I/O
1 IO_L37P_1 J18 I/O
1 IO_L38N_1 F20 I/O
1 IO_L38P_1 E20 I/O
1 IO_L40N_1 F18 I/O
1 IO_L40P_1 F19 I/O
1 IO_L41N_1 D22 I/O
1 IO_L41P_1 E22 I/O
1 IO_L42N_1 D20 I/O
1 IO_L42P_1 D21 I/O
1 IO_L44N_1/A21 C21 DUAL
1 IO_L44P_1/A20 C22 DUAL
1 IO_L45N_1/A23 B21 DUAL
1 IO_L45P_1/A22 B22 DUAL
1 IO_L46N_1/A25 G17 DUAL
1 IO_L46P_1/A24 G18 DUAL
1 IP_L04N_1/VREF_1 R16 VREF
1 IP_L04P_1 R15 INPUT
1 IP_L08N_1 P16 INPUT
1 IP_L08P_1 P15 INPUT
1 IP_L12N_1/VREF_1 R18 VREF
1 IP_L12P_1 R17 INPUT
1 IP_L16N_1/VREF_1 N16 VREF
1 IP_L16P_1 N15 INPUT
1 IP_L23N_1 M16 INPUT
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
1 IP_L23P_1 M17 INPUT
1 IP_L27N_1 L16 INPUT
1 IP_L27P_1/VREF_1 M15 VREF
1 IP_L31N_1 K16 INPUT
1 IP_L31P_1 L15 INPUT
1 IP_L35N_1 K15 INPUT
1 IP_L35P_1/VREF_1 K14 VREF
1 IP_L39N_1 H18 INPUT
1 IP_L39P_1 H17 INPUT
1 IP_L43N_1/VREF_1 J15 VREF
1 IP_L43P_1 J16 INPUT
1 IP_L47N_1 H15 INPUT
1 IP_L47P_1/VREF_1 H16 VREF
VCCAUX SUSPEND U18 PWR
MGMT
1 VCCO_1 E21 VCCO
1 VCCO_1 J17 VCCO
1 VCCO_1 K21 VCCO
1 VCCO_1 P17 VCCO
1 VCCO_1 P21 VCCO
1 VCCO_1 V21 VCCO
2 IO_L01N_2/M0 W5 DUAL
2 IO_L01P_2/M1 V6 DUAL
2 IO_L02N_2/CSO_B Y4 DUAL
2 IO_L02P_2/M2 W4 DUAL
2 IO_L03N_2 AA3 I/O
2 IO_L03P_2 AB2 I/O
2 IO_L04N_2 AA4 I/O
2 IO_L04P_2 AB3 I/O
2 IO_L05N_2 Y5 I/O
2 IO_L05P_2 W6 I/O
2 IO_L06N_2 AB5 I/O
2 IO_L06P_2 AB4 I/O
2 IO_L07N_2 Y6 I/O
2 IO_L07P_2 W7 I/O
2 IO_L08N_2 AB6 I/O
2 IO_L08P_2 AA6 I/O
2 IO_L09N_2/VS2 W9 DUAL
2 IO_L09P_2/RDWR_B V9 DUAL
2 IO_L10N_2 AB7 I/O
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
112 www.xilinx.com DS529-4 (v2.0) August 19, 2010
2 IO_L10P_2 Y7 I/O
2 IO_L11N_2/VS0 Y8 DUAL
2 IO_L11P_2/VS1 W8 DUAL
2 IO_L12N_2 AB8 I/O
2 IO_L12P_2 AA8 I/O
2 IO_L13N_2 Y10 I/O
2 IO_L13P_2 V10 I/O
2 IO_L14N_2/D6 AB9 DUAL
2 IO_L14P_2/D7 Y9 DUAL
2 IO_L15N_2 AB10 I/O
2 IO_L15P_2 AA10 I/O
2 IO_L16N_2/D4 AB11 DUAL
2 IO_L16P_2/D5 Y11 DUAL
2 IO_L17N_2/GCLK13 V11 GCLK
2 IO_L17P_2/GCLK12 U11 GCLK
2 IO_L18N_2/GCLK15 Y12 GCLK
2 IO_L18P_2/GCLK14 W12 GCLK
2 IO_L19N_2/GCLK1 AB12 GCLK
2 IO_L19P_2/GCLK0 AA12 GCLK
2 IO_L20N_2/GCLK3 U12 GCLK
2 IO_L20P_2/GCLK2 V12 GCLK
2 IO_L21N_2 Y13 I/O
2 IO_L21P_2 AB13 I/O
2 IO_L22N_2/MOSI/CSI_B AB14 DUAL
2 IO_L22P_2 AA14 I/O
2 IO_L23N_2 Y14 I/O
2 IO_L23P_2 W13 I/O
2IO_L24N_2/
DOUT AA15 DUAL
2 IO_L24P_2/AWAKE AB15 PWR
MGMT
2 IO_L25N_2 Y15 I/O
2 IO_L25P_2 W15 I/O
2 IO_L26N_2/D3 U13 DUAL
2 IO_L26P_2/INIT_B V13 DUAL
2 IO_L27N_2 Y16 I/O
2 IO_L27P_2 AB16 I/O
2 IO_L28N_2/D1 Y17 DUAL
2 IO_L28P_2/D2 AA17 DUAL
2 IO_L29N_2 AB18 I/O
2 IO_L29P_2 AB17 I/O
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
2 IO_L30N_2 V15 I/O
2 IO_L30P_2 V14 I/O
2 IO_L31N_2 V16 I/O
2 IO_L31P_2 W16 I/O
2 IO_L32N_2 AA19 I/O
2 IO_L32P_2 AB19 I/O
2 IO_L33N_2 V17 I/O
2 IO_L33P_2 W18 I/O
2 IO_L34N_2 W17 I/O
2 IO_L34P_2 Y18 I/O
2 IO_L35N_2 AA21 I/O
2 IO_L35P_2 AB21 I/O
2 IO_L36N_2/CCLK AA20 DUAL
2 IO_L36P_2/D0/DIN/MISO AB20 DUAL
2 IP_2 P12 INPUT
2 IP_2 R10 INPUT
2 IP_2 R11 INPUT
2 IP_2 R9 INPUT
2 IP_2 T13 INPUT
2 IP_2 T14 INPUT
2 IP_2 T9 INPUT
2 IP_2 U10 INPUT
2 IP_2 U15 INPUT
2XC3S1400A: IP_2
XC3S700A: N.C. ()U16 INPUT
2XC3S1400A: IP_2
XC3S700A: N.C. ()U7 INPUT
2 IP_2 U8 INPUT
2IP_2 V7INPUT
2 IP_2/VREF_2 R12 VREF
2 IP_2/VREF_2 R13 VREF
2 IP_2/VREF_2 R14 VREF
2 IP_2/VREF_2 T10 VREF
2 IP_2/VREF_2 T11 VREF
2 IP_2/VREF_2 T15 VREF
2 IP_2/VREF_2 T16 VREF
2 IP_2/VREF_2 T7 VREF
2XC3S1400A: IP_2/VREF_2
XC3S700A: N.C. ()T8 VREF
2 IP_2/VREF_2 V8 VREF
2 VCCO_2 AA13 VCCO
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 113
2 VCCO_2 AA18 VCCO
2 VCCO_2 AA5 VCCO
2 VCCO_2 AA9 VCCO
2 VCCO_2 U14 VCCO
2 VCCO_2 U9 VCCO
3 IO_L01N_3 D2 I/O
3 IO_L01P_3 C1 I/O
3 IO_L02N_3 C2 I/O
3 IO_L02P_3 B1 I/O
3 IO_L03N_3 E4 I/O
3 IO_L03P_3 D3 I/O
3 IO_L05N_3 G5 I/O
3 IO_L05P_3 G6 I/O
3 IO_L06N_3 E1 I/O
3 IO_L06P_3 D1 I/O
3 IO_L07N_3 E3 I/O
3 IO_L07P_3 F4 I/O
3 IO_L08N_3 G4 I/O
3 IO_L08P_3 F3 I/O
3 IO_L09N_3 H6 I/O
3 IO_L09P_3 H5 I/O
3 IO_L10N_3 J5 I/O
3 IO_L10P_3 K6 I/O
3 IO_L12N_3 F1 I/O
3 IO_L12P_3 F2 I/O
3 IO_L13N_3 G1 I/O
3 IO_L13P_3 G3 I/O
3 IO_L14N_3 H3 I/O
3 IO_L14P_3 H4 I/O
3 IO_L16N_3 H1 I/O
3 IO_L16P_3 H2 I/O
3 IO_L17N_3/VREF_3 J1 VREF
3 IO_L17P_3 J3 I/O
3 IO_L18N_3 K4 I/O
3 IO_L18P_3 K5 I/O
3 IO_L20N_3 K2 I/O
3 IO_L20P_3 K3 I/O
3 IO_L21N_3/LHCLK1 L3 LHCLK
3 IO_L21P_3/LHCLK0 L5 LHCLK
3 IO_L22N_3/IRDY2/LHCLK3 L1 LHCLK
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
3 IO_L22P_3/LHCLK2 K1 LHCLK
3 IO_L24N_3/LHCLK5 M2 LHCLK
3 IO_L24P_3/LHCLK4 M1 LHCLK
3 IO_L25N_3/LHCLK7 M4 LHCLK
3 IO_L25P_3/TRDY2/LHCLK6 M3 LHCLK
3 IO_L26N_3 N3 I/O
3 IO_L26P_3/VREF_3 N1 VREF
3 IO_L28N_3 P2 I/O
3 IO_L28P_3 P1 I/O
3 IO_L29N_3 P5 I/O
3 IO_L29P_3 P3 I/O
3 IO_L30N_3 N4 I/O
3 IO_L30P_3 M5 I/O
3 IO_L32N_3 R2 I/O
3 IO_L32P_3 R1 I/O
3 IO_L33N_3 R4 I/O
3 IO_L33P_3 R3 I/O
3 IO_L34N_3 T4 I/O
3 IO_L34P_3 R5 I/O
3 IO_L36N_3 T3 I/O
3 IO_L36P_3/VREF_3 T1 VREF
3 IO_L37N_3 U2 I/O
3 IO_L37P_3 U1 I/O
3 IO_L38N_3 V3 I/O
3 IO_L38P_3 V1 I/O
3 IO_L40N_3 U5 I/O
3 IO_L40P_3 T5 I/O
3 IO_L41N_3 U4 I/O
3 IO_L41P_3 U3 I/O
3 IO_L42N_3 W2 I/O
3 IO_L42P_3 W1 I/O
3 IO_L43N_3 W3 I/O
3 IO_L43P_3 V4 I/O
3 IO_L44N_3 Y2 I/O
3 IO_L44P_3 Y1 I/O
3 IO_L45N_3 AA2 I/O
3 IO_L45P_3 AA1 I/O
3 IP_3/VREF_3 J8 VREF
3 IP_3/VREF_3 R6 VREF
3 IP_L04N_3/VREF_3 H7 VREF
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
114 www.xilinx.com DS529-4 (v2.0) August 19, 2010
3 IP_L04P_3 H8 INPUT
3 IP_L11N_3 K8 INPUT
3 IP_L11P_3 J7 INPUT
3 IP_L15N_3/VREF_3 L8 VREF
3 IP_L15P_3 K7 INPUT
3 IP_L19N_3 M8 INPUT
3 IP_L19P_3 L7 INPUT
3 IP_L23N_3 M6 INPUT
3 IP_L23P_3 M7 INPUT
3 IP_L27N_3 N9 INPUT
3 IP_L27P_3 N8 INPUT
3 IP_L31N_3 N5 INPUT
3 IP_L31P_3 N6 INPUT
3 IP_L35N_3 P8 INPUT
3 IP_L35P_3 N7 INPUT
3 IP_L39N_3 R8 INPUT
3 IP_L39P_3 P7 INPUT
3 IP_L46N_3/VREF_3 T6 VREF
3 IP_L46P_3 R7 INPUT
3 VCCO_3 E2 VCCO
3 VCCO_3 J2 VCCO
3 VCCO_3 J6 VCCO
3 VCCO_3 N2 VCCO
3 VCCO_3 P6 VCCO
3 VCCO_3 V2 VCCO
GND GND A1 GND
GND GND A22 GND
GND GND AA11 GND
GND GND AA16 GND
GND GND AA7 GND
GND GND AB1 GND
GND GND AB22 GND
GND GND B12 GND
GND GND B16 GND
GND GND B7 GND
GND GND C20 GND
GND GND C3 GND
GND GND D14 GND
GND GND D9 GND
GND GND F11 GND
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
GND GND F17 GND
GND GND F6 GND
GND GND G2 GND
GND GND G21 GND
GND GND J11 GND
GND GND J13 GND
GND GND J14 GND
GND GND J19 GND
GND GND J4 GND
GND GND J9 GND
GND GND K10 GND
GND GND K12 GND
GND GND L11 GND
GND GND L13 GND
GND GND L17 GND
GND GND L2 GND
GND GND L6 GND
GND GND L9 GND
GND GND M10 GND
GND GND M12 GND
GND GND M14 GND
GND GND M21 GND
GND GND N11 GND
GND GND N13 GND
GND GND P10 GND
GND GND P14 GND
GND GND P19 GND
GND GND P4 GND
GND GND P9 GND
GND GND T12 GND
GND GND T2 GND
GND GND T21 GND
GND GND U17 GND
GND GND U6 GND
GND GND W10 GND
GND GND W14 GND
GND GND Y20 GND
GND GND Y3 GND
VCCAUX SUSPEND U18 PWR
MGMT
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 115
VCCAUX DONE Y19 CONFIG
VCCAUX PROG_B C4 CONFIG
VCCAUX TCK A21 JTAG
VCCAUX TDI F5 JTAG
VCCAUX TDO E19 JTAG
VCCAUX TMS D4 JTAG
VCCAUX VCCAUX D12 VCCAUX
VCCAUX VCCAUX E18 VCCAUX
VCCAUX VCCAUX E5 VCCAUX
VCCAUX VCCAUX H11 VCCAUX
VCCAUX VCCAUX L4 VCCAUX
VCCAUX VCCAUX M19 VCCAUX
VCCAUX VCCAUX P11 VCCAUX
VCCAUX VCCAUX V18 VCCAUX
VCCAUX VCCAUX V5 VCCAUX
VCCAUX VCCAUX W11 VCCAUX
VCCINT VCCINT J10 VCCINT
VCCINT VCCINT J12 VCCINT
VCCINT VCCINT K11 VCCINT
VCCINT VCCINT K13 VCCINT
VCCINT VCCINT K9 VCCINT
VCCINT VCCINT L10 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT L14 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT M13 VCCINT
VCCINT VCCINT M9 VCCINT
VCCINT VCCINT N10 VCCINT
VCCINT VCCINT N12 VCCINT
VCCINT VCCINT N14 VCCINT
VCCINT VCCINT P13 VCCINT
Table 83: Spartan-3A FG484 Pinout(Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
116 www.xilinx.com DS529-4 (v2.0) August 19, 2010
User I/Os by Bank
Table 84 and Ta ble 85 indicate how the user-I/O pins are
distributed between the four I/O banks on the FG484
package. The AWAKE pin is counted as a dual-purpose I/O.
Footprint Migration Differences
Table 8 6 summarizes any footprint and functionality
differences between the XC3S700A and the XC3S1400A
FPGAs that might affect easy migration between devices
available in the FG484 package. There are three such balls.
All other pins not listed in Tabl e 8 6 unconditionally migrate
between Spartan-3A devices available in the FG484
package.
The arrows indicate the direction for easy migration.
Table 84: User I/Os Per Bank for the XC3S700A in the FG484 Package
Package
Edge I/O Bank Maximum I/O
All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 092 58 17 1 8 8
Right 194 33 15 30 8 8
Bottom 292 43 11 21 9 8
Left 394 61 17 0 8 8
TOTAL 372 195 60 52 33 32
Table 85: User I/Os Per Bank for the XC3S1400A in the FG484 Package
Package
Edge I/O Bank Maximum I/O
All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 092 58 17 1 8 8
Right 194 33 15 30 8 8
Bottom 295 43 13 21 10 8
Left 394 61 17 0 8 8
TOTAL 375 195 62 52 34 32
Table 86: FG484 Footprint Migration Differences
Pin Bank XC3S700A Migration XC3S1400A
T8 2 N.C. ÆINPUT/VREF
U7 2 N.C. ÆINPUT
U16 2 N.C. ÆINPUT
DIFFERENCES 3
Legend:
ÆThis pin can unconditionally migrate from the device
on the left to the device on the right. Migration in the
other direction is possible depending on how the pin is
configured for the device on the right.
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 117
FG484 Footprint
Left Half of FG484
Package (Top View)
195
I/O: Unrestricted,
general-purpose user I/O
60-
62
INPUT: Unrestricted,
general-purpose input pin
51 DUAL: Configuration pins,
then possible user I/O
33-
34
VREF: User I/O or input
voltage reference for bank
32
CLK: User I/O, input, or
clock buffer input
2
SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
2CONFIG: Dedicated
configuration pins
4
JTAG: Dedicated JTAG port
pins
53
GND: Ground
24
VCCO: Output voltage
supply for bank
15
VCCINT: Internal core
supply voltage (+1.2V)
10
VCCAUX: Auxiliary supply
voltage
3
N.C.: Not connected
(XC3S700A only)
Figure 25: FG484 Package Footprint (Top View)
1234567891011
A
GND
I/O
L36N_0
PUDC_B
I/O
L33P_0
I/O
L31P_0
I/O
L28N_0
I/O
L26N_0
I/O
L26P_0
I/O
L22N_0
I/O
L22P_0
I/O
L21P_0
I/O
L18N_0
GCLK7
B
I/O
L02P_3
I/O
L36P_0
VREF_0
I/O
L33N_0
I/O
L31N_0 VCCO_0
I/O
L28P_0
GND I/O
L25P_0
I/O
L24P_0 VCCO_0
I/O
L19P_0
GCLK8
C
I/O
L01P_3
I/O
L02N_3
GND
PROG_B
I/O
L32P_0
I/O
L29P_0
I/O
L27N_0
I/O
L25N_0
I/O
L24N_0
VREF_0
I/O
L21N_0
I/O
L19N_0
GCLK9
D
I/O
L06P_3
I/O
L01N_3
I/O
L03P_3
TMS I/O
L32N_0
I/O
L29N_0
I/O
L27P_0
I/O
L30N_0
GND I/O
L23P_0
I/O
L20P_0
GCLK10
E
I/O
L06N_3 VCCO_3
I/O
L07N_3
I/O
L03N_3 VCCAUX
I/O
L35N_0
I/O
L34P_0
INPUT I/O
L30P_0
I/O
L23N_0
I/O
L20N_0
GCLK11
F
I/O
L12N_3
I/O
L12P_3
I/O
L08P_3
I/O
L07P_3
TDI GND I/O
L35P_0
I/O
L34N_0 VCCO_0
INPUT GND
G
I/O
L13N_3
GND I/O
L13P_3
I/O
L08N_3
I/O
L05N_3
I/O
L05P_3
INPUT INPUT
VREF_0
INPUT INPUT INPUT
H
I/O
L16N_3
I/O
L16P_3
I/O
L14N_3
I/O
L14P_3
I/O
L09P_3
I/O
L09N_3
INPUT
L04N_3
VREF_3
INPUT
L04P_3
INPUT
VREF_0
INPUT
VCCAUX
J
I/O
L17N_3
VREF_3
VCCO_3
I/O
L17P_3
GND I/O
L10N_3 VCCO_3
INPUT
L11P_3
INPUT
VREF_3
GND VCCINT GND
K
I/O
L22P_3
LHCLK2
I/O
L20N_3
I/O
L20P_3
I/O
L18N_3
I/O
L18P_3
I/O
L10P_3
INPUT
L15P_3
INPUT
L11N_3
VCCINT GND VCCINT
L
I/O
L22N_3
IRDY2
LHCLK3
GND
I/O
L21N_3
LHCLK1
VCCAUX
I/O
L21P_3
LHCLK0
GND INPUT
L19P_3
INPUT
L15N_3
VREF_3
GND VCCINT GND
M
I/O
L24P_3
LHCLK4
I/O
L24N_3
LHCLK5
I/O
L25P_3
TRDY2
LHCLK6
I/O
L25N_3
LHCLK7
I/O
L30P_3
INPUT
L23N_3
INPUT
L23P_3
INPUT
L19N_3
VCCINT GND VCCINT
N
I/O
L26P_3
VREF_3
VCCO_3
I/O
L26N_3
I/O
L30N_3
INPUT
L31N_3
INPUT
L31P_3
INPUT
L35P_3
INPUT
L27P_3
INPUT
L27N_3
VCCINT GND
P
I/O
L28P_3
I/O
L28N_3
I/O
L29P_3
GND I/O
L29N_3 VCCO_3
INPUT
L39P_3
INPUT
L35N_3
GND GND
VCCAUX
R
I/O
L32P_3
I/O
L32N_3
I/O
L33P_3
I/O
L33N_3
I/O
L34P_3
INPUT
VREF_3
INPUT
L46P_3
INPUT
L39N_3
INPUT INPUT INPUT
T
I/O
L36P_3
VREF_3
GND I/O
L36N_3
I/O
L34N_3
I/O
L40P_3
INPUT
L46N_3
VREF_3
INPUT
VREF_2
INPUT
VREF_2
INPUT INPUT
VREF_2
INPUT
VREF_2
U
I/O
L37P_3
I/O
L37N_3
I/O
L41P_3
I/O
L41N_3
I/O
L40N_3
GND
INPUT
INPUT
VCCO_2
INPUT
I/O
L17P_2
GCLK12
V
I/O
L38P_3 VCCO_3
I/O
L38N_3
I/O
L43P_3 VCCAUX
I/O
L01P_2
M1
INPUT INPUT
VREF_2
I/O
L09P_2
RDWR_B
I/O
L13P_2
I/O
L17N_2
GCLK13
W
I/O
L42P_3
I/O
L42N_3
I/O
L43N_3
I/O
L02P_2
M2
I/O
L01N_2
M0
I/O
L05P_2
I/O
L07P_2
I/O
L11P_2
VS1
I/O
L09N_2
VS2
GND
VCCAUX
Y
I/O
L44P_3
I/O
L44N_3
GND
I/O
L02N_2
CSO_B
I/O
L05N_2
I/O
L07N_2
I/O
L10P_2
I/O
L11N_2
VS0
I/O
L14P_2
D7
I/O
L13N_2
I/O
L16P_2
D5
A
A
I/O
L45P_3
I/O
L45N_3
I/O
L03N_2
I/O
L04N_2 VCCO_2
I/O
L08P_2
GND I/O
L12P_2 VCCO_2
I/O
L15P_2
GND
A
B
GND I/O
L03P_2
I/O
L04P_2
I/O
L06P_2
I/O
L06N_2
I/O
L08N_2
I/O
L10N_2
I/O
L12N_2
I/O
L14N_2
D6
I/O
L15N_2
I/O
L16N_2
D4
Bank 3
Bank 2
Bank 0
DS529-4 01 101106
Pinout Descriptions
118 www.xilinx.com DS529-4 (v2.0) August 19, 2010
Right Half of FG484
Package (Top View)
Figure 26:
12 13 14 15 16 17 18 19 20 21 22
I/O
L18P_0
GCLK6
I/O
L16N_0
I/O
L13N_0
I/O
L12N_0
VREF_0
I/O
L12P_0
I/O
L10N_0
I/O
L05N_0
I/O
L06N_0
I/O
L03N_0 TCK GND
A
GND I/O
L16P_0 VCCO_0 I/O
L13P_0 GND I/O
L10P_0 VCCO_0
I/O
L06P_0
VREF_0
I/O
L03P_0
I/O
L45N_1
A23
I/O
L45P_1
A22
B
I/O
L17P_0
GCLK4
I/O
L15N_0
I/O
L09P_0
I/O
L11N_0
I/O
L08N_0
I/O
L07N_0
I/O
L05P_0
I/O
L02N_0 GND
I/O
L44N_1
A21
I/O
L44P_1
A20
C
VCCAUX I/O
L15P_0 GND I/O
L11P_0
I/O
L08P_0
I/O
L07P_0
I/O
L01N_0
I/O
L02P_0
VREF_0
I/O
L42N_1
I/O
L42P_1
I/O
L41N_1
D
I/O
L17N_0
GCLK5
I/O
L14N_0
I/O
L09N_0
I/O
L04P_0 INPUT I/O
L01P_0 VCCAUX TDO I/O
L38P_1 VCCO_1 I/O
L41P_1
E
INPUT I/O
L14P_0 VCCO_0 I/O
L04N_0 INPUT GND I/O
L40N_1
I/O
L40P_1
I/O
L38N_1
I/O
L34N_1
A19
I/O
L34P_1
A18
F
INPUT INPUT INPUT INPUT INPUT
I/O
L46N_1
A25
I/O
L46P_1
A24
I/O
L36P_1
I/O
L36N_1 GND
I/O
L30N_1
A15
G
INPUT
VREF_0 INPUT INPUT INPUT
L47N_1
INPUT
L47P_1
VREF_1
INPUT
L39P_1
INPUT
L39N_1
I/O
L37N_1
I/O
L33N_1
A17
I/O
L33P_1
A16
I/O
L30P_1
A14
H
VCCINT GND GND
INPUT
L43N_1
VREF_1
INPUT
L43P_1 VCCO_1 I/O
L37P_1 GND
I/O
L29N_1
A13
I/O
L29P_1
A12
I/O
L26N_1
A11
J
GND VCCINT
INPUT
L35P_1
VREF_1
INPUT
L35N_1
INPUT
L31N_1
I/O
L32P_1
I/O
L32N_1
I/O
L25N_1
RHCLK7
I/O
L25P_1
IRDY1
RHCLK6
VCCO_1
I/O
L26P_1
A10
K
VCCINT GND VCCINT INPUT
L31P_1
INPUT
L27N_1 GND I/O
L28P_1
I/O
L28N_1
I/O
L22N_1
TRDY1
RHCLK3
I/O
L22P_1
RHCLK2
I/O
L21N_1
RHCLK1
L
GND VCCINT GND
INPUT
L27P_1
VREF_1
INPUT
L23N_1
INPUT
L23P_1
I/O
L24P_1
RHCLK4
VCCAUX
I/O
L24N_1
RHCLK5
GND
I/O
L21P_1
RHCLK0
M
VCCINT GND VCCINT INPUT
L16P_1
INPUT
L16N_1
VREF_1
I/O
L20N_1
A9
I/O
L20P_1
A8
I/O
L19N_1
A7
I/O
L19P_1
A6
I/O
L18N_1
A5
I/O
L18P_1
A4
N
INPUT VCCINT GND INPUT
L08P_1
INPUT
L08N_1 VCCO_1
I/O
L17N_1
A3
GND I/O
L15P_1 VCCO_1
I/O
L15N_1
VREF_1
P
INPUT
VREF_2
INPUT
VREF_2
INPUT
VREF_2
INPUT
L04P_1
INPUT
L04N_1
VREF_1
INPUT
L12P_1
INPUT
L12N_1
VREF_1
I/O
L17P_1
A2
I/O
L13P_1
I/O
L14P_1
I/O
L14N_1
R
GND INPUT INPUT INPUT
VREF_2
INPUT
VREF_2
I/O
L03P_1
A0
I/O
L03N_1
A1
I/O
L13N_1
I/O
L11P_1 GND I/O
L11N_1
T
I/O
L20N_2
GCLK3
I/O
L26N_2
D3
VCCO_2 INPUT
INPUT
GND
SUSPEND
I/O
L10N_1
I/O
L10P_1
I/O
L09N_1
I/O
L09P_1
U
I/O
L20P_2
GCLK2
I/O
L26P_2
INIT_B
I/O
L30P_2
I/O
L30N_2
I/O
L31N_2
I/O
L33N_2 VCCAUX I/O
L06P_1
I/O
L06N_1 VCCO_1 I/O
L07N_1
V
I/O
L18P_2
GCLK14
I/O
L23P_2 GND I/O
L25P_2
I/O
L31P_2
I/O
L34N_2
I/O
L33P_2
I/O
L02P_1
LDC1
I/O
L02N_1
LDC0
I/O
L05N_1
I/O
L07P_1
W
I/O
L18N_2
GCLK15
I/O
L21N_2
I/O
L23N_2
I/O
L25N_2
I/O
L27N_2
I/O
L28N_2
D1
I/O
L34P_2 DONE GND
I/O
L01N_1
LDC2
I/O
L05P_1
Y
I/O
L19P_2
GCLK0
VCCO_2 I/O
L22P_2
I/O
L24N_2
DOUT
GND
I/O
L28P_2
D2
VCCO_2 I/O
L32N_2
I/O
L36N_2
CCLK
I/O
L35N_2
I/O
L01P_1
HDC
A
A
I/O
L19N_2
GCLK1
I/O
L21P_2
I/O
L22N_2
MOSI
CSI_B
I/O
L24P_2
AWAKE
I/O
L27P_2
I/O
L29P_2
I/O
L29N_2
I/O
L32P_2
I/O
L36P_2
D0
DIN/MISO
I/O
L35P_2 GND
A
B
Bank 1
Bank 2
Bank 0
DS529-4_02_012009
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 119
FG676: 676-ball Fine-pitch Ball Grid Array
The 676-ball fine-pitch ball grid array, FG676, supports the
XC3S1400A FPGA.
Table 8 7 lists all the FG676 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
The XC3S1400A has 17 unconnected balls, indicated as
N.C. (No Connection) in Ta ble 8 7 and with the black
diamond character () in Ta bl e 8 7 and Figure 27.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at:
www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip.
Pinout Table
Table 87: Spartan-3A FG676 Pinout
Bank Pin Name
FG676
Ball Type
0 IO_L01N_0 F20 I/O
0 IO_L01P_0 G20 I/O
0 IO_L02N_0 F19 I/O
0 IO_L02P_0/VREF_0 G19 VREF
0 IO_L05N_0 C22 I/O
0 IO_L05P_0 D22 I/O
0 IO_L06N_0 C23 I/O
0 IO_L06P_0 D23 I/O
0 IO_L07N_0 A22 I/O
0 IO_L07P_0 B23 I/O
0 IO_L08N_0 G17 I/O
0 IO_L08P_0 H17 I/O
0 IO_L09N_0 B21 I/O
0 IO_L09P_0 C21 I/O
0 IO_L10N_0 D21 I/O
0 IO_L10P_0 E21 I/O
0 IO_L11N_0 C20 I/O
0 IO_L11P_0 D20 I/O
0 IO_L12N_0 K16 I/O
0 IO_L12P_0 J16 I/O
0 IO_L13N_0 E17 I/O
0 IO_L13P_0 F17 I/O
0 IO_L14N_0 A20 I/O
0 IO_L14P_0/VREF_0 B20 VREF
0 IO_L15N_0 A19 I/O
0 IO_L15P_0 B19 I/O
0 IO_L16N_0 H15 I/O
0 IO_L16P_0 G15 I/O
0 IO_L17N_0 C18 I/O
0 IO_L17P_0 D18 I/O
0 IO_L18N_0 A18 I/O
0 IO_L18P_0 B18 I/O
0 IO_L19N_0 B17 I/O
0 IO_L19P_0 C17 I/O
0 IO_L20N_0/VREF_0 E15 VREF
0 IO_L20P_0 F15 I/O
0 IO_L21N_0 C16 I/O
0 IO_L21P_0 D17 I/O
0 IO_L22N_0 C15 I/O
0 IO_L22P_0 D16 I/O
0 IO_L23N_0 A15 I/O
0 IO_L23P_0 B15 I/O
0 IO_L24N_0 F14 I/O
0 IO_L24P_0 E14 I/O
0 IO_L25N_0/GCLK5 J14 GCLK
0 IO_L25P_0/GCLK4 K14 GCLK
0 IO_L26N_0/GCLK7 A14 GCLK
0 IO_L26P_0/GCLK6 B14 GCLK
0 IO_L27N_0/GCLK9 G13 GCLK
0 IO_L27P_0/GCLK8 F13 GCLK
0 IO_L28N_0/GCLK11 C13 GCLK
0 IO_L28P_0/GCLK10 B13 GCLK
0 IO_L29N_0 B12 I/O
0 IO_L29P_0 A12 I/O
0 IO_L30N_0 C12 I/O
0 IO_L30P_0 D13 I/O
0 IO_L31N_0 F12 I/O
0 IO_L31P_0 E12 I/O
0 IO_L32N_0/VREF_0 D11 VREF
0 IO_L32P_0 C11 I/O
0 IO_L33N_0 B10 I/O
0 IO_L33P_0 A10 I/O
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
120 www.xilinx.com DS529-4 (v2.0) August 19, 2010
0 IO_L34N_0 D10 I/O
0 IO_L34P_0 C10 I/O
0 IO_L35N_0 H12 I/O
0 IO_L35P_0 G12 I/O
0 IO_L36N_0 B9 I/O
0 IO_L36P_0 A9 I/O
0 IO_L37N_0 D9 I/O
0 IO_L37P_0 E10 I/O
0 IO_L38N_0 B8 I/O
0 IO_L38P_0 A8 I/O
0 IO_L39N_0 K12 I/O
0 IO_L39P_0 J12 I/O
0 IO_L40N_0 D8 I/O
0 IO_L40P_0 C8 I/O
0 IO_L41N_0 C6 I/O
0 IO_L41P_0 B6 I/O
0 IO_L42N_0 C7 I/O
0 IO_L42P_0 B7 I/O
0 IO_L43N_0 K11 I/O
0 IO_L43P_0 J11 I/O
0 IO_L44N_0 D6 I/O
0 IO_L44P_0 C5 I/O
0 IO_L45N_0 B4 I/O
0 IO_L45P_0 A4 I/O
0 IO_L46N_0 H10 I/O
0 IO_L46P_0 G10 I/O
0 IO_L47N_0 H9 I/O
0 IO_L47P_0 G9 I/O
0 IO_L48N_0 E7 I/O
0 IO_L48P_0 F7 I/O
0 IO_L51N_0 B3 I/O
0 IO_L51P_0 A3 I/O
0 IO_L52N_0/PUDC_B G8 DUAL
0 IO_L52P_0/VREF_0 F8 VREF
0 IP_0 A5 INPUT
0 IP_0 A7 INPUT
0IP_0 A13INPUT
0IP_0 A17INPUT
0IP_0 A23INPUT
0 IP_0 C4 INPUT
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
0 IP_0 D12 INPUT
0 IP_0 D15 INPUT
0 IP_0 D19 INPUT
0 IP_0 E11 INPUT
0 IP_0 E18 INPUT
0 IP_0 E20 INPUT
0 IP_0 F10 INPUT
0 IP_0 G14 INPUT
0 IP_0 G16 INPUT
0 IP_0 H13 INPUT
0 IP_0 H18 INPUT
0 IP_0 J10 INPUT
0 IP_0 J13 INPUT
0 IP_0 J15 INPUT
0 IP_0/VREF_0 D7 VREF
0 IP_0/VREF_0 D14 VREF
0 IP_0/VREF_0 G11 VREF
0 IP_0/VREF_0 J17 VREF
0N.C. ()A24 N.C.
0N.C. ()B24 N.C.
0N.C. ()D5 N.C.
0N.C. ()E9 N.C.
0N.C. ()F18 N.C.
0N.C. ()E6 N.C.
0N.C. ()F9 N.C.
0N.C. ()G18 N.C.
0 VCCO_0 B5 VCCO
0 VCCO_0 B11 VCCO
0 VCCO_0 B16 VCCO
0 VCCO_0 B22 VCCO
0 VCCO_0 E8 VCCO
0 VCCO_0 E13 VCCO
0 VCCO_0 E19 VCCO
0 VCCO_0 H11 VCCO
0 VCCO_0 H16 VCCO
1 IO_L01N_1/LDC2 Y21 DUAL
1 IO_L01P_1/HDC Y20 DUAL
1 IO_L02N_1/LDC0 AD25 DUAL
1 IO_L02P_1/LDC1 AE26 DUAL
1 IO_L03N_1/A1 AC24 DUAL
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 121
1 IO_L03P_1/A0 AC23 DUAL
1 IO_L04N_1 W21 I/O
1 IO_L04P_1 W20 I/O
1 IO_L05N_1 AC25 I/O
1 IO_L05P_1 AD26 I/O
1 IO_L06N_1 AB26 I/O
1 IO_L06P_1 AC26 I/O
1 IO_L07N_1/VREF_1 AB24 VREF
1 IO_L07P_1 AB23 I/O
1 IO_L08N_1 V19 I/O
1 IO_L08P_1 V18 I/O
1 IO_L09N_1 AA23 I/O
1 IO_L09P_1 AA22 I/O
1 IO_L10N_1 U20 I/O
1 IO_L10P_1 V21 I/O
1 IO_L11N_1 AA25 I/O
1 IO_L11P_1 AA24 I/O
1 IO_L12N_1 U18 I/O
1 IO_L12P_1 U19 I/O
1 IO_L13N_1 Y23 I/O
1 IO_L13P_1 Y22 I/O
1 IO_L14N_1 T20 I/O
1 IO_L14P_1 U21 I/O
1 IO_L15N_1 Y25 I/O
1 IO_L15P_1 Y24 I/O
1 IO_L17N_1 T17 I/O
1 IO_L17P_1 T18 I/O
1 IO_L18N_1 V22 I/O
1 IO_L18P_1 W23 I/O
1 IO_L19N_1 V25 I/O
1 IO_L19P_1 V24 I/O
1 IO_L21N_1 U22 I/O
1 IO_L21P_1 V23 I/O
1 IO_L22N_1 R20 I/O
1 IO_L22P_1 R19 I/O
1 IO_L23N_1/VREF_1 U24 VREF
1 IO_L23P_1 U23 I/O
1 IO_L25N_1/A3 R22 DUAL
1 IO_L25P_1/A2 R21 DUAL
1 IO_L26N_1/A5 T24 DUAL
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
1 IO_L26P_1/A4 T23 DUAL
1 IO_L27N_1/A7 R17 DUAL
1 IO_L27P_1/A6 R18 DUAL
1 IO_L29N_1/A9 R26 DUAL
1 IO_L29P_1/A8 R25 DUAL
1 IO_L30N_1/RHCLK1 P20 RHCLK
1 IO_L30P_1/RHCLK0 P21 RHCLK
1 IO_L31N_1/TRDY1/RHCLK3 P25 RHCLK
1 IO_L31P_1/RHCLK2 P26 RHCLK
1 IO_L33N_1/RHCLK5 N24 RHCLK
1 IO_L33P_1/RHCLK4 P23 RHCLK
1 IO_L34N_1/RHCLK7 N19 RHCLK
1 IO_L34P_1/IRDY1/RHCLK6 P18 RHCLK
1 IO_L35N_1/A11 M25 DUAL
1 IO_L35P_1/A10 M26 DUAL
1 IO_L37N_1 N21 I/O
1 IO_L37P_1 P22 I/O
1 IO_L38N_1/A13 M23 DUAL
1 IO_L38P_1/A12 L24 DUAL
1 IO_L39N_1/A15 N17 DUAL
1 IO_L39P_1/A14 N18 DUAL
1 IO_L41N_1 K26 I/O
1 IO_L41P_1 K25 I/O
1 IO_L42N_1/A17 M20 DUAL
1 IO_L42P_1/A16 N20 DUAL
1 IO_L43N_1/A19 J25 DUAL
1 IO_L43P_1/A18 J26 DUAL
1 IO_L45N_1 M22 I/O
1 IO_L45P_1 M21 I/O
1 IO_L46N_1 K22 I/O
1 IO_L46P_1 K23 I/O
1 IO_L47N_1 M18 I/O
1 IO_L47P_1 M19 I/O
1 IO_L49N_1 J22 I/O
1 IO_L49P_1 J23 I/O
1 IO_L50N_1 K21 I/O
1 IO_L50P_1 L22 I/O
1 IO_L51N_1 G24 I/O
1 IO_L51P_1 G23 I/O
1 IO_L53N_1 K20 I/O
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
122 www.xilinx.com DS529-4 (v2.0) August 19, 2010
1 IO_L53P_1 L20 I/O
1 IO_L54N_1 F24 I/O
1 IO_L54P_1 F25 I/O
1 IO_L55N_1 L17 I/O
1 IO_L55P_1 L18 I/O
1 IO_L56N_1 F23 I/O
1 IO_L56P_1 E24 I/O
1 IO_L57N_1 K18 I/O
1 IO_L57P_1 K19 I/O
1 IO_L58N_1 G22 I/O
1 IO_L58P_1/VREF_1 F22 VREF
1 IO_L59N_1 J20 I/O
1 IO_L59P_1 J19 I/O
1 IO_L60N_1 D26 I/O
1 IO_L60P_1 E26 I/O
1 IO_L61N_1 D24 I/O
1 IO_L61P_1 D25 I/O
1 IO_L62N_1/A21 H21 DUAL
1 IO_L62P_1/A20 J21 DUAL
1 IO_L63N_1/A23 C25 DUAL
1 IO_L63P_1/A22 C26 DUAL
1 IO_L64N_1/A25 G21 DUAL
1 IO_L64P_1/A24 H20 DUAL
1 IP_L16N_1 Y26 INPUT
1 IP_L16P_1 W25 INPUT
1 IP_L20N_1/VREF_1 V26 VREF
1 IP_L20P_1 W26 INPUT
1 IP_L24N_1/VREF_1 U26 VREF
1 IP_L24P_1 U25 INPUT
1 IP_L28N_1 R24 INPUT
1 IP_L28P_1/VREF_1 R23 VREF
1 IP_L32N_1 N25 INPUT
1 IP_L32P_1 N26 INPUT
1 IP_L36N_1 N23 INPUT
1 IP_L36P_1/VREF_1 M24 VREF
1 IP_L40N_1 L23 INPUT
1 IP_L40P_1 K24 INPUT
1 IP_L44N_1 H25 INPUT
1 IP_L44P_1/VREF_1 H26 VREF
1 IP_L48N_1 H24 INPUT
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
1 IP_L48P_1 H23 INPUT
1 IP_L52N_1/VREF_1 G25 VREF
1 IP_L52P_1 G26 INPUT
1 IP_L65N_1 B25 INPUT
1 IP_L65P_1/VREF_1 B26 VREF
1 VCCO_1 AB25 VCCO
1 VCCO_1 E25 VCCO
1 VCCO_1 H22 VCCO
1 VCCO_1 L19 VCCO
1 VCCO_1 L25 VCCO
1 VCCO_1 N22 VCCO
1 VCCO_1 T19 VCCO
1 VCCO_1 T25 VCCO
1 VCCO_1 W22 VCCO
2 IO_L01N_2/M0 AD4 DUAL
2 IO_L01P_2/M1 AC4 DUAL
2 IO_L02N_2/CSO_B AA7 DUAL
2 IO_L02P_2/M2 Y7 DUAL
2 IO_L05N_2 Y9 I/O
2 IO_L05P_2 W9 I/O
2 IO_L06N_2 AF3 I/O
2 IO_L06P_2 AE3 I/O
2 IO_L07N_2 AF4 I/O
2 IO_L07P_2 AE4 I/O
2 IO_L08N_2 AD6 I/O
2 IO_L08P_2 AC6 I/O
2 IO_L09N_2 W10 I/O
2 IO_L09P_2 V10 I/O
2 IO_L10N_2 AE6 I/O
2 IO_L10P_2 AF5 I/O
2 IO_L11N_2 AE7 I/O
2 IO_L11P_2 AD7 I/O
2 IO_L12N_2 AA10 I/O
2 IO_L12P_2 Y10 I/O
2 IO_L13N_2 U11 I/O
2 IO_L13P_2 V11 I/O
2 IO_L14N_2 AB7 I/O
2 IO_L14P_2 AC8 I/O
2 IO_L15N_2 AC9 I/O
2 IO_L15P_2 AB9 I/O
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 123
2 IO_L16N_2 W12 I/O
2 IO_L16P_2 V12 I/O
2 IO_L17N_2/VS2 AA12 DUAL
2 IO_L17P_2/RDWR_B Y12 DUAL
2 IO_L18N_2 AF8 I/O
2 IO_L18P_2 AE8 I/O
2 IO_L19N_2/VS0 AF9 DUAL
2 IO_L19P_2/VS1 AE9 DUAL
2 IO_L20N_2 W13 I/O
2 IO_L20P_2 V13 I/O
2 IO_L21N_2 AC12 I/O
2 IO_L21P_2 AB12 I/O
2 IO_L22N_2/D6 AF10 DUAL
2 IO_L22P_2/D7 AE10 DUAL
2 IO_L23N_2 AC11 I/O
2 IO_L23P_2 AD11 I/O
2 IO_L24N_2/D4 AE12 DUAL
2 IO_L24P_2/D5 AF12 DUAL
2 IO_L25N_2/GCLK13 Y13 GCLK
2 IO_L25P_2/GCLK12 AA13 GCLK
2 IO_L26N_2/GCLK15 AE13 GCLK
2 IO_L26P_2/GCLK14 AF13 GCLK
2 IO_L27N_2/GCLK1 AA14 GCLK
2 IO_L27P_2/GCLK0 Y14 GCLK
2 IO_L28N_2/GCLK3 AE14 GCLK
2 IO_L28P_2/GCLK2 AF14 GCLK
2 IO_L29N_2 AC14 I/O
2 IO_L29P_2 AD14 I/O
2 IO_L30N_2/MOSI/CSI_B AB15 DUAL
2 IO_L30P_2 AC15 I/O
2 IO_L31N_2 W15 I/O
2 IO_L31P_2 V14 I/O
2 IO_L32N_2/DOUT AE15 DUAL
2 IO_L32P_2/AWAKE AD15 PWR
MGMT
2 IO_L33N_2 AD17 I/O
2 IO_L33P_2 AE17 I/O
2 IO_L34N_2/D3 Y15 DUAL
2 IO_L34P_2/INIT_B AA15 DUAL
2 IO_L35N_2 U15 I/O
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
2 IO_L35P_2 V15 I/O
2 IO_L36N_2/D1 AE18 DUAL
2 IO_L36P_2/D2 AF18 DUAL
2 IO_L37N_2 AE19 I/O
2 IO_L37P_2 AF19 I/O
2 IO_L38N_2 AB16 I/O
2 IO_L38P_2 AC16 I/O
2 IO_L39N_2 AE20 I/O
2 IO_L39P_2 AF20 I/O
2 IO_L40N_2 AC19 I/O
2 IO_L40P_2 AD19 I/O
2 IO_L41N_2 AC20 I/O
2 IO_L41P_2 AD20 I/O
2 IO_L42N_2 U16 I/O
2 IO_L42P_2 V16 I/O
2 IO_L43N_2 Y17 I/O
2 IO_L43P_2 AA17 I/O
2 IO_L44N_2 AD21 I/O
2 IO_L44P_2 AE21 I/O
2 IO_L45N_2 AC21 I/O
2 IO_L45P_2 AD22 I/O
2 IO_L46N_2 V17 I/O
2 IO_L46P_2 W17 I/O
2 IO_L47N_2 AA18 I/O
2 IO_L47P_2 AB18 I/O
2 IO_L48N_2 AE23 I/O
2 IO_L48P_2 AF23 I/O
2 IO_L51N_2 AE25 I/O
2 IO_L51P_2 AF25 I/O
2 IO_L52N_2/CCLK AE24 DUAL
2 IO_L52P_2/D0/DIN/MISO AF24 DUAL
2 IP_2 AA19 INPUT
2 IP_2 AB13 INPUT
2 IP_2 AB17 INPUT
2 IP_2 AB20 INPUT
2 IP_2 AC7 INPUT
2 IP_2 AC13 INPUT
2 IP_2 AC17 INPUT
2 IP_2 AC18 INPUT
2 IP_2 AD9 INPUT
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
124 www.xilinx.com DS529-4 (v2.0) August 19, 2010
2 IP_2 AD10 INPUT
2 IP_2 AD16 INPUT
2IP_2 AF2INPUT
2IP_2 AF7INPUT
2IP_2 Y11INPUT
2 IP_2/VREF_2 AA9 VREF
2 IP_2/VREF_2 AA20 VREF
2 IP_2/VREF_2 AB6 VREF
2 IP_2/VREF_2 AB10 VREF
2 IP_2/VREF_2 AC10 VREF
2 IP_2/VREF_2 AD12 VREF
2 IP_2/VREF_2 AF15 VREF
2 IP_2/VREF_2 AF17 VREF
2 IP_2/VREF_2 AF22 VREF
2 IP_2/VREF_2 Y16 VREF
2N.C. ()AA8 N.C.
2N.C. ()AC5 N.C.
2N.C. ()AC22 N.C.
2N.C. ()AD5 N.C.
2N.C. ()Y18 N.C.
2N.C. ()Y19 N.C.
2N.C. ()AD23 N.C.
2N.C. ()W18 N.C.
2N.C. ()Y8 N.C.
2 VCCO_2 AB8 VCCO
2 VCCO_2 AB14 VCCO
2 VCCO_2 AB19 VCCO
2 VCCO_2 AE5 VCCO
2 VCCO_2 AE11 VCCO
2 VCCO_2 AE16 VCCO
2 VCCO_2 AE22 VCCO
2 VCCO_2 W11 VCCO
2 VCCO_2 W16 VCCO
3 IO_L01N_3 J9 I/O
3 IO_L01P_3 J8 I/O
3 IO_L02N_3 B1 I/O
3 IO_L02P_3 B2 I/O
3 IO_L03N_3 H7 I/O
3 IO_L03P_3 G6 I/O
3 IO_L05N_3 K8 I/O
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
3 IO_L05P_3 K9 I/O
3 IO_L06N_3 E4 I/O
3 IO_L06P_3 D3 I/O
3 IO_L07N_3 F4 I/O
3 IO_L07P_3 E3 I/O
3 IO_L09N_3 G4 I/O
3 IO_L09P_3 F5 I/O
3 IO_L10N_3 H6 I/O
3 IO_L10P_3 J7 I/O
3 IO_L11N_3 F2 I/O
3 IO_L11P_3 E1 I/O
3 IO_L13N_3 J6 I/O
3 IO_L13P_3 K7 I/O
3 IO_L14N_3 F3 I/O
3 IO_L14P_3 G3 I/O
3 IO_L15N_3 L9 I/O
3 IO_L15P_3 L10 I/O
3 IO_L17N_3 H1 I/O
3 IO_L17P_3 H2 I/O
3 IO_L18N_3 L7 I/O
3 IO_L18P_3 K6 I/O
3 IO_L19N_3 J4 I/O
3 IO_L19P_3 J5 I/O
3 IO_L21N_3 M9 I/O
3 IO_L21P_3 M10 I/O
3 IO_L22N_3 K4 I/O
3 IO_L22P_3 K5 I/O
3 IO_L23N_3 K2 I/O
3 IO_L23P_3 K3 I/O
3 IO_L25N_3 L3 I/O
3 IO_L25P_3 L4 I/O
3 IO_L26N_3 M7 I/O
3 IO_L26P_3 M8 I/O
3 IO_L27N_3 M3 I/O
3 IO_L27P_3 M4 I/O
3 IO_L28N_3 M6 I/O
3 IO_L28P_3 M5 I/O
3 IO_L29N_3/VREF_3 M1 VREF
3 IO_L29P_3 M2 I/O
3 IO_L30N_3 N4 I/O
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 125
3 IO_L30P_3 N5 I/O
3 IO_L31N_3 N2 I/O
3 IO_L31P_3 N1 I/O
3 IO_L32N_3/LHCLK1 N7 LHCLK
3 IO_L32P_3/LHCLK0 N6 LHCLK
3 IO_L33N_3/IRDY2/LHCLK3 P2 LHCLK
3 IO_L33P_3/LHCLK2 P1 LHCLK
3 IO_L34N_3/LHCLK5 P3 LHCLK
3 IO_L34P_3/LHCLK4 P4 LHCLK
3 IO_L35N_3/LHCLK7 P10 LHCLK
3 IO_L35P_3/TRDY2/LHCLK6 N9 LHCLK
3 IO_L36N_3 R2 I/O
3 IO_L36P_3/VREF_3 R1 VREF
3 IO_L37N_3 R4 I/O
3 IO_L37P_3 R3 I/O
3 IO_L38N_3 T4 I/O
3 IO_L38P_3 T3 I/O
3 IO_L39N_3 P6 I/O
3 IO_L39P_3 P7 I/O
3 IO_L40N_3 R6 I/O
3 IO_L40P_3 R5 I/O
3 IO_L41N_3 P9 I/O
3 IO_L41P_3 P8 I/O
3 IO_L42N_3 U4 I/O
3 IO_L42P_3 T5 I/O
3 IO_L43N_3 R9 I/O
3 IO_L43P_3/VREF_3 R10 VREF
3 IO_L44N_3 U2 I/O
3 IO_L44P_3 U1 I/O
3 IO_L45N_3 R7 I/O
3 IO_L45P_3 R8 I/O
3 IO_L47N_3 V2 I/O
3 IO_L47P_3 V1 I/O
3 IO_L48N_3 T9 I/O
3 IO_L48P_3 T10 I/O
3 IO_L49N_3 V5 I/O
3 IO_L49P_3 U5 I/O
3 IO_L51N_3 U6 I/O
3 IO_L51P_3 T7 I/O
3 IO_L52N_3 W4 I/O
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
3 IO_L52P_3 W3 I/O
3 IO_L53N_3 Y2 I/O
3 IO_L53P_3 Y1 I/O
3 IO_L55N_3 AA3 I/O
3 IO_L55P_3 AA2 I/O
3 IO_L56N_3 U8 I/O
3 IO_L56P_3 U7 I/O
3 IO_L57N_3 Y6 I/O
3 IO_L57P_3 Y5 I/O
3 IO_L59N_3 V6 I/O
3 IO_L59P_3 V7 I/O
3 IO_L60N_3 AC1 I/O
3 IO_L60P_3 AB1 I/O
3 IO_L61N_3 V8 I/O
3 IO_L61P_3 U9 I/O
3 IO_L63N_3 W6 I/O
3 IO_L63P_3 W7 I/O
3 IO_L64N_3 AC3 I/O
3 IO_L64P_3 AC2 I/O
3 IO_L65N_3 AD2 I/O
3 IO_L65P_3 AD1 I/O
3 IP_L04N_3/VREF_3 C1 VREF
3 IP_L04P_3 C2 INPUT
3 IP_L08N_3 D1 INPUT
3 IP_L08P_3 D2 INPUT
3 IP_L12N_3/VREF_3 H4 VREF
3 IP_L12P_3 G5 INPUT
3 IP_L16N_3 G1 INPUT
3 IP_L16P_3 G2 INPUT
3 IP_L20N_3/VREF_3 J2 VREF
3 IP_L20P_3 J3 INPUT
3 IP_L24N_3 K1 INPUT
3 IP_L24P_3 J1 INPUT
3 IP_L46N_3 V4 INPUT
3 IP_L46P_3 U3 INPUT
3 IP_L50N_3/VREF_3 W2 VREF
3 IP_L50P_3 W1 INPUT
3 IP_L54N_3 Y4 INPUT
3 IP_L54P_3 Y3 INPUT
3 IP_L58N_3/VREF_3 AA5 VREF
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
126 www.xilinx.com DS529-4 (v2.0) August 19, 2010
3 IP_L58P_3 AA4 INPUT
3 IP_L62N_3 AB4 INPUT
3 IP_L62P_3 AB3 INPUT
3 IP_L66N_3/VREF_3 AE2 VREF
3 IP_L66P_3 AE1 INPUT
3 VCCO_3 AB2 VCCO
3 VCCO_3 E2 VCCO
3 VCCO_3 H5 VCCO
3 VCCO_3 L2 VCCO
3 VCCO_3 L8 VCCO
3 VCCO_3 P5 VCCO
3 VCCO_3 T2 VCCO
3 VCCO_3 T8 VCCO
3 VCCO_3 W5 VCCO
GND GND A1 GND
GND GND A6 GND
GND GND A11 GND
GND GND A16 GND
GND GND A21 GND
GND GND A26 GND
GND GND AA1 GND
GND GND AA6 GND
GND GND AA11 GND
GND GND AA16 GND
GND GND AA21 GND
GND GND AA26 GND
GND GND AD3 GND
GND GND AD8 GND
GND GND AD13 GND
GND GND AD18 GND
GND GND AD24 GND
GND GND AF1 GND
GND GND AF6 GND
GND GND AF11 GND
GND GND AF16 GND
GND GND AF21 GND
GND GND AF26 GND
GND GND C3 GND
GND GND C9 GND
GND GND C14 GND
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
GND GND C19 GND
GND GND C24 GND
GND GND F1 GND
GND GND F6 GND
GND GND F11 GND
GND GND F16 GND
GND GND F21 GND
GND GND F26 GND
GND GND H3 GND
GND GND H8 GND
GND GND H14 GND
GND GND H19 GND
GND GND J24 GND
GND GND K10 GND
GND GND K17 GND
GND GND L1 GND
GND GND L6 GND
GND GND L11 GND
GND GND L13 GND
GND GND L15 GND
GND GND L21 GND
GND GND L26 GND
GND GND M12 GND
GND GND M14 GND
GND GND M16 GND
GND GND N3 GND
GND GND N8 GND
GND GND N11 GND
GND GND N15 GND
GND GND P12 GND
GND GND P16 GND
GND GND P19 GND
GND GND P24 GND
GND GND R11 GND
GND GND R13 GND
GND GND R15 GND
GND GND T1 GND
GND GND T6 GND
GND GND T12 GND
GND GND T14 GND
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 127
GND GND T16 GND
GND GND T21 GND
GND GND T26 GND
GND GND U10 GND
GND GND U13 GND
GND GND U17 GND
GND GND V3 GND
GND GND W8 GND
GND GND W14 GND
GND GND W19 GND
GND GND W24 GND
VCCAUX SUSPEND V20 PWR
MGMT
VCCAUX DONE AB21 CONFIG
VCCAUX PROG_B A2 CONFIG
VCCAUX TCK A25 JTAG
VCCAUX TDI G7 JTAG
VCCAUX TDO E23 JTAG
VCCAUX TMS D4 JTAG
VCCAUX VCCAUX AB5 VCCAUX
VCCAUX VCCAUX AB11 VCCAUX
VCCAUX VCCAUX AB22 VCCAUX
VCCAUX VCCAUX E5 VCCAUX
VCCAUX VCCAUX E16 VCCAUX
VCCAUX VCCAUX E22 VCCAUX
VCCAUX VCCAUX J18 VCCAUX
VCCAUX VCCAUX K13 VCCAUX
VCCAUX VCCAUX L5 VCCAUX
VCCAUX VCCAUX N10 VCCAUX
VCCAUX VCCAUX P17 VCCAUX
VCCAUX VCCAUX T22 VCCAUX
VCCAUX VCCAUX U14 VCCAUX
VCCAUX VCCAUX V9 VCCAUX
VCCINT VCCINT K15 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT L14 VCCINT
VCCINT VCCINT L16 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT M13 VCCINT
VCCINT VCCINT M15 VCCINT
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
VCCINT VCCINT M17 VCCINT
VCCINT VCCINT N12 VCCINT
VCCINT VCCINT N13 VCCINT
VCCINT VCCINT N14 VCCINT
VCCINT VCCINT N16 VCCINT
VCCINT VCCINT P11 VCCINT
VCCINT VCCINT P13 VCCINT
VCCINT VCCINT P14 VCCINT
VCCINT VCCINT P15 VCCINT
VCCINT VCCINT R12 VCCINT
VCCINT VCCINT R14 VCCINT
VCCINT VCCINT R16 VCCINT
VCCINT VCCINT T11 VCCINT
VCCINT VCCINT T13 VCCINT
VCCINT VCCINT T15 VCCINT
VCCINT VCCINT U12 VCCINT
Table 87: Spartan-3A FG676 Pinout(Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
128 www.xilinx.com DS529-4 (v2.0) August 19, 2010
User I/Os by Bank
Table 88 indicates how the 502 available user-I/O pins are
distributed between the four I/O banks on the FG676
package. The AWAKE pin is counted as a dual-purpose I/O.
Footprint Migration Differences
The XC3S1400A FPGA is the only Spartan-3A device
offered in the FG676 package. However, Ta b l e 8 9
summarizes footprint and functionality differences between
the XC3S1400A and the XC3SD1800A in the Spartan-3A
DSP family. There are 17 unconnected balls in the
XC3S1400A that become 16 input-only pins and one I/O pin
in the XC3SD1800A. All other pins not listed in Ta bl e 8 9
unconditionally migrate between the Spartan-3A devices
and the Spartan-3A DSP devices available in the FG676
package. The arrows indicate the direction for easy
migration. For more details on the Spartan-3A DSP family
and pinouts, and additional differences in the FG676 pinout
for the XC3SD3400A device, see DS610.
Table 88: User I/Os Per Bank for the XC3S1400A in the FG676 Package
Package
Edge I/O Bank Maximum I/O
All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 0120 82 20 1 9 8
Right 1130 67 15 30 10 8
Bottom 2120 67 14 21 10 8
Left 3132 97 18 0 9 8
TOTAL 502 313 67 52 38 32
Table 89: FG676 Footprint Differences
Pin Bank XC3S1400A Migration XC3SD1800A
A24 0 N.C. ÆINPUT
B24 0 N.C. ÆINPUT
D5 0 N.C. ÆINPUT
E6 0 N.C. ÆVREF (INPUT)
E9 0 N.C. ÆINPUT
F9 0 N.C. ÆVREF (INPUT)
F18 0 N.C. ÆINPUT
G18 0 N.C. ÆVREF (INPUT)
W18 2 N.C. ÆVREF (INPUT)
Y8 2 N.C. ÆVREF (INPUT)
Y18 2 N.C. ÆINPUT
Y19 2 N.C. ÆINPUT
AA8 2 N.C. ÆINPUT
AC5 2 N.C. ÆINPUT
AC22 2 N.C. ÆI/O
AD5 2 N.C. ÆINPUT
AD23 2 N.C. ÆVREF(INPUT)
DIFFERENCES 17
Legend:
ÆThis pin can unconditionally migrate from the device on
the left to the device on the right. Migration in the other
direction is possible depending on how the pin is
configured for the device on the right.
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 129
FG676 Footprint
Left Half of FG676
Package (Top View)
313 I/O: Unrestricted,
general-purpose user I/O
67 INPUT: Unrestricted,
general-purpose input pin
51 DUAL: Configuration pins,
then possible user I/O
2
SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
38 VREF: User I/O or input
voltage reference for bank
32 CLK: User I/O, input, or
clock buffer input
2CONFIG: Dedicated
configuration pins
4JTAG: Dedicated JTAG
port pins
77 GND: Ground
36 VCCO: Output voltage
supply for bank
23 VCCINT: Internal core
supply voltage (+1.2V)
14 VCCAUX: Auxiliary supply
voltage
17
N.C.: Not connected
Figure 27: FG676 Package Footprint (Top View)
12345678910111213
AGND
PROG_B
I/O
L51P_0
I/O
L45P_0 INPUT GND INPUT I/O
L38P_0
I/O
L36P_0
I/O
L33P_0 GND I/O
L29P_0 INPUT
BI/O
L02N_3
I/O
L02P_3
I/O
L51N_0
I/O
L45N_0 VCCO_0 I/O
L41P_0
I/O
L42P_0
I/O
L38N_0
I/O
L36N_0
I/O
L33N_0 VCCO_0 I/O
L29N_0
I/O
L28P_0
GCLK10
C
INPUT
L04N_3
VREF_3
INPUT
L04P_3 GND INPUT I/O
L44P_0
I/O
L41N_0
I/O
L42N_0
I/O
L40P_0 GND I/O
L34P_0
I/O
L32P_0
I/O
L30N_0
I/O
L28N_0
GCLK11
DINPUT
L08N_3
INPUT
L08P_3
I/O
L06P_3 TMS
N.C. I/O
L44N_0
INPUT
VREF_0
I/O
L40N_0
I/O
L37N_0
I/O
L34N_0
I/O
L32N_0
VREF_0
INPUT I/O
L30P_0
EI/O
L11P_3 VCCO_3 I/O
L07P_3
I/O
L06N_3 VCCAUX I/O
L48N_0 VCCO_0
N.C. I/O
L37P_0 INPUT I/O
L31P_0 VCCO_0
FGND I/O
L11N_3
I/O
L14N_3
I/O
L07N_3
I/O
L09P_3 GND I/O
L48P_0
I/O
L52P_0
VREF_0
INPUT GND I/O
L31N_0
I/O
L27P_0
GCLK8
GINPUT
L16N_3
INPUT
L16P_3
I/O
L14P_3
I/O
L09N_3
INPUT
L12P_3
I/O
L03P_3 TDI
I/O
L52N_0
PUDC_B
I/O
L47P_0
I/O
L46P_0
INPUT
VREF_0
I/O
L35P_0
I/O
L27N_0
GCLK9
HI/O
L17N_3
I/O
L17P_3 GND
INPUT
L12N_3
VREF_3
VCCO_3 I/O
L10N_3
I/O
L03N_3 GND I/O
L47N_0
I/O
L46N_0 VCCO_0 I/O
L35N_0 INPUT
JINPUT
L24P_3
INPUT
L20N_3
VREF_3
INPUT
L20P_3
I/O
L19N_3
I/O
L19P_3
I/O
L13N_3
I/O
L10P_3
I/O
L01P_3
I/O
L01N_3 INPUT I/O
L43P_0
I/O
L39P_0 INPUT
KINPUT
L24N_3
I/O
L23N_3
I/O
L23P_3
I/O
L22N_3
I/O
L22P_3
I/O
L18P_3
I/O
L13P_3
I/O
L05N_3
I/O
L05P_3 GND I/O
L43N_0
I/O
L39N_0 VCCAUX
LGND VCCO_3 I/O
L25N_3
I/O
L25P_3 VCCAUX GND I/O
L18N_3 VCCO_3 I/O
L15N_3
I/O
L15P_3 GND VCCINT GND
M
I/O
L29N_3
VREF_3
I/O
L29P_3
I/O
L27N_3
I/O
L27P_3
I/O
L28P_3
I/O
L28N_3
I/O
L26N_3
I/O
L26P_3
I/O
L21N_3
I/O
L21P_3 VCCINT GND VCCINT
NI/O
L31P_3
I/O
L31N_3 GND I/O
L30N_3
I/O
L30P_3
I/O
L32P_3
LHCLK0
I/O
L32N_3
LHCLK1
GND
I/O
L35P_3
TRDY2
LHCLK
6
VCCAUX GND VCCINT VCCINT
P
I/O
L33P_3
LHCLK2
I/O
L33N_3
IRDY2
LHCLK
3
I/O
L34N_3
LHCLK5
I/O
L34P_3
LHCLK4
VCCO_3 I/O
L39N_3
I/O
L39P_3
I/O
L41P_3
I/O
L41N_3
I/O
L35N_3
LHCLK7
VCCINT GND VCCINT
R
I/O
L36P_3
VREF_3
I/O
L36N_3
I/O
L37P_3
I/O
L37N_3
I/O
L40P_3
I/O
L40N_3
I/O
L45N_3
I/O
L45P_3
I/O
L43N_3
I/O
L43P_3
VREF_3
GND VCCINT GND
TGND VCCO_3 I/O
L38P_3
I/O
L38N_3
I/O
L42P_3 GND I/O
L51P_3 VCCO_3 I/O
L48N_3
I/O
L48P_3 VCCINT GND VCCINT
UI/O
L44P_3
I/O
L44N_3
INPUT
L46P_3
I/O
L42N_3
I/O
L49P_3
I/O
L51N_3
I/O
L56P_3
I/O
L56N_3
I/O
L61P_3 GND I/O
L13N_2 VCCINT GND
VI/O
L47P_3
I/O
L47N_3 GND INPUT
L46N_3
I/O
L49N_3
I/O
L59N_3
I/O
L59P_3
I/O
L61N_3 VCCAUX I/O
L09P_2
I/O
L13P_2
I/O
L16P_2
I/O
L20P_2
WINPUT
L50P_3
INPUT
L50N_3
VREF_3
I/O
L52P_3
I/O
L52N_3 VCCO_3 I/O
L63N_3
I/O
L63P_3 GND I/O
L05P_2
I/O
L09N_2 VCCO_2 I/O
L16N_2
I/O
L20N_2
YI/O
L53P_3
I/O
L53N_3
INPUT
L54P_3
INPUT
L54N_3
I/O
L57P_3
I/O
L57N_3
I/O
L02P_2
M2
I/O
L05N_2
I/O
L12P_2 INPUT
I/O
L17P_2
RDWR_B
I/O
L25N_2
GCLK13
A
AGND I/O
L55P_3
I/O
L55N_3
INPUT
L58P_3
INPUT
L58N_3
VREF_3
GND
I/O
L02N_2
CSO_B
N.C. INPUT
VREF_2
I/O
L12N_2 GND
I/O
L17N_2
VS2
I/O
L25P_2
GCLK12
A
B
I/O
L60P_3 VCCO_3 INPUT
L62P_3
INPUT
L62N_3 VCCAUX INPUT
VREF_2
I/O
L14N_2 VCCO_2 I/O
L15P_2
INPUT
VREF_2 VCCAUX I/O
L21P_2 INPUT
A
C
I/O
L60N_3
I/O
L64P_3
I/O
L64N_3
I/O
L01P_2
M1
N.C. I/O
L08P_2 INPUT I/O
L14P_2
I/O
L15N_2
INPUT
VREF_2
I/O
L23N_2
I/O
L21N_2 INPUT
A
D
I/O
L65P_3
I/O
L65N_3 GND
I/O
L01N_2
M0
N.C. I/O
L08N_2
I/O
L11P_2 GND INPUT INPUT I/O
L23P_2
INPUT
VREF_2 GND
A
E
INPUT
L66P_3
INPUT
L66N_3
VREF_3
I/O
L06P_2
I/O
L07P_2 VCCO_2 I/O
L10N_2
I/O
L11N_2
I/O
L18P_2
I/O
L19P_2
VS1
I/O
L22P_2
D7
VCCO_2
I/O
L24N_2
D4
I/O
L26N_2
GCLK15
A
FGND INPUT I/O
L06N_2
I/O
L07N_2
I/O
L10P_2 GND INPUT I/O
L18N_2
I/O
L19N_2
VS0
I/O
L22N_2
D6
GND
I/O
L24P_2
D5
I/O
L26P_2
GCLK14
Bank 2
Bank 0
Bank 3
DS529-4_07_102506
N.C.
N.C.
N.C.
N.C.
Pinout Descriptions
130 www.xilinx.com DS529-4 (v2.0) August 19, 2010
Right Half of FG676
Package (Top View)
14 15 16 17 18 19 20 21 22 23 24 25 26
I/O
L26N_0
GCLK7
I/O
L23N_0
GND INPUT I/O
L18N_0
I/O
L15N_0
I/O
L14N_0
GND I/O
L07N_0
INPUT TCK GND A
I/O
L26P_0
GCLK6
I/O
L23P_0 VCCO_0
I/O
L19N_0
I/O
L18P_0
I/O
L15P_0
I/O
L14P_0
VREF_0
I/O
L09N_0 VCCO_0
I/O
L07P_0
N.C. INPUT
L65N_1
INPUT
L65P_1
VREF_1
B
GND I/O
L22N_0
I/O
L21N_0
I/O
L19P_0
I/O
L17N_0
GND I/O
L11N_0
I/O
L09P_0
I/O
L05N_0
I/O
L06N_0
GND
I/O
L63N_1
A23
I/O
L63P_1
A22
C
INPUT
VREF_0
INPUT I/O
L22P_0
I/O
L21P_0
I/O
L17P_0
INPUT I/O
L11P_0
I/O
L10N_0
I/O
L05P_0
I/O
L06P_0
I/O
L61N_1
I/O
L61P_1
I/O
L60N_1
D
I/O
L24P_0
I/O
L20N_0
VREF_0
VCCAUX
I/O
L13N_0
INPUT
VCCO_0
INPUT I/O
L10P_0 VCCAUX
TDO I/O
L56P_1 VCCO_1
I/O
L60P_1
E
I/O
L24N_0
I/O
L20P_0
GND I/O
L13P_0
N.C. I/O
L02N_0
I/O
L01N_0
GND
I/O
L58P_1
VREF_1
I/O
L56N_1
I/O
L54N_1
I/O
L54P_1
GND F
INPUT I/O
L16P_0
INPUT I/O
L08N_0
I/O
L02P_0
VREF_0
I/O
L01P_0
I/O
L64N_1
A25
I/O
L58N_1
I/O
L51P_1
I/O
L51N_1
INPUT
L52N_1
VREF_1
INPUT
L52P_1
G
GND I/O
L16N_0 VCCO_0
I/O
L08P_0
INPUT GND
I/O
L64P_1
A24
I/O
L62N_1
A21
VCCO_1
INPUT
L48P_1
INPUT
L48N_1
INPUT
L44N_1
INPUT
L44P_1
VREF_1
H
I/O
L25N_0
GCLK5
INPUT I/O
L12P_0
INPUT
VREF_0 VCCAUX
I/O
L59P_1
I/O
L59N_1
I/O
L62P_1
A20
I/O
L49N_1
I/O
L49P_1
GND
I/O
L43N_1
A19
I/O
L43P_1
A18
J
I/O
L25P_0
GCLK4
VCCINT I/O
L12N_0
GND I/O
L57N_1
I/O
L57P_1
I/O
L53N_1
I/O
L50N_1
I/O
L46N_1
I/O
L46P_1
INPUT
L40P_1
I/O
L41P_1
I/O
L41N_1
K
VCCINT GND VCCINT I/O
L55N_1
I/O
L55P_1 VCCO_1
I/O
L53P_1
GND I/O
L50P_1
INPUT
L40N_1
I/O
L38P_1
A12
VCCO_1
GND L
GND VCCINT GND VCCINT I/O
L47N_1
I/O
L47P_1
I/O
L42N_1
A17
I/O
L45P_1
I/O
L45N_1
I/O
L38N_1
A13
INPUT
L36P_1
VREF_1
I/O
L35N_1
A11
I/O
L35P_1
A10
M
VCCINT GND VCCINT
I/O
L39N_1
A15
I/O
L39P_1
A14
I/O
L34N_1
RHCLK7
I/O
L42P_1
A16
I/O
L37N_1 VCCO_1
INPUT
L36N_1
I/O
L33N_1
RHCLK5
INPUT
L32N_1
INPUT
L32P_1
N
VCCINT VCCINT GND
VCCAUX
I/O
L34P_1
IRDY1
RHCLK6
GND
I/O
L30N_1
RHCLK1
I/O
L30P_1
RHCLK0
I/O
L37P_1
I/O
L33P_1
RHCLK4
GND
I/O
L31N_1
TRDY1
RHCLK3
I/O
L31P_1
RHCLK2
P
VCCINT GND VCCINT
I/O
L27N_1
A7
I/O
L27P_1
A6
I/O
L22P_1
I/O
L22N_1
I/O
L25P_1
A2
I/O
L25N_1
A3
INPUT
L28P_1
VREF_1
INPUT
L28N_1
I/O
L29P_1
A8
I/O
L29N_1
A9
R
GND VCCINT GND I/O
L17N_1
I/O
L17P_1 VCCO_1
I/O
L14N_1
GND
VCCAUX
I/O
L26P_1
A4
I/O
L26N_1
A5
VCCO_1
GND T
VCCAUX
I/O
L35N_2
I/O
L42N_2
GND I/O
L12N_1
I/O
L12P_1
I/O
L10N_1
I/O
L14P_1
I/O
L21N_1
I/O
L23P_1
I/O
L23N_1
VREF_1
INPUT
L24P_1
INPUT
L24N_1
VREF_1
U
I/O
L31P_2
I/O
L35P_2
I/O
L42P_2
I/O
L46N_2
I/O
L08P_1
I/O
L08N_1
SUSPEND
I/O
L10P_1
I/O
L18N_1
I/O
L21P_1
I/O
L19P_1
I/O
L19N_1
INPUT
L20N_1
VREF_1
V
GND I/O
L31N_2 VCCO_2
I/O
L46P_2
GND I/O
L04P_1
I/O
L04N_1 VCCO_1
I/O
L18P_1
GND INPUT
L16P_1
INPUT
L20P_1
W
I/O
L27P_2
GCLK0
I/O
L34N_2
D3
INPUT
2
VREF_2
I/O
L43N_2
N.C. N.C. I/O
L01P_1
HDC
I/O
L01N_1
LDC2
I/O
L13P_1
I/O
L13N_1
I/O
L15P_1
I/O
L15N_1
INPUT
L16N_1
Y
I/O
L27N_2
GCLK1
I/O
L34P_2
INIT_B
GND I/O
L43P_2
I/O
L47N_2
INPUT INPUT
VREF_2
GND I/O
L09P_1
I/O
L09N_1
I/O
L11P_1
I/O
L11N_1
GND A
A
VCCO_2
I/O
L30N_2
MOSI
CSI_B
I/O
L38N_2
INPUT I/O
L47P_2 VCCO_2
INPUT DONE
VCCAUX
I/O
L07P_1
I/O
L07N_1
VREF_1
VCCO_1
I/O
L06N_1
A
B
I/O
L29N_2
I/O
L30P_2
I/O
L38P_2
INPUT INPUT I/O
L40N_2
I/O
L41N_2
I/O
L45N_2
N.C. I/O
L03P_1
A0
I/O
L03N_1
A1
I/O
L05N_1
I/O
L06P_1
A
C
I/O
L29P_2
I/O
L32P_2
AWAKE
INPUT I/O
L33N_2
GND I/O
L40P_2
I/O
L41P_2
I/O
L44N_2
I/O
L45P_2
GND
I/O
L02N_1
LDC0
I/O
L05P_1
A
D
I/O
L28N_2
GCLK3
I/O
L32N_2
DOUT
VCCO_2
I/O
L33P_2
I/O
L36N_2
D1
I/O
L37N_2
I/O
L39N_2
I/O
L44P_2 VCCO_2
I/O
L48N_2
I/O
L52N_2
CCLK
I/O
L51N_2
I/O
L02P_1
LDC1
A
E
I/O
L28P_2
GCLK2
INPUT
VREF_2
GND INPUT
VREF_2
I/O
L36P_2
D2
I/O
L37P_2
I/O
L39P_2
GND INPUT
VREF_2
I/O
L48P_2
I/O
L52P_2
D0
DIN/MISO
I/O
L51P_2
GND A
F
Bank 2
Bank 0
Bank 1
DS529-4_08_012009
N.C.
N.C.
N.C.
N.C.
N.C.
Pinout Descriptions
DS529-4 (v2.0) August 19, 2010 www.xilinx.com 131
Revision History
The following table shows the revision history for this document.
Date Version Revision
12/05/06 1.0 Initial release.
02/02/07 1.1 Promoted to Preliminary status. Added DOUT pin to DUAL-type pins in Table 57. Corrected counts for
DUAL pins and differential pairs in Tabl e 59. Corrected minor typographical error on pin names for pin
numbers P24 and P25 in Table 66. Highlighted the differences in differential I/O pairs between the
XC3S50A and XC3S200A in the FT256 package, shown in Table 68 and added Table 74 and Tabl e 7 5
to summarize the differences.
03/16/07 1.2 Corrected minor typographical error in Figure 19.
04/23/07 1.3 Added reference to compatible Spartan-3A DSP family.
05/08/07 1.4 Added note regarding banking rules.
07/10/07 1.5 Updated Thermal Characteristics in Table 62.
04/15/08 1.6 Added VQ100 for XC3S50A and XC3S200A and added FT256 for XC3S700A and XCS1400A to
Tabl e 5 8 , Table 59, and Table 62. Updated Thermal Characteristics with latest data in Table 62.
Corrected bank for T8 and type for U16 in Table 86. Removed VREF name on 6 unconnected N.C. pins
for XC3S1400A FG676 in Table 87 and Figure 27. These pins are noted as VREF if migrating up to the
XC3SD1800A in Table 89.
05/28/08 1.7 Added "Package Overview" section.
03/06/09 1.8 Corrected bank designation for SUSPEND to VCCAUX. Corrected bank designation for JTAG pins in
XC3S700A and XC3S1400A FT256 to VCCAUX.
08/19/10 2.0 Corrected pin 36 number in Figure 17 and Figure 18. Noted difference in FT256 P10/T10 function
between XC3S50A and larger devices in Tabl e 6 8 and Table 74.
Pinout Descriptions
132 www.xilinx.com DS529-4 (v2.0) August 19, 2010