1
Motorola Small–Signal Transistors, FETs and Diodes Device Data
 
Part of the GreenLine Portfolio of devices with energy–conserving traits.
This switching diode has the following features:
Very Low Leakage ( 500 pA) promotes extended battery life by decreas-
ing energy waste. Guaranteed leakage limit is for each diode in the pair
contingent upon the other diode being in a non–forward–biased condition.
Offered in four Surface Mount package types
Available in 8 mm Tape and Reel in quantities of 3,000
Applications
ESD Protection
Reverse Polarity Protection
Steering Logic
Medium–Speed Switching
MAXIMUM RATINGS
Rating Symbol Value Unit
Continuous Reverse Voltage VR30 Vdc
Peak Forward Current IF200 mAdc
Peak Forward Surge Current IFM
(surge) 500 mA
DEVICE MARKING
MMBD1010LT1 = A5
MMBD2010T1 = DP
MMBD3010T1 = XS
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation FR-4 Board (1)
TA = 25°C MMBD1010LT1, MMBD3010T1
MMBD2010T1
Derate above 25°C MMBD1010LT1, MMBD3010T1
MMBD2010T1
PD225
150
1.8
1.2
mW
mW/°C
Thermal Resistance Junction to Ambient
MMBD1010LT1, MMBD3010T1
MMBD2010T1
RθJA 556
833
°C/W
Junction and Storage Temperature TJ, Tstg 55 to +150 °C
(1) Device mounted on a FR-4 glass epoxy printed circuit board using the minimum
recommended footprint.
Preferred devices are Motorola recommended choices for future use and best overall value.
GreenLine is a trademark of Motorola, Inc.
Thermal Clad is a registered trademark of the Berquist Company.
Order this document
by MMBD1010LT1/D

SEMICONDUCTOR TECHNICAL DATA
3
CATHODE
ANODE
1
2
ANODE



CASE 318-08, STYLE 9
SOT-23 (TO-236AB)
Motorola Preferred Devices
1
2
3
CASE 318D-04, STYLE 3
SC–59
CASE 419-02, STYLE 5
SC–70/SOT–323
MMBD1010LT1
MMBD2010T1
12
3
21
3
MMBD3010T1
Motorola, Inc. 1997
REV 1
  
2Motorola Small–Signal Transistors, FETs and Diodes Device Data
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
Reverse Breakdown Voltage (IBR = 100 µA) V(BR) 30 V
Reverse V oltage Leakage Current (VR = 75 V)(2) IR500 pA
Forward Voltage (IF = 1.0 mA)
Forward Voltage (IF = 10 mA) VF
850
950 mV
Diode Capacitance (VR = 0 V, f = 1.0 MHz) CD2.0 pF
Reverse Recovery Time (IF = IR = 10 mA) (Figure 1) trr 3.0 µs
(2) Guaranteed leakage limit is for each diode in the pair contingent upon the other diode being
in a non–forward–biased condition.
Figure 1. Recovery Time Equivalent Test Circuit
Notes: 1. A 2.0 k variable resistor adjusted for a Forward Current (IF) of 10 mA.
Notes: 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
Notes: 3. tp » trr
+10 V 2 k
820
0.1
µ
F
DUT
VR
100
µ
H0.1
µ
F
50
OUTPUT
PULSE
GENERATOR
50
INPUT
SAMPLING
OSCILLOSCOPE
trtpt
10%
90%
IF
IR
trr t
iR(REC) = 1 mA
OUTPUT PULSE
(IF = IR = 10 mA; measured
at iR(REC) = 1 mA)
IF
INPUT SIGNAL
  
3
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
mm
inches
2.5-3.0
0.039
1.0
0.094
0.8
0.098-0.118
2.4
0.031
0.95
0.037
0.95
0.037
SOT–23
mm
inches
0.037
0.95
0.037
0.95
0.079
2.0
0.035
0.9
0.031
0.8
SC–59
mm
inches
0.035
0.9
0.075
0.7
1.9
0.028
0.65
0.025
0.65
0.025
SC–70/SOT–323 SOD–123
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
mm
inches
0.91
0.036
1.22
0.048
2.36
0.093
4.19
0.165
POWER DISSIPATION FOR A SURFACE MOUNT DEVICE
The power dissipation for a surface mount device is a
function of the drain/collector pad size. These can vary from
the minimum pad size for soldering to a pad size given for
maximum power dissipation. Power dissipation for a surface
mount device is determined by TJ(max), the maximum rated
junction temperature of the die, RθJA, the thermal resistance
from the device junction to ambient, and the operating
temperature, TA. Using the values provided on the data
sheet, PD can be calculated as follows:
PD = TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature T A of 25°C, one can
calculate the power dissipation of the device. For example,
for a SOT–23 device, PD is calculated as follows.
PD = 150°C – 25°C
556°C/W = 225 milliwatts
The 556°C/W for the SOT–23 package assumes the use
of the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 250 milliwatts. There
are other alternatives to achieving higher power dissipation
from the surface mount packages. One is to increase the
area of the drain/collector pad. By increasing the area of the
drain/collector pad, the power dissipation can be increased.
Although the power dissipation can almost be doubled with
this method, area is taken up on the printed circuit board
which can defeat the purpose of using surface mount
technology.
Another alternative would be to use a ceramic substrate or
an aluminum core board such as Thermal Clad. Using a
board material such as Thermal Clad, an aluminum core
board, the power dissipation can be doubled using the same
footprint.
  
4Motorola Small–Signal Transistors, FETs and Diodes Device Data
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and soldering
should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference should be a maximum of 10°C.
The soldering temperature and time should not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the maximum
temperature gradient should be 5°C or less.
After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
SOLDER STENCIL GUIDELINES
Prior to placing surface mount components onto a printed
circuit board, solder paste must be applied to the pads. A
solder stencil is required to screen the optimum amount of
solder paste onto the footprint. The stencil is made of brass
or stainless steel with a typical thickness of 0.008 inches.
The stencil opening size for the surface mounted package
should be the same as the pad size on the printed circuit
board, i.e., a 1:1 registration.
  
5
Motorola Small–Signal Transistors, FETs and Diodes Device Data
TYPICAL SOLDER HEATING PROFILE
For any given circuit board, there will be a group of control
settings that will give the desired heat pattern. The operator
must set temperatures for several heating zones, and a
figure for belt speed. Taken together, these control settings
make up a heating “profile” for that particular circuit board.
On machines controlled by a computer, the computer
remembers these profiles from one operating session to the
next. Figure 2 shows a typical heating profile for use when
soldering a surface mount device to a printed circuit board.
This profile will vary among soldering systems but it is a good
starting point. Factors that can affect the profile include the
type of soldering system in use, density and types of
components on the board, type of solder used, and the type
of board or substrate material being used. This profile shows
temperature versus time. The line on the graph shows the
actual temperature that might be experienced on the surface
of a test board at or near a central solder joint. The two
profiles are based on a high density and a low density board.
The Vitronics SMD310 convection/infrared reflow soldering
system was used to generate this profile. The type of solder
used was 62/36/2 Tin Lead Silver with a melting point
between 177–189°C. When this type of furnace is used for
solder reflow work, the circuit boards and solder joints tend to
heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then
distributes this energy to the components. Because of this
effect, the main body of a component may be up to 30
degrees cooler than the adjacent solder joints.
STEP 1
PREHEAT
ZONE 1
“RAMP”
STEP 2
VENT
“SOAK”
STEP 3
HEATING
ZONES 2 & 5
“RAMP”
STEP 4
HEATING
ZONES 3 & 6
“SOAK”
STEP 5
HEATING
ZONES 4 & 7
“SPIKE”
STEP 6
VENT STEP 7
COOLING
200
°
C
150
°
C
100
°
C
50
°
C
TIME (3 TO 7 MINUTES T OTAL) TMAX
SOLDER IS LIQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLY)
205
°
TO
219
°
C
PEAK AT
SOLDER
JOINT
DESIRED CURVE FOR LOW
MASS ASSEMBLIES
100
°
C
150
°
C160
°
C
140
°
C
Figure 2. Typical Solder Heating Profile
DESIRED CURVE FOR HIGH
MASS ASSEMBLIES 170
°
C
  
6Motorola Small–Signal Transistors, FETs and Diodes Device Data
PACKAGE DIMENSIONS
CASE 318–08
ISSUE AF
SOT–23 (TO–236AB)
STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE
DJ
K
L
A
C
BS
H
GV
3
12DIM
AMIN MAX MIN MAX
MILLIMETERS
0.1102 0.1197 2.80 3.04
INCHES
B0.0472 0.0551 1.20 1.40
C0.0350 0.0440 0.89 1.11
D0.0150 0.0200 0.37 0.50
G0.0701 0.0807 1.78 2.04
H0.0005 0.0040 0.013 0.100
J0.0034 0.0070 0.085 0.177
K0.0140 0.0285 0.35 0.69
L0.0350 0.0401 0.89 1.02
S0.0830 0.1039 2.10 2.64
V0.0177 0.0236 0.45 0.60
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIUMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.
CASE 419–02
ISSUE H
SC–70/SOT–323
STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE
CRN
AL
D
G
V
SB
H
J
K
3
12
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.071 0.087 1.80 2.20
B0.045 0.053 1.15 1.35
C0.035 0.049 0.90 1.25
D0.012 0.016 0.30 0.40
G0.047 0.055 1.20 1.40
H0.000 0.004 0.00 0.10
J0.004 0.010 0.10 0.25
K0.017 REF 0.425 REF
L0.026 BSC 0.650 BSC
N0.028 REF 0.700 REF
R0.031 0.039 0.80 1.00
S0.079 0.087 2.00 2.20
V0.012 0.016 0.30 0.40
0.05 (0.002)
  
7
Motorola Small–Signal Transistors, FETs and Diodes Device Data
CASE 318D–04
ISSUE F
SC–59
STYLE 3:
PIN 1. ANODE
2. ANODE
3. CATHODE
S
G
H
D
C
B
L
A
1
3
2
J
K
DIM
AMIN MAX MIN MAX
INCHES
2.70 3.10 0.1063 0.1220
MILLIMETERS
B1.30 1.70 0.0512 0.0669
C1.00 1.30 0.0394 0.0511
D0.35 0.50 0.0138 0.0196
G1.70 2.10 0.0670 0.0826
H0.013 0.100 0.0005 0.0040
J0.09 0.18 0.0034 0.0070
K0.20 0.60 0.0079 0.0236
L1.25 1.65 0.0493 0.0649
S2.50 3.00 0.0985 0.1181
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
  
8Motorola Small–Signal Transistors, FETs and Diodes Device Data
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Af firmative Action Employer .
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488
Mfax: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://motorola.com/sps
MMBD1010LT1/D