LDO Linear Regulator Design
Using the Universal SOT23
EVM
August 1999 Mixed Signal Products
Users Guide
SLVU019
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customers applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Information About Cautions and Warnings
iii
Read This First
Preface
Read This First
About This Manual
This user s guide describes techniques for designing low dropout voltage lin-
ear regulators (LDO) using TI’s SL VP125 evaluation modules (EVM) and TPS
76933 LDOs.
How to Use This Manual
This document contains the following chapters:
-
Chapter 1 Introduction
-
Chapter 2 EVM Adjustments and Test Points
-
Chapter 3 Circuit Design
-
Chapter 4 Test Results
Information About Cautions and Warnings
This book may contain cautions and warnings.
This is an example of a caution statement.
A caution statement describes a situation that could potentially
damage your software or equipment.
This is an example of a warning statement.
A warning statement describes a situation that could potentially
cause harm to you.
Related Documentation From Texas Instruments
iv
The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.
Related Documentation From Texas Instruments
-
TPS760xx, TPS761xx, TPS763xx, TPS764xx, TPS769xx, TPS770xx
data sheets (literature numbers SLVS144B, SLVS178A, SLVS181D,
SLVS180A, SLVS203B, SLVS210B)
Running Title—Attribute Reference
v
Chapter Title—Attribute Reference
Contents
1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Low Dropout Voltage Linear Regulator Circuit Operation 1-2. . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Design Strategy 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Schematic 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Bill of Materials 1-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Board Layout 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 EVM Adjustments and Test Points 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Adjustment by Switch 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Adjustment by Jumper 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Adjustment by Trimmer 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Adjustment by Programming Header 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Test Setup 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Circuit Design 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Adjusting the TPS76x01/TPS77001 Output Voltage 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Temperature Considerations 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 External Capacitor Requirements – ESR 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Test Results 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Test Results 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Running Title—Attribute Reference
vi
Figures
1–1 Typical LDO Application 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–2 SLVP125 EVM Universal LDO Tester Schematic Diagram 1-4. . . . . . . . . . . . . . . . . . . . . . . . . .
1–3 Top Layer 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–4 Bottom Layer (top view) 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–5 Assembly Drawing (top assembly) 1-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–1 Location of Adjustment Parts 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Test Setup 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 Programming the TPS76x01/TPS77001 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 Resistor Values 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–3 Calculated and Measured Maximum Output Current vs Input Voltage
Without Cooling for TPS76933 in Test Setup 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–4 ESR and ESL 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–5 LDO Output Stage With Parasitic Resistances ESR and ESL 3-8. . . . . . . . . . . . . . . . . . . . . . .
3–6 Correlation of Different ESRs and Their Influence to the Regulation of Vout at a
Load Step From Low to High Output Current 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1 Rise Time of Function Generator at Gate of MOSFET Q1 (high speed) 4-2. . . . . . . . . . . . . . .
4–2 Rise Time of Function Generator at Gate of MOSFET Q1 (low speed) 4-2. . . . . . . . . . . . . . .
4–3 Transient at Input (Ch1); 4.3 V Input, 3.3 V Output (Ch2) at 100 mA Load,
Cout = 10 mF 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–4 Delay Time EN Output High 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–5 Full Load (100 mA) – No Load Transition, Vout, Whole Period 4-4. . . . . . . . . . . . . . . . . . . . .
4–6 Full Load (100 mA) – No Load Transition With Cout = 10 µF Electrolytic 4-4. . . . . . . . . . . . . .
4–7 No Load – Full Load (100 mA) Transition With Cout = 10 µF Electrolytic 4-5. . . . . . . . . . . . . .
Tables
1–1 Summary of LDO Families and Their Features 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–2 SLVP125 EVM Bill of Materials 1-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–1 Jumper Functions 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Trimmer Adjustments 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 Timing Equations 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 Exact Resistor Values 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 E96 Resistor Series 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1
Introduction
Introduction
This users guide describes techniques for designing low dropout (LDO)
voltage linear regulators using TI’s SLVP125 evaluation module (EVM) and
TPS76933 LDO. LDOs provide ideal power supplies for rapidly transitioning
DSP loads such as the Texas Instruments TMS320C54x and similar
processors, and fast memory. Low quiescent current and very low dropout
voltage compared to standard LDOs makes the TPS76933 particularly
suitable in battery applications requiring extended lifetime and low cost.
Low noise power supplies, fast transient response, improved efficiency, low
component count, and easy design make LDOs popular in solutions where
switched converters are too noisy and standard linear regulators are too
inefficient.
Topic Page
1.1 Low Dropout Voltage Linear Regulator Circuit Operation 1–2. . . . . . . . .
1.2 Design Strategy 1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Schematic 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Bill of Materials 1–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Board Layout 1–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 1
Low Dropout Voltage Linear Regulator Circuit Operation
1-2
1.1 Low Dropout Voltage Linear Regulator Circuit Operation
In the low dropout voltage linear regulator topology , a PMOS transistor acts as
a pass element that reduces the normal 1.5-V to 2.5-V collector-to-emitter
drop to about 0.3 V or less. This improvement results in lower power
dissipation and higher efficiency when compared to other regulator designs.
The basic LDO regulator circuit includes the LDO and an output capacitor for
stabilization. Figure 1–1 shows the circuit of a typical LDO application.
Figure 1–1.Typical LDO Application
_
+
Control
_
+
R1
R2
Q1
Vref
LDO
CO
Vout
Load
_
+
VCC
In the LDO application shown in Figure 1–1, the LDO regulates the output
voltage Vout.
If Vout falls below the regulation level, the controller increases the VGS
differential and the PMOS conducts more current, resulting in an increase of
Vout. If Vout exceeds the regulation level, the controller decreases the VGS
differential and the PMOS conducts less current, resulting in a decrease of
Vout. The PMOS pass element acts like an adjustable resistor. The more
negative the gate becomes versus the source, the less the source-drain
resistance becomes, resulting in higher current flow through the PMOS.
Design Strategy
1-3
Introduction
1.2 Design Strategy
The TI SLVP125 EVM provides a circuit to simultaneously compare the
performance of two LDOs in a SOT23 package. The EVM provides proven,
demonstrated reference designs and test modes to aid in choosing and
evaluating LDOs. A programmable high speed transient generator generates
either line or load transients. The transient slew rate, and the impact of the
transients on the load/line are adjustable. A 10x amplifying operational
amplifier (op amp) makes measurements of the dropout voltages easier and
more accurate. To avoid influencing each other , each LDO can be powered by
its own power supply. Jumpers allow settings of minimum/maximum load as
well as device-enable and transient impact functions. There is enough room
on the EVM to evaluate different types of output capacitors including ESR
behaviors. Many test points allow the measuring of input, output, and dropout
voltage.
The EVM is shipped with a TPS76933 that provides a 3.3-V output voltage.
The maximum output current is 100 mA. The 100 mA-output power level is a
reasonable selection criteria for powering DSPs and battery-supplied
applications such as mobile phones and laptop cards.
The TPS760xx, TPS761xx, TPS763xx, TPS764xx, TPS769xx, TPS770xx
LDO family provides several output currents and voltages combined with
options like very low noise or high accuracy.
Table 1–1 summarizes the LDO families and their features.
Table 1–1.Summary of LDO Families and Their Features
TPS760xx TPS761xx TPS763xx TPS764xx TPS769xx TPS770xx
Maximum input voltage range [V] 16 (PNP) 10 (PMOS) 13.5(PMOS)
Maximum output current [mA] 50 100 150 150 100 50
Typical quiescent current [µA] 850 2600 85 17
Typical dropout voltage [mV] 120 210 300 71 35
Typical output noise [µVrms] 190 140 30 190
Accuracy over line, load, and
temperature 3% 2%
PSRR (at 1 kHz, CO = 10 µF,
TJ = 25°C) 60 dB
Package SOT23
External cap > 4.7 µF
Available Voltage Option [V] 3, 3.2, 3.3, 3.8, and 5
1.6, 1.8, 2.5,
2.7, 2.8, 3,
3.3, 3.8, 5,
and adj
2.5, 2.7,
2.8, 3, 3.3 1.2, 1.5, 1.8, 2.5, 2.7,
2.8, 3, 3.3, 5, and adj.
Performance Advantage Low dropout Low quiescent current,
low noise
Low dropout, ultra low
quiescent current, high
accuracy
Schematic
1-4
1.3 Schematic
Figure1–2 shows the SLVP125 EVM Universal LDO Tester (3.3 V output with
TPS76933 as U1) schematic diagram.
Figure 1–2.SLVP125 EVM Universal LDO Tester Schematic Diagram
Schematic
1-5
Introduction
Figure 1–2.SLVP125 EVM Universal LDO Tester Schematic Diagram (Continued)
Bill of Materials
1-6
1.4 Bill of Materials
Table 1–2 lists materials required for the SLVP125 EVM.
Table 1–2.SLVP125 EVM Bill of Materials
Ref PN Description Mfg Size
C1 16SA470M Capacitor, OS-Con, 470 µF, 16 V, 20-m, 20% Sanyo G
C1 (Alt) 16SP470M Capacitor, OS-Con, 470 µF, 16 V, 10-m, 20% Sanyo G
C2 ECU-V1H104KBW Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10% Panasonic 1206
C3 GRM235Y5V106Z016A Capacitor, ceramic, 10 µF, 16 V, Y5V, -20% +80% muRata 1210
C4 Capacitor, user option 1210/1206
C5 ECU-V1H104KBW Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10% Panasonic 1206
C6 ECU-V1H104KBW Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10% Panasonic 1206
C7 ECU-V1H104KBW Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10% Panasonic 1206
C8 GRM235Y5V106Z016A Capacitor, ceramic, 10 µF, 16 V, Y5V, –20% +80% muRata 1210
C9 ECU-V1H104KBW Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10% Panasonic 1206
C10 16SA470M Capacitor, OS-Con, 470 µF, 16 V, 20-m, 20% Sanyo G
C10 (Alt) 16SP470M Capacitor, OS-Con, 470 µF, 16 V, 10-m, 20% Sanyo G
C11 ECU-V1H104KBW Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10% Panasonic 1206
C12 Capacitor, user option 1210/1206
C13 ECU-V1H104KBW Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10% Panasonic 1206
J1 ED1515-ND Terminal block, 3-pin, 6 A, 3.5 mm OST 3.5mm
J2 ED1514-ND Terminal block, 2-pin, 6 A, 3.5 mm OST 3.5mm
J3 ED1515-ND Terminal block, 3-pin, 6 A, 3.5 mm OST 3.5mm
JP1 PTC36SAAN Header, single-row , straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP2 PTC36SAAN Header, single-row , straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP3 PTC36SAAN Header, single-row , straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP4 PTC36SAAN Header, single-row, straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP5 PTC36SAAN Header, single-row , straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP6 PTC36SAAN Header, single-row , straight, 3-pin, 0.100” x 25 mil Sullins 0.1”
JP7 PTC36SAAN Header, single-row , straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP8 PTC36SAAN Header, single-row , straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP9 PTC36SAAN Header, single-row , straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP10 PTC36SAAN Header, single-row, straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP11 PTC36SAAN Header, single-row, straight, 2-pin, 0.100” x 25 mil Sullins 0.1”
JP12 PTC36SAAN Header, single-row, straight, 3-pin, 0.100” x 25 mil Sullins 0.1”
Q1 Si4410DY MOSFET, N-ch, 30-V, 10-A, 13-milliohm Silconix SO-8
Q2 Si4410DY MOSFET, N-ch, 30-V, 10-A, 13-milliohm Silconix SO-8
R1 Std Resistor, Chip, 10 k, 1/8 W , 5% 1206
R2 Std Resistor, Chip, 0.51 , 1/8 W , 5% 1206
R3 Std Resistor, Chip, user option, 1/8 W, 1% 1206
R4 Std Resistor, Chip, user option, 1/8 W, 1% 1206
R5 Std Resistor, Chip, 1.00 M, 1/8 W , 1% 1206
R6 Std Resistor, Chip, 1.00 M, 1/8 W , 1% 1206
R7 Std Resistor, Chip, 1.0 , 1/8 W , 5% 1206
R8 Std Resistor, Chip, 5.1 , 1/8 W , 5% 1206
R9 Std Resistor, Chip, 10.0 M, 1/8 W , 1% 1206
Bill of Materials
1-7
Introduction
Table 1–2.SLVP125 EVM Bill of Materials (Continued)
Ref PN Description Mfg Size
R10 Std Resistor, Chip, user option, 1/8 W, 1% 1206
R11 Std Resistor, chip, 10.0 M, 1/8 W , 1% 1206
R12 72-T93YA-10 T rim Pot, cermet, 10 vertical, top adjust, 1/2 W, 10% Vishay 3x 0.1”
R13 Std Resistor, chip, user option, 1/8-1 W, 1% 1206/2512
R14 Std Resistor, CF, 5.1 K, 1/8 W, 5% 1206
R15 72-T93YA-50K T rim pot, cermet, 50 K, vertical, top adjust, 1/2 W, 10% Vishay 3x 0.1”
R16 Std Resistor, chip, 10 k, 1/8 W , 5% 1206
R17 Std Resistor, chip, user option, 1/8 W, 5% 1206
R18 Std Resistor, chip, 10 k, 1/8 W , 5% 1206
R19 Std Resistor, chip, user option, 1/8 W, 1% 1206
R20 Std Resistor, chip, 1.0 , 1/8 W , 5% 1206
R21 Std Resistor, chip, user option, 1/8 W, 1% 1206
R22 Std Resistor, chip, 0.51 , 1/8 W , 5% 1206
R23 Std Resistor, chip, 1.00 M, 1/8 W , 1% 1206
R24 Std Resistor, chip, 10.0 M, 1/8 W , 1% 1206
R25 Std Resistor, chip, user option, 1/8 W, 1% 1206
R26 Std Resistor, chip, 1.00 M, 1/8 W , 1% 1206
R27 Std Resistor, chip, 5.1 , 1/8 W , 5% 1206
R28 72-T93YA-10 T rim pot, cermet, 10 , vertical, top adjust, 1/2 W, 10% Vishay 3x 0.1”
R29 Std Resistor, chip, user option, 1/8-1 W, 1% 1206/2512
R30 Std Resistor, chip, 10.0 M, 1/8 W , 1% 1206
R31 Std Resistor, chip, 10 K, 1/8 W , 5% 1206
R32 72-T93YA-50K T rim pot, cermet, 50 K, vertical, top adjust, 1/2 W, 10% Vishay 3x 0.1”
S1 EG1218 Switch, 1P2T, slide, PC-mount E-Switch 0.1”
S2 EG1218 Switch, 1P2T, slide, PC-mount E-Switch 0.1”
S3 EG1218 Switch, 1P2T, slide, PC-mount E-Switch 0.1”
S4 EG1218 Switch, 1P2T, slide, PC-mount E-Switch 0.1”
TP1 131-4244-00 Adaptor, 3.5-mm probe clip (or 131-5031-00) Tektronix
TP2 131-4244-00 Adaptor, 3.5-mm probe clip (or 131-5031-00) Tektronix
TP3 240-345 Test point, red Farnell 1 mm
TP4 240-345 Test point, red Farnell 1 mm
TP5 240-345 Test point, red Farnell 1 mm
TP6 240-333 Test point, black Farnell 1 mm
TP7 240-333 Test point, black Farnell 1 mm
TP8 240-345 Test point, red Farnell 1 mm
TP9 240-345 Test point, red Farnell 1 mm
TP10 240-345 Test point, red Farnell 1 mm
TP11 131-4244-00 Adaptor, 3.5-mm probe clip (or 131-5031-00) Tektronix
TP12 131-4244-00 Adaptor, 3.5-mm probe clip (or 131-5031-00) Tektronix
U1 IC, LDO, DUT TI Various
U2 IC, LDO, DUT TI Various
U3 110-99-316-41-001 Socket, 16-pin, frequency programming Mill-Max DIP-16
U4 TLC555CD IC, CMOS timer TI SO-8
U5 TPS2812D IC, MOSFET driver, 2-Ch, Noninverting TI SO-8
U6 TLE2021CD IC, Op Amp, single-supply, low offset TI SO-8
U7 TLE2021CD IC, Op Amp, single-supply, low offset TI SO-8
Board Layout
1-8
1.5 Board Layout
Figures 1–3 through 1-6 show the board layout for the SLVP125 EVM.
Figure 1–3.Top Layer
Figure 1–4.Bottom Layer (top view)
Board Layout
1-9
Introduction
Figure 1–5.Assembly Drawing (top assembly)
1-10
2-1
EVM Adjustments and Test Points
EVM Adjustments and Test Points
This chapter explains the following four EVM adjustment modes:
-
Adjustment by switch
-
Adjustment by jumper
-
Adjustment by trimmer
-
Adjustment by programming header
Figure 2–1 shows the locations of the adjustment points on the board.
Topic Page
2.1 Adjustment by Switch 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Adjustment by Jumper 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Adjustment by Trimmer 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Adjustment by Programming Header 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Test Setup 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 2
Adjustment by Switch
2-2
2.1 Adjustment by Switch
-
S1 toggles between high (direction labelling) or low transient generator
frequency.
-
S2 switches the transient generator on (direction labelling) and off.
-
S3 toggles between slower (direction labelling) and faster transients.
-
S4 directs transients either to DUT1 (direction labelling) or DUT2.
2.2 Adjustment by Jumper
Table 2–1 lists adjustments that can be made by jumpers.
Table 2–1.Jumper Functions
Function/Device DUT1 DUT2
Bypasses input resistor JP1 JP10
Enables DUT JP2 JP7
Bypasses ESR emulation JP3 JP8
Set minimum load JP4 JP9
Set maximum load JP5 JP11
Toggles between input voltage (direction trimmer) and load
transient JP6 JP12
2.3 Adjustment by Trimmer
Table 2–2 lists the adjustments that can be made by trimmer.
Table 2–2.Trimmer Adjustments
Function/Device DUT1 DUT2
Risetime of transient R15 R32
Input voltage spike transient impact R12 R28
2.4 Adjustment by Programming Header
The programming header can be used to program the frequency and the duty
cycle of the transient generator. Table 2–3 lists the timing equations.
Test Setup
2-3
EVM Adjustments and Test Points
Table 2–3.Timing Equations
Timing Equations With Diode DH1
for Low Duty Cycles Timing Equations Without Diode
RH
1
+
t
on
0.693
CRH
1
+
t
on
(2
D–
1)
0.693
D
C
RH
2
+
t
on
(1
–D
)
0.693
D
CRH
2
+
t
on
(1
–D
)
0.693
D
C
Note: ton = desired load on-time [s]
D = on-time duty cycle
C = total capacitance in circuit (CH1 or CH1 + CH2) [F]
RH1, RH2 = T imer resistors value (refer to schematics) []
Figure 2–1.Location of Adjustment Parts
Input voltage transient impact
Input voltage transient impact
2.5 Test Setup Figure 2–2 shows the test setup. Follow these steps for initial power up of the
SLVP125
1) Populate the test devices on the board (U1 and U2) and adjust the settings
of jumpers, switches, and trimmers to fit test requirements. Also make
sure that the minimum/maximum load resistors are populated and
matched to the output current of the LDO you want to test, and that they
can handle the power dissipation.
2) Connect a 12-V lab power supply to the 12-V input J2. The polarity is
printed on the board. A current limit of 200 mA should be adequate for the
test and measure circuit.
Test Setup
2-4
3) Connect a 2nd lab power supply (at least capable to supply 2 A) to the J1
and J3 connector at Vin and GND. The polarity is printed on the board.
V erify that the output voltage limit is set to 13.5 V and that the output is set
to 0 V.
4) Turn on the 12-V lab supply. Turn on the second power supply and ramp
the input voltage up to the desired maximum but not further than 13.5 V.
5) Verify that the output voltage (measured at the Vout1 and Vout2 pins respec-
tively) has the desired value.
Note:
1) With very small loads (<100 µA) you will measure a small output volt-
age even with the device in shutdown. This is due to offset voltages of
the opamps U6 and U7.
2) If you plan to insert a socket for DUT , you will have to remove the jumper
wires from the socket area. The socket has internal connections.
Figure 2–2.Test Setup
NOTE: All wire pairs should be twisted.
3-1
Circuit Design
Circuit Design
This chapter describes the LDO circuit design procedure.
Topic Page
3.1 Adjusting the TPS76xx01/TPS77001 Output Voltage 3–2. . . . . . . . . . . . .
3.2 Temperature Considerations 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 External Capacitor Requirements – ESR 3–7. . . . . . . . . . . . . . . . . . . . . . . .
Chapter 3
Adjusting the TPS76x01/TPS77001 Output Voltage
3-2
3.1 Adjusting the TPS76x01/TPS77001 Output Voltage
All voltage regulators of the TPS76x01/TPS77001 families use the same inter-
nal bandgap voltage, see also Figure 1–1. In the adjustable version, the resis-
tors R1 and R2 are external resistors. Due to the virtual short circuit between
the input pins of an op amp, the voltage Vref applies to both the +input pin and
the –input pin.
Note:
All TPS76x01/TPS77001 devices except the TPS764xx use pin 4 as a feed-
back pin for the adjustable version. At the TPS764xx pin 4 acts as a bypass
pin for an external bypass capacitor . This capacitor is used to further reduce
output voltage noise. See the TPS764xx data sheet for details.
Figure 3–1.Programming the TPS76x01/TPS77001
_
+
_
+
R1
R2
Vref
Vout
The equation for the output voltage is:
V
ref
V
out
+
R
2
R
1
)
R
2
å
V
out
+
V
ref
R
1
)
R
2
R
2
+
V
ref
ǒ
1
)
R
1
R
2
Ǔ
The resistor ratio is a function of
V
out
V
ref
*
1
+
R
1
R
2
Using Figure 3–2, it is possible to get a quick ratio for R1/R2 and their maxi-
mum value.
Adjusting the TPS76x01/TPS77001 Output Voltage
3-3
Circuit Design
Figure 3–2.Resistor Values
0
200
400
600
800
1000
1200
1400
1600
1800
Output Voltage [V]
0
1
2
3
4
5
6
7
8
9
10
max Value for R1+R2[k]
R1/R2
1.2
1.6
2
2.4
2.8
3.2
3.6
4
4.4
4.8
5.2
5.6
6
6.4
6.8
7.2
7.6
8
8.4
8.8
9.2
10
10.4
10.8
11.2
11.6
12
9.6
max. Value for R1 + R2 – k
Resistor ratio R1/R2
Table 3–1.Exact Resistor Values
Vout R1/R2 Maximum Value for R1+R2[k]
1.2 0.018676 171.429
1.3 0.103565 185.714
1.4 0.188455 200.000
1.5 0.273345 214.286
1.6 0.358234 228.571
1.7 0.443124 242.857
1.8 0.528014 257.143
1.9 0.612903 271.429
2 0.697793 285.714
2.1 0.782683 300.000
2.2 0.867572 314.286
2.3 0.952462 328.571
2.4 1.037351 342.857
2.5 1.122241 357.143
2.6 1.207131 371.429
2.7 1.29202 385.714
2.8 1.37691 400.000
2.9 1.4618 414.286
3 1.546689 428.571
3.1 1.631579 442.857
3.2 1.716469 457.143
3.3 1.801358 471.429
Adjusting the TPS76x01/TPS77001 Output Voltage
3-4
Table 3–1. Exact Resistor Values(Continued)
Vout R1/R2 Maximum Value for R1+R2[k]
3.4 1.886248 485.714
3.5 1.971138 500.000
3.6 2.056027 514.286
3.7 2.140917 528.571
3.8 2.225806 542.857
3.9 2.310696 557.143
4 2.395586 571.429
4.1 2.480475 585.714
4.2 2.565365 600.000
4.3 2.650255 614.286
4.4 2.735144 628.571
4.5 2.820034 642.857
4.6 2.904924 657.143
4.7 2.989813 671.429
4.8 3.074703 685.714
4.9 3.159593 700.000
5 3.244482 714.286
5.5 3.66893 785.714
6 4.093379 857.143
6.5 4.517827 928.571
7 4.942275 1000.000
7.5 5.366723 1071.429
8 5.791171 1142.857
8.5 6.21562 1214.286
9 6.640068 1285.714
9.5 7.064516 1357.143
10 7.488964 1428.571
10.5 7.913413 1500.000
11 8.337861 1571.429
11.5 8.762309 1642.857
12 9.186757 1714.286
T o ensure proper regulation, the divider current should be 7 µA. The maximum
resistor value for R1+R2 can be seen in Figure 3–2 and Table 3–1.
To get the actual values for R1 and R2, get the resistor ratio and the maximum
resistor value for the desired output voltage out of Figure 3–2 or T able 3–1 and
do the following calculations:
Adjusting the TPS76x01/TPS77001 Output Voltage
3-5
Circuit Design
For 3 V, one gets:
I)
R
1
R
2
+
1.546689 II) R1
)
R2
+
428.571 k
W
å
I
Ȁ
)R1
+
1.546689
R2
I
Ȁ
) in II) :
å
1.546689
R2
)
R2
+
428.571 k
W
å
R2
+
428.571 k
W
2.546689
+
168.286 k
W
Make R2 = 169 k and calculate R1:
Derived from equation I), one gets for R1:
R1
+
1.546689
169 k
W
+
261.39 k
W
The next value in the E96 series shown in Table 3–2 is 261 k.
The error for using these resistors is:
261 k
W
169
k
W
+
1.544379
å
Error
+ǒ
1
1.544379
1.546689
Ǔ
100%
+
0.149371%
A free-ware program called
WinResis
available on the Internet can help you
find the correct resistor values.
Table 3–2.E96 Resistor Series
E96 series
100 147 215 316 464 681
102 150 221 324 475 698
105 154 226 332 487 715
107 158 232 340 499 732
110 162 237 348 511 750
113 165 243 357 523 768
115 169 249 365 536 787
118 174 255 374 549 806
121 178 261 383 562 825
124 182 267 392 576 845
127 187 274 402 590 866
130 191 280 412 604 887
133 196 287 422 619 909
137 200 294 432 634 931
140 205 301 442 649 953
143 210 309 453 665 976
Temperature Considerations
3-6
3.2 Temperature Considerations
To protect the device and assure the specifications, the maximum junction
temperature should not exceed 125°C. This restriction limits the power dis-
sipation the regulator can handle in any given application. To ensure the junc-
tion temperature is within acceptable limits, calculate the maximum allowable
dissipation, PD(max), and the actual dissipation, PD, which must be less than
or equal to PD(max). The maximum power dissipation limit is determined using
the following equation:
P
D
(
max
)
+
T
J
,
max
*
T
A
R
q
JA
Where
TJ,max is the maximum allowed junction temperature [°C], i.e., 125°C for
the TPS76xxx/TPS77xxx families
RθJA is the thermal resistance junction-to-ambient for the package, i.e.,
285°C/W for the 5-terminal SOT23
TA is the ambient temperature
The regulator dissipation is calculated using:
P
D
+ǒ
V
IN
*
V
OUT
Ǔ
I
OUT
The maximum output current at a given temperature can be calculated as:
I
out
,
max
[
mA
]
+
125°
C
*
T
A
ǒ
V
in
*
V
out
Ǔ
285°
C
ń
W
1000
mA
Figure 3–3 shows the test results on a TPS76933 device. Also displayed are
the calculated results.
External Capacitor Requirements – ESR
3-7
Circuit Design
Figure 3–3.Calculated and Measured Maximum Output Current vs Input Voltage Without
Cooling for TPS76933 in Test Setup
0
50
100
150
200
250
34
Vin [V]
±3% Vout – Tolerance Area
Iout [mA]
300 mA Current limit
Vout [V]
300
350
2
2.2
2.4
2.6
2.8
3
3.2
3.4
5 6 7 8 9 10 11 12 13 14
Iout, max vs. Input Voltage,
calculated Values
Iout, max vs. Input Voltage,
measured Values
Vout at Iout, max
Vout at Iout = 100 mA
3.3 External Capacitor Requirements – ESR
Besides its capacitance, every capacitor also contains parasatic resistances.
These parasatic resistances are ohmic resistances as well as inductive
impedances. The ohmic resistances are called equivalent series resistance
(ESR), and the inductive impedances are called equivalent series inductance
(ESL). L is the designator for inductors. The equivalent schematic diagram of
any capacitor can therefore be drawn as shown in Figure 3–4.
Figure 3–4.ESR and ESL
RESR LESL C
In most cases one can neglect the very small inductive impedance ESL.
Therefore the following description focuses mainly on the parasitic resistance
ESR.
Figure 3–5 shows the output capacitor and its parasitic resistances in a typical
LDO output stage.
External Capacitor Requirements – ESR
3-8
Figure 3–5.LDO Output Stage With Parasitic Resistances ESR and ESL
LDO
Vin
VESR
VCout
Iout
RESR
LESL
Cout
RLOAD Vout
In steady state (dc state condition) the load is supplied by the LDO (solid arrow)
and VCout = Vout. This means no current is flowing into the Cout branch. If now
Iout suddenly increases, the following occurs (see Figure 3–6 and the screen
shot in Chapter 4, Figure 4–7):
The LDO is not able to supply the sudden current need due to its response time
(t1 in Figure 3–6). Therefore capacitor Cout has to provide the current for the
new load condition (dashed arrow). Cout acts like a battery now with an internal
resistance, ESR. Therefore, depending on the current demand at the output,
voltage drop will occur at RESR and LESL. This voltage is shown as VESR in Fig-
ure 3–5. The internal inductance also causes an additional delay (shown as
tL in Figure 3–6), so Cout could not immediately supply current to the load.
When Cout is finally conducting current to the load, the initial voltage at the load
will be Vout = VCout – VESR. Due to the discharge of Cout, the output voltage Vout
will drop continuously until the response time t1 of the LDO is reached and the
LDO will resume supplying the load. From this point the output voltage starts
rising again until it reaches the level directed by the LDO. This period is shown
as t2 in Figure 3–6. The figure also shows the impact of different ESRs on the
output voltage. The left brackets show different levels of ESRs where number
1 displays the lowest and number 3 displays the highest ESR.
Understanding the above, one can draw the following conclusions:
-
The higher the ESR, the bigger the spike at the beginning of a load tran-
sient and the longer the time to return to a steady state.
-
The smaller the output capacitor, the faster the discharge time and the
bigger the voltage loss during the LDO response period (shown as t1 in
Figure 3–6).
Conclusion:
The higher the output current and the load step differentials, the higher the
requirements for a Cout with low ESR.
External Capacitor Requirements – ESR
3-9
Circuit Design
Figure 3–6.Correlation of Different ESRs and Their Influence to the Regulation of V
out
at a
Load Step From Low to High Output Current
ESR 1
ESR 2
ESR 3
3
1
2
tL
t1t2
Iout
Vout
In order to get a good performing system, an LDO with short response time and
an output capacitor with low ESR are required.
For any regulator of the TPS76xxx/TPS770xx series, an output capacitor of
at least 4.7 µF is required. The ESR of the capacitor should be between 0.5
and 3 to ensure stability.
3-10
4-1
Test Results
Test Results
This chapter presents laboratory test results for the LDO design.
Topic Page
4.1 Test Results 4–2
Chapter 4
Test Results
4-2
4.1 Test Results
Figures 4–1 through 4–7 show the results of various tests and test conditions
for the circuit using the TPS76933 device.
Figure 4–1.Rise Time of Function Generator at Gate of MOSFET Q1 (high speed)
Figure 4–2.Rise Time of Function Generator at Gate of MOSFET Q1 (low speed)
Test Results
4-3
Test Results
Figure 4–3.Transient at Input (Ch1); 4.3 V Input, 3.3 V Output (Ch2) at 100 mA Load,
C
out
= 10
µ
F
Spike
Output Voltage
Figure 4–4.Delay Time EN
Output High
Enable Pulse
Output Voltage
Test Results
4-4
Figure 4–5.Full Load (100 mA) – No Load Transition,
V
out
, Whole Period
Load T ransition
Output Voltage
(see Note 2)
(see Note 1)
Figure 4–6.Full Load (100 mA) – No Load Transition With C
out
= 10
µ
F Electrolytic
Load T ransition
Output Voltage
(see Note 2)
(see Note 1)
Test Results
4-5
Test Results
Figure 4–7.No Load – Full Load (100 mA) Transition With C
out
= 10
µ
F Electrolytic
Load T ransition
Output Voltage
(see Note 2)
(see Note 1)
Notes: 1) The load transition was measured as the voltage drop at the drain of Q1
(see Figure 1–2). Therefore load on is displayed as 0 V and load off is
displayed as 3.3 V.
2) In order to display the output voltage transient with high resolution, a dc
offset of 3.3 V was introduced. The actual dc values can be seen with the
cursor lines in Figure 4–5.
output voltage without full load: 3.296 V
output voltage with full load: 3.278 V
4-6
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
TPS76XXXEVM-125