®
Alt er a Cor pora t ion 1
APEX 20K
Programmable Logic
Device Family
Febr u ar y 2002, ver. 4.3 Data Sheet
DS-APEX20K-4.3
Features... Industry’s first programmable logic device (PLD) incorporating
system-on-a-programmable-chip (SOPC) integration
–MultiCore
TM architecture integrating look-up table (LUT) logic,
product-term logic, and embedded memory
LUT logic used for regi ster-in ten sive fun ctions
Embedded system block (ESB) used to implement memory
functions, including first-in first-out (FIFO) buffers, dual-port
RAM, and content-addressable memory (CAM)
ESB implementation of product-term logic used for
combinatorial-intensive functions
High density
30,000 to 1.5 million typical gates (see Tables 1 and 2)
Up to 51,840 logic elements (LEs)
Up to 442,368 RAM bits that can be used without reducing
available logic
Up to 3,456 product-term-based macrocells
Table 1. APEX 20K Device Fea t ures Not e (1)
Feature EP20K30E EP20K60E EP20K100 EP20K100E EP20K160E EP20K200 EP20K200E
Maximum
system
gates
113,000 162,000 263,000 263,000 404,000 526,000 526,000
Typical
gates 30,000 60,000 100,000 100,000 160,000 200,000 200,000
LEs 1,200 2,560 4,160 4,160 6,400 8,320 8,320
ESBs 12 16 26 26 40 52 52
Maximum
RA M b i ts 24,576 32,768 53,248 53,248 81,920 106,496 106,496
Maximum
macrocells 192 256 416 416 640 832 832
Maximum
us er I/O
pins
128 196 252 246 316 382 376
2Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Note to ta bles:
(1) The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to
57,000 add itional gates.
...and More
Features
Designed for low-power operation
1.8-V and 2.5-V supply voltage (see Table 3)
MultiVoltTM I/O in te rfa ce su ppor t to inter face w i th 1.8 - V, 2 .5-V,
3.3-V, and 5.0-V devices (see Table 3)
ESB offering programmable power-saving mode
Notes:
(1) Certain APEX 20K devices are 5.0-V tolerant. See “MultiVolt I/O Interface” on page
46 for details.
(2) APE X 20KE devices c an be 5.0- V tolerant by u s ing an ex t ernal resisto r .
Table 2. APEX 20K Device Fea t ures Note (1)
Feature EP20K300E EP20K400 EP20K400E EP20K600E EP20K1000E EP20K1500E
Maximum
system gates 728,000 1,052,000 1,052,000 1,537,000 1,772,000 2,392,000
Typical gates 300,000 400 ,00 0 400, 000 600,0 00 1,000,000 1,500,000
LEs 11,520 16,640 16,640 24,320 38,400 51,840
ESBs 72 104 104 152 160 216
Maximum
RA M b i ts 147,456 212,992 212,992 311,296 327,680 442,368
Maximum
macrocells 1,152 1,664 1,664 2,432 2,560 3,456
Max imum us er
I/O pins 408 502 488 588 708 808
Tabl e 3. APE X 20K Supply Vol t ages
Feature Device
EP20K100
EP20K200
EP20K400
EP20K30E
EP20K60E
EP20K100E
EP20K160E
EP20K200E
EP20K300E
EP20K400E
EP20K600E
EP20K1000E
EP20K1500E
Internal supply voltage (VCCINT) 2.5 V 1.8 V
MultiVolt I/O interface voltage
leve ls (VCCIO)2.5 V, 3.3 V, 5.0 V (1) 1.8 V, 2.5 V, 3.3 V,
5.0 V (2)
Altera Corporation 3
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Flexible clock management circuitry with up to four phase-locked
loops (PLLs)
Built-in low-skew clock tree
Up to eight global clock signals
ClockLockTM feature reducing clock delay and skew
ClockBoostTM fe ature providing clock multiplication and
division
ClockShiftTM programmable clock phase and delay shifting
Powerful I/O features
Compliant with peripheral component interconnect Special
Interest Group (PCI SIG) PCI Local Bus Specification,
Revision 2.2 for 3.3- V o pera tion at 3 3 or 66 MHz and 32 o r 6 4 bit s
Sup port for high-speed external memorie s, incl u di ng DDR
SDRAM and Z B T SRAM (ZB T is a trademark of Integra ted
Device Technology, Inc.)
Bidirectio nal I/O performance (tCO + tSU) up to 250 MHz
LVDS performance up to 840 Mbits per channel
Direct con nection from I/O pins to local in te rconne ct pr oviding
fast tCO and tSU times for complex logic
MultiVolt I/O interface support to interface with 1.8-V, 2.5-V,
3.3-V, and 5.0-V devices (see Table 3)
P rogrammab le clamp to VCCIO
Individual tri-state output enable control for each pin
Programmable output slew-rate control to reduce switching
noise
Support for advanced I/O standards, including low-voltage
differential signalin g (LV DS) , LVPECL, PCI-X, AGP , CTT, stub-
series terminated logic (SSTL-3 and SSTL-2), Gunning
transceiver logic plus (GTL+), and high-speed terminated logic
(HSTL Class I)
Pull-up on I/O pins before and during configura tion
Ad vanced interco nnect str ucture
Four-level hierarchical FastTrack® Interconnect stru cture
providing fast, predictable interconnect delays
Dedicated carry chain that implements arithmetic functions such
as fast adders, counters, and comparators (automatically used by
software tools and megafunctions)
Dedicated cascade chain that implements high-speed,
high-fan-i n logic fu nctions (automa tically used by software t ools
and megafunctions)
Interleaved local interconnect allows one LE to drive 29 other
LEs through the fast local interconnect
Advanced packaging options
Availa ble in a variety of packages with 144 to 1,020 pins (see
Tables 4 through 7)
FineLine BGATM packages maximize board space efficiency
Advanced software support
Software design support and automatic place-and-route
provided by the Altera® QuartusTM II d e velopment sy stem for
4Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Windows-based PCs, Sun SPARCstations, and HP 9000
Series 700/800 workstations
–Altera MegaCore
® functions and Altera Megafunction Partners
Program (AMPPSM) megafunctions
–NativeLink
TM integration with popular synthesis, simulation,
and timing analysis tools
Quartus II SignalTapTM embedded logic analyzer simplifies
in-system design evaluation by giving access to internal nodes
during device operation
Supports popular revision-control software packages including
PVCS, Revision Control System (RCS), and Source Code Control
System (SCCS )
Table 4. APEX 20K QFP, BGA & PGA Package Options & I/O Count Notes (1), (2)
Device 144-Pin
TQFP 208-Pin
PQFP
RQFP
240-Pin
PQFP
RQFP
356- P i n BG A 652-P i n BG A 655 -Pi n PG A
EP20K30E 92 125
EP20K60E 92 148 151 196
EP20K100 101 159 189 252
EP20K100E 92 151 183 246
EP20K160E 88 143 175 271
EP20K200 144 174 277
EP20K200E 136 168 271 376
EP20K300E 152 408
EP20K400 502 502
EP20K400E 488
EP20K600E 488
EP20K1000E 488
EP20K1500E 488
Altera Corporation 5
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Notes to tables:
(1) I/O counts include dedicated input and clock pins.
(2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat
pack (RQ FP ), 1.2 7-mm pitc h b all -g ri d array (BG A), 1.00-mm pi tch Fi n eLin e BGA, and pi n- grid ar r ay (PGA)
packages.
(3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the Altera Device
Package Information Data Sheet for detailed package size infor mation.
Table 5. APEX 20K FineLi ne BGA Packag e Options & I/O Count Notes (1), (2)
Device 144 Pin 324 Pin 484 Pin 672 Pin 1,020 Pin
EP20K30E 93 128
EP20K60E 93 196
EP20K100 252
EP20K100E 93 246
EP20K160E 316
EP20K200 382
EP20K200E 376 376
EP20K300E 408
EP20K400 502 (3)
EP20K400E 488 (3)
EP20K600E 508 (3) 588
EP20K1000E 508 (3) 708
EP20K1500E 808
Table 6. APEX 20K QFP, BGA & PGA Package Si zes
Feature 144-Pin TQFP 208-Pin QFP 240-Pin QFP 356 -Pi n BG A 6 52-Pi n BGA 655- Pin PGA
Pitch (mm) 0. 50 0.50 0. 50 1.27 1.27
Area (mm2) 484 924 1,218 1,225 2,025 3,906
Length × Width
(mm × mm) 22 × 22 30.4 × 30.4 34.9 × 34.9 35 × 35 45 × 45 62. 5 × 62.5
Table 7. APEX 20K FineLi ne BGA Pa ckag e Sizes
Feature 144 Pin 324 Pin 484 Pin 672 Pin 1,020 Pin
Pitch (mm) 1.00 1.00 1.00 1. 00 1.00
Area (mm2) 169 361 529 729 1,089
Length × Width (mm × mm) 13 × 13 19 × 19 23 × 23 27 × 27 33 × 33
6Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
General
Description
APEXTM 20K devices are the first PLDs designed with the MultiCore
architecture, which combines the strengths of LUT-based and product-
term-based devices with an enhanced memory structure. LUT-based logic
provides optimized performance and efficiency for data-path, register-
intensive, mathematical, or digital signal processing (DSP) designs.
Product-term-based logic is optimized for complex combinatorial paths,
such as complex state machines. LUT- and product-term-based logic
combined with memory functions and a wide variety of MegaCore and
AMPP function s make the APE X 20K device a rchitecture un iquely suit ed
for system-on-a-programmable-chip designs. Applications historically
requiring a combination of LUT-, product-term-, and memory-based
de vices can now be inte g rated in to one AP EX 20K de vice.
APEX 20K E dev ic es are a superset of APEX 20K devices and include
additional features such as advanced I/O standard support, CAM,
additional global clocks, and enhanced ClockLock clock circuitry. In
addition, APEX 20KE devices extend the APEX 20K family to 1.5 million
gates. APEX 20KE devices are denoted w i th an “E” suffi x i n the device
name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8
compares the features included in APEX 20K and APEX 20KE devices.
Altera Corporation 7
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tab l e 8. Comp ar i s on of APE X 20K & AP EX 20K E Featur e s
Feature APEX 20K Devi ces APEX 20KE Dev i ce s
MultiCore system integration Full suppo rt Full support
SignalTa p logic analy s is Full s upport Full suppo rt
32/64-B it, 33-M H z PCI Full com pliance in -1, -2 speed
grades F ull c om pliance in -1, -2 speed gr ades
32/64-Bit, 66-MHz PCI - Full compliance in -1 speed grade
MultiVolt I/O 2.5-V or 3.3-V VCCIO
VCCIO selected for device
Certain devices are 5. 0-V tolerant
1.8-V , 2.5-V, or 3. 3-V VCCIO
VCCIO selected block-by-block
5.0-V tolerant with use of external resistor
ClockLo ck su pport Clock delay reduc t ion
2× and 4× clock mul ti p lication Clock delay reduction
m/(n × v) or m/(n × k) clock multiplication
Drive C loc kL ock out put of f-chip
External clock feedback
ClockShift
LVDS support
Up to four PLLs
Clock Shif t , cloc k pha se adjus tment
Dedicate d clo ck and input pins Six Eight
I/O standard s upport 2.5-V, 3.3-V, 5.0-V I/O
3.3-V PCI
Low- vo lta ge co mp lem ent ary
metal-oxide semiconduct or
(LVCMOS)
Low- vo lta ge tra ns istor-to-tra ns istor
logic (LVTTL)
1.8-V , 2.5-V, 3. 3-V, 5.0 -V I/O
2.5-V I/O
3.3-V PCI and PC I -X
3.3-V Advanced Graphics Port (AGP)
Center t ap te rm inat ed (C T T)
GTL+
LVCMOS
LVTTL
True- LVD S and LVPECL data pins
(in EP20K300E and larger devices)
LVDS and LVPECL clock pins (in all BGA
and Fin eLine BGA devic es )
LVDS and LVPECL dat a pins up to
156 Mbps (in -1 speed grade devices)
HSTL Class I
PCI-X
SSTL -2 C las s I and II
SSTL -3 C las s I and II
Memory support Dual-port RAM
FIFO
RAM
ROM
CAM
Dual- port RA M
FIFO
RAM
ROM
8Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Al l APEX 20 K devices are reconfig urable and are 100% tested prior to
shipment. As a result, test vectors do not have to be generated for fault
coverage purposes. Instead, the designer can focus on simulation and
design verification. In addition , the designe r do es not need to manage
inventories of different application-specific integrated circuit (ASIC)
designs; APEX 20K devices can be configured on the board for the specific
function alit y required.
APEX 20K devic es are conf igur ed at system pow er-up with da ta stored in
an Altera serial configuration device or provided by a system controller.
Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and
EPC16 configuratio n de v ices, which configure APEX 20K devices via a
serial data stream. Moreover, APEX 20K devices contain an optimized
interface that permits microprocessors to configure APEX 20K devices
serially or in parallel, and synchronously or asynchronously. The interface
also enables microprocessors to treat APEX 20K devices as memory and
configure the device by writing to a virtual memory location, making
reconfiguration easy.
After an APEX 20K device has been configured, it can be reconfigured
in-circuit by resetti ng the de vice and loadin g new data. Real-time changes
can be made during system operation, enabling innovative reconfigurable
computing applications.
APEX 20K devices are supported by the Altera Quartus II development
system, a single, integrated package that offers HDL and schematic design
entry, compilation and logic synthesis, full simulation and worst-case
timing analysis, SignalTap logic analysis, and device configuration. The
Qu artus II software runs on Win dows- b ased PCs, Sun S PARCstations,
and HP 900 0 S eri e s 700 / 80 0 wor k sta ti ons.
The Qua rtus II softwa re provi des Nat iveLin k inte rface s to othe r indust ry-
standard PC- and UNIX workstation-based EDA tools. For example,
designers can invoke the Quartus II software from within third-party
design tools. Furthe r, the Quart us I I soft wa re con tai ns b uilt -in op timiz ed
synthesis libraries; synthesis tools can use these libraries to optimize
desig ns fo r APEX 20K devices. For example, the Synops ys Design
Compiler library, supplied with the Quartus II development system,
includ es Desig nWar e fun ctions optimi ze d for the APEX 20K archi tecture .
Altera Corporation 9
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Functional
Description
APEX 20K devices incorporate LUT-based logic, product-term-based
logic, and memory into one device. Signal interconnections within
APEX 20K devices (as well as to and from device pins) are provided by the
FastTrack Interconnect—a series of fast, continuous row and column
channels that run the entire length and width of the device.
Each I/O pin is fed by an I/O element (IOE) located at the end of each row
and column of the FastTrack Interconnect. Each IOE contains a
bid ir e cti o nal I /O bu f fer an d a re gister t hat can be used as ei t her an input
or output register to feed input, output, or bidirectional signals. When
used with a dedicated clock pin, these registers provide exceptional
performance. IOEs provide a variety of features, such as 3.3-V, 64-bit,
66-MHz PCI compliance; JTAG BST support; slew-rate control; and
tri-state buffers. APEX 20KE devices offer enhanced I/O support,
including sup port for 1.8-V I/O, 2.5-V I/O , LVCMOS, LVTTL, LVPECL,
3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V
AGP I/O standards.
The ESB can implement a variety of memory functions, including CAM,
RAM, dual-port RAM, ROM, and FIFO functions. Embedding th e
memory direc tly into the die improve s performanc e and reduces die area
compared to distributed-RAM implementations. Moreover, the
abundance of cascadable ESBs ensures th at the APEX 20K device can
implement multiple wide memory blocks for high-density designs. The
ESB’ s high sp eed ensu res it can im plemen t smal l memory b locks wi thout
any speed penalty . The abundance of ESBs e nsures that de signers ca n
create as many different-sized memory blocks as the system requires.
Figure 1 shows an overview of the APEX 20K device.
Figure 1. A PEX 20K Device B l ock D iagr am
LUT
LUT
LUT
LUT
LUT
Memory
Memory
Memory
Memory
IOE
IOE
IOE IOE
IOE
IOE
IOE IOE
LUT
LUT
Memory
Memory
IOE
IOE
Product Term
Product Term
LUT
LUT
Memory
Memory
IOE
IOE
Product Term
Product Term Product Term
Product Term Product Term
Product Term
FastTrack
Interconnect
Clock Management Circuitry
IOEs support
PCI, GTL+,
SSTL-3, LVDS,
and other
standards.
ClockLock
Four-input LUT
for data path and
DSP functions.
Product-term
integration for
high-speed
control logic and
state machines. Flexible integration
of embedded
memory, including
CAM, RAM,
ROM, FIFO, and
other memory
functions.
10 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
APEX 20K devices provide two dedicated clock pins and four de di cated
input pin s that drive regis ter control input s. These signals ensu re efficie nt
distribution of high-speed, low-skew control signals. These signals use
dedicated routing channels to provide short delays and low skews. Four
of the de dicated inputs d rive four global s ignals. These four global signals
can also be driven by interna l logic, providing an ideal solution for a clock
divider or internally generated asynchronous clear signals with high
fan-out. The dedicated clock pins featured on the APEX 20K devices can
also feed logic. The devices also feature ClockLock and ClockBoost clock
management circuitry. APEX 20KE devices provide two additional
dedic at ed clock pins, for a total of four dedicated clock pins.
MegaL AB St ru ctur e
APEX 20K devices are con st ru cted from a series of MegaLABTM
structures. Each MegaLAB structure contains a group of logic array blocks
(LABs), one ESB, and a MegaLA B i nterconnec t, which routes signals
within the Mega LAB structu re. The EP20K3 0E device has 10 LABs,
EP20K60E through EP20K600E devices have 16 LABs, and the
EP20K100 0E and EP20K15 00 E devices have 2 4 LA Bs. Signals are ro uted
between MegaLAB structures and I/O pins via the FastTrack
Interconnect. In addition, edge LABs can be driven by I/O pins through
the local interconnect. Figure 2 shows the MegaLAB structure.
Figure 2. MegaLAB Structure
ESB
MegaLAB Interconnect
Local
Interconnect
To Adjacent
LAB or IOEs
LABs
LE1
LE2
LE3
LE4
LE5
LE6
LE7
LE8
LE9
LE10
LE1
LE2
LE3
LE4
LE5
LE6
LE7
LE8
LE9
LE10
LE1
LE2
LE3
LE4
LE5
LE6
LE7
LE8
LE9
LE10
Altera Corporation 11
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Logic Array Bloc k
Each LAB consists of 10 LEs, the LEs’ associated carry and cascade chains,
LAB control signals, and the local interconnect. The local interconnect
transfers si gnals between LEs in the same or adjacent LABs, IOEs, or ESBs.
The Quartus II Compiler places associated logic within an LAB or adjacent
LABs, allowing the use of a fast local interconnect for high performance.
Figure 3 shows the APEX 20K LAB.
APEX 20K devices use an interleaved LAB structure. This structure allows
each LE to dr ive two local int ercon nec t are as. Thi s featur e minimize s use
of the MegaLAB and FastTrack interconnect, providing higher
performance and flexibility. Each LE can drive 29 other LEs through the
fast local interconnect.
Figure 3. LAB Structure
To/From
Adjacent LAB,
ESB, or IOEs
To/From
Adjacent LAB,
ESB, or IOEs
The 10 LEs in the LAB are driven by
two local interconnect areas. These LEs
can drive two local interconnect areas.
Local Interconnect
LEs drive local
MegaLAB, row,
and column
interconnects.
Column
Interconnect
Row
Interconnect
MegaLAB Interconnect
12 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Each LAB contains dedicated logic for driving control signals to its LEs
and ESBs. The control signals include clock, clock enable, asynchronous
clear, asynchronous preset, asynchronous load, synchronous clear, and
synchronous load signals. A maximum of six control signals can be used
at a ti me. Althou gh synchron ous load an d clear sig nals are g enerally us ed
when implementing counters, they can also be used with other functions.
Each LAB can use two clocks and two clock enable signals. Each LAB’s
clock and c lock e na ble s ig nals a re linked (e.g. , a ny L E in a partic ula r LAB
using CLK1 w ill also use CLKENA1). LEs w ith th e s ame cloc k bu t diffe rent
clock enable sig nals e ither u se both cloc k signal s in one LAB or are pla ced
into separate LABs.
If both the rising and falling edges of a c lock are used in a LAB, both LAB -
wide clock signals are used.
The LAB-wide control signals can be generated from the LAB local
interconnect, global signals, and dedicated clock pins. The inherent low
skew of the FastTrack Interconnect enables it to be used for clock
distribution. Figure 4 shows the LAB control signal generation circuit.
Figure 4. LAB Co nt rol Signal Generat i on
Notes:
(1) APEX 20KE devices have four dedicated clocks.
(2) The LABCLR1 and LABCLR2 signals also control asynchron ous load and asy n chronous preset for LEs within the
LAB.
(3) The SYNCCLR sign a l c an be generate d by the local inter c o nnec t o r glo bal si gn a ls.
SYNCCLR
or LABCLK2
(3)
SYNCLOAD
or LABCLKENA2
LABCLK1
LABCLKENA1
LABCLR2
(2)
LABCLR1
(2)
Dedicated
Clocks
Global
Signals
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
2 or 4
(1)
4
Altera Corporation 13
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Logic Element
The L E, the smalles t unit of lo gic in the APEX 20K archite cture, is c ompact
and provides efficient logic usage. Each LE contains a four-input LUT,
whic h is a fu ncti on g en erat or th at can quickly i mple ment an y function of
four variables. In addition, each LE contains a programmable register and
carry and cascade chains. Each LE drives the local interconnect, MegaLAB
inte r conn ect , and FastT r ac k Inte r conn ec t ro utin g structure s. Se e Figure 5.
Figure 5. AP EX 20K Logi c Element
Each LE’s programmable register can be configured for D, T, JK, or SR
operation. The register’s clock and clear control signals can be driven by
global signals, general-purpose I/O pins, or any internal logic. For
combinatorial functions, the register is bypassed and the output of the
LUT drives the outputs of the LE.
labclk1
labclk2
labclr1
labclr2
Carry-In
Clock &
Clock Enable
Select
Carry-Out
Look-Up
Table
(LUT)
Carry
Chain Cascade
Chain
Cascade-In
Cascade-Out
To F
astTrack Interconnect,
MegaLAB Interconnect,
or Local Interconnect
To F
astTrack Interconnect,
MegaLAB Interconnect,
or Local Interconnect
Programmable
Register
PRN
CLRN
DQ
ENA
Register Bypass
Packed
Register Select
Chip-Wide
Reset
labclkena1
labclkena2
Synchronous
Load & Clear
Logic
LAB-wide
Synchronous
Load
LAB-wide
Synchronous
Clear
Asynchronous
Clear/Preset/
Load Logic
data1
data2
data3
data4
14 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Each LE has two outputs that drive the local, MegaLAB, or FastTrack
Inter conn ect r outin g s tr uct ur e. Ea ch output can be dri ven indep ende ntly
by the LUT’s o r reg ister’s o utput. For exampl e, the LUT can d r ive o ne
output while the register drives the other output. This feature, called
regist er p acking, improve s device utiliz ation because t he reg ist er a nd t he
LUT can be used for unrelated functions. The LE can also drive out
registered and unregistered versions of the LUT output.
The APEX 20K architecture provides two types of dedica ted high-speed
data paths that connect adjacent LEs without using local interconnect
paths: carry chains and cascade chains. A carry chain supports high-speed
ar ithm eti c functions such as counters an d add ers, while a cas cade chain
implements wide-input functions such as equality comparators with
minimu m delay . Car ry an d casc ade chain s connect LEs 1 throug h 10 in an
LAB and all LABs in the same M egaLAB structure.
Carry Chain
The carry chain provides a very fast carry-forward function between LEs.
The carry-in signal from a lower-order bit drives forward into the higher-
order bit via the carry chain, and feeds into both the LUT and the next
portio n of th e car ry ch ain . Th is fe ature al lows the APE X 20K archite ctu r e
to implement high-speed counters, adders, and comparators of arbitrary
width. Carry chain logic can be created automatically by the Quartus II
software Compiler during design processing, or manually by the designer
during design entry. Parameterized functions such as library of
parameterized modules (LPM) and DesignWare functions automatically
take advantage of carry chains for the appropriate functions.
The Quartus II software Compiler creates carry chains longer than ten LEs
by linking LABs together automatically. For enhanced fitting, a long carry
chain skips alternate LABs in a MegaLAB structure. A carry chain longer
th an one LAB s k ips ei ther fro m an ev en-numbered LAB to th e next even -
number ed LAB, o r fro m an odd-numbered LAB to the next odd-
numbered LAB. For example, the last LE of the first LAB in the upper-left
MegaLAB structure carries to the fi rst LE o f the t hird LAB in the
Mega LAB structur e.
Figure 6 shows how an n-bit full adder can be implemented in n + 1 LEs
with the carry chain. On e portion of t he LUT generat es the sum of two bits
using the input signals and the carry-in signal; the sum is routed to the
output of the LE. The register can be bypassed for simple adders or used
for accumulator functions. Another portion of the LUT and the carry chain
logic genera te s the carry -out sig nal , which is rou te d direct ly to the carry -
in signal of the next-higher-order bit. The final carry-out signal is routed
to an LE, where it is driven onto the local, MegaLAB, or FastTrack
Interc o nnect rou ting structures.
Altera Corporation 15
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 6. APEX 20K Carr y Chain
LUT
a1
b1
Carry Chain
s1
LE1
Register
a2
b2
Carry Chain
s2
LE2
Register
Carry Chain
sn
LEn
Register
an
bn
Carry Chain
Carry-Out
LEn + 1
Register
Carry-In
LUT
LUT
LUT
16 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Cascade Chain
With the cascade chain, the APEX 20K architecture can implement
functions with a very wide fan-in. Adjacent LUTs can compute portions
of a function in parallel; the cascade chain serially connects the
intermedia te va lues. The casca de chai n can u se a lo gical AND or logical OR
(via De Morgan’s inversion) to connect the outputs of adjacent LEs. Each
additional LE provides four more inputs to the effective width of a
function, with a short cascade delay. Cascade chain logic can be created
automatica lly b y the Quartus II softw a re Com piler dur ing design
processing, or manually by the designer during design entry.
Ca sca d e ch ains longer than ten LEs ar e implemented automatically b y
linking LABs together. For enhanced fitting, a long cascade chain skips
alter na te LA Bs in a Meg aL A B st r uct ur e. A cascad e chain longer th an one
LAB skips either from an even-numbered LAB to the next even-numbered
LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For
exam p l e, the las t LE o f the fir st LAB in the upper-l e f t Meg a LA B s tr u c t ur e
carrie s to the first LE of th e third LAB in the MegaLAB str ucture. Figure 7
shows how the cascade function can connect adjacent LEs to form
functions with a wide fan-in.
Figu re 7. APE X 20K Cascade Chain
LE1
LUT
LE2
LUT
d[3..0]
d[7..4]
d[(4
n –
1)..(4
n –
4)]
d[3..0]
d[7..4]
LE
n
LE1
LE2
LE
n
LUT
LUT
LUT
LUT
AND Cascade Chain OR Cascade Chain
d[(4
n –
1)..(4
n –
4)]
Altera Corporation 17
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
LE Operat ing M ode s
The APEX 20 K LE can operate in one of the following three modes:
Normal mode
Arithmet ic mode
Counter mod e
Each mode uses LE resources differently. In each mode, seven available
inputs to the LE—the four data inputs from the LAB local interconnect,
the feedback from the programmable register, and the carry-in and
cas cade-in fro m the previous L E—are directed to differe nt destinations to
implement the desired log i c function. LAB-wide signals pro vide clock,
asynchronous clear, asynchronous preset, asynchronous load,
synchronous clear, synchronous load, and clock enable control for the
register. Th ese LAB-wide signals are availabl e i n all LE modes.
The Quartus II software, in conjunction with parameterized functions
such as LPM and De sig nWar e functions, automatically chooses the
appropriate mode for common functio ns such as co unt ers , adders, and
multipliers. If required, the designer can also create special-purpose
functions that specify which LE operating mode to use for optimal
performance. Figure 8 shows the LE operating modes.
18 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figure 8. APEX 20K LE Operating Modes
Notes:
(1) LEs in normal mode support register packing.
(2) There are two LAB-wide clock enables per LAB.
(3 ) When usin g t h e carry - in in n o r mal mod e, th e packed reg is t er fe at ure is un a v aila ble.
(4) A register feedback multiplexer is available on LE1 of each LAB.
(5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for
LEs other than the second LE in an LAB.
(6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.
PRN
CLRN
DQ
4-Input
LUT
Carry-In
(3)
Cascade-Out
Cascade-In LE-Out
Normal Mode
(1)
PRN
CLRN
DQ
Cascade-Out
Cascade-In
3-Input
LUT
Carry-In
3-Input
LUT
Carry-Out
Arithmetic Mode
Counter Mode
data1
(5)
data2
(5)
PRN
CLRN
DQ
Carry-In
LUT
3-Input
3-Input
LUT
Carry-Out
data3 (data)
Cascade-Out
Cascade-In
LAB-Wide
Synchronous
Load
(6)
LAB-Wide
Synchronous
Clear
(6)
(4)
LE-Out
LE-Out
LE-Out
LE-Out
LE-Out
ENA
LAB-Wide
Clock Enable
(2)
ENA
LAB-Wide
Clock Enable
(2)
ENA
LAB-Wide
Clock Enable
(2)
data1
data2
data1
data2
data3
data4
Altera Corporation 19
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Normal Mode
The normal mod e is suitable for general log ic application s, combinatoria l
functions, or wide decoding functions that can take advantage of a
cascade chain. In normal mode, four data inputs from the LAB local
interconnect and the carry-in are inputs to a four-input LUT. The
Quartus II software Compiler automatically selects the carry-in or the
DATA3 signal as one of the inputs to the LUT. The LUT output can be
com bi ned wit h the casc ad e -in sig nal to form a cas cade cha in thr oug h the
cascade-out signal. LEs in normal mode support packed registers.
Arithmetic Mode
The arith metic mode is ideal for imple menting adders , accumulator s, and
compa rators. An L E in arithme tic mode use s two 3-inpu t LUTs. One LUT
computes a three-input function; the other generates a carry output. As
shown in Figure 8, the first LUT uses the carry-in signal and two data
inputs from the LAB local interconnect to generate a combinatorial or
registered output. For example, when implementing an adder, this output
is the sum of thr e e sig na ls: DATA1, DATA2, and ca rr y-in. The se cond L UT
uses the same three signals to generate a carry-out signal, thereby creating
a c ar r y cha i n. The arith m etic mode also suppo r ts sim ul t aneous us e o f the
cascade chain. LEs in arithmetic mode can drive out registered and
unregistered versions of the LUT output.
The Quar tus I I software imp leme nts p ara meteri zed fu ncti ons th at use the
arithmetic mode automatically where appropriate; the designer does not
need to specify how the carry chain will be used.
Counter Mode
The counter mode offers clock enable, counter enable, synchronous
up/down contr ol, synchr onous cl ear, and s ynchrono us lo ad options . The
counter enable and synchronous up/down control signals are generated
from the da ta in puts o f the LAB lo cal int erconne ct. T he s ynchrono us cle ar
and synchronous load options are LAB-wide signals that affect all
registers i n the LAB. Conseq u en tly, if any of the LEs in an LAB use the
counter mode, other LEs in that LAB must be used as part of the same
counter or be used for a combinatorial function. The Quartus II software
automatically places any registers that are not used by the counter into
other LABs.
20 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
The counter mode uses two three-input LUTs: one generates the counter
data, and the other generates the fast carry bit. A 2-to-1 multiplexer
provides synchronous loading, and another AND gate provide s
synchronous clearing. If the cascade function is used by an LE in counter
mode, the synchronous clear or load overrides any signal carried on the
cascade chain. The synchronous clear overrides the synchronous load.
LEs in arithmetic mode can drive out registered and unregistered versions
of the LUT output.
Clear & Preset Logic Control
Logic fo r the reg ist er’ s clear and pres et sign als is contr oll ed by LAB-w ide
signals. The LE directly supports an asynchronous clear function. The
Quartus II software Compiler can use a NOT-gate push - back te chnique to
emulate an asynchronous preset. Moreover, the Quartus II software
Compiler can use a programmable NOT-gate push-back technique to
emulate simultaneous preset and clear or asynchronous load. However,
this technique uses three additional LEs per register. All emulation is
performed automatically when the design is compiled. Registers that
emulate simultaneous preset and load will enter an unknown state upon
power-up or when the chip-wide reset is asserted.
In addit ion to th e two cle ar and pre set modes, A PEX 20K devices provid e
a chip-wide reset pin (DEV_CLRn) that resets all registers in the device.
Use of this pin is controlled through an option in the Quartus II software
that is set before compilation. The chip-wide reset overrides all other
contr ol signals. Reg ist er s us ing an a synchronous pres et are preset when
the chip-wide reset is asserted; this effect results from the inversion
technique used to implement the asynchro nous preset.
FastTrack Interconnect
In the APEX 20K architecture, connections between LEs, ES Bs, and I/O
pins are provided by the FastTrack Interconnect. The FastTrack
Interconnect is a series of continuous horizontal and vertical routing
channels that traverse the device. This global routing structure provides
predictable performance, even in complex designs. In contrast, the
segmented routing in FPGAs requires switch matrices to connect a
variable number of routing paths, increasing the delays between logic
resources and reducing p erformance.
The FastTrack Interconnect consists of row and column interconnect
channels that span the entire device. The row interconnect routes signals
throughout a row of MegaLAB structures; the column interconnect routes
signals throughout a column of MegaLAB structures. When using the row
and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE,
or ESB in a device. See Figure 9.
Altera Corporation 21
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 9. AP EX 20K Interconnec t Stru ctur e
A row line can be driven direc tly by LEs, IOEs, o r ESBs in that row.
Furth er, a column lin e can dr ive a row line, al lowing an LE, IOE, or ESB t o
drive elements in a different row via the column and row interconnect.
The row interconnect drives the MegaLAB interconnect to drive LEs,
IOEs, or ESBs i n a pa rticular MegaLAB stru cture.
A colu mn line can be directl y driven by LEs , IOEs, or ESB s in tha t column.
A column line on a device’s left or right edge can also be driven by row
IOEs. T he column line is used to route sig nals from one row to anoth er. A
column line can drive a row line; it can also drive the MegaLAB
interconnect directly, allowing faster connections between rows.
Figure 10 shows how the FastTrack Interconnect uses the local
intercon ne ct to drive LEs withi n MegaLAB s tructures .
MegaLAB MegaLAB MegaLAB MegaLAB I/O
I/O I/OI/OI/O
I/O
I/O
I/O
MegaLAB MegaLAB MegaLAB MegaLAB I/O
MegaLAB MegaLAB MegaLAB MegaLAB I/O
I/O I/OI/OI/O
Column
Interconnec
t
Column
Interconnect
Row
Interconnect
22 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figure 10. FastTrack Connection to Local Interconnect
L
A
B
L
A
B
L
A
B
L
A
B
E
S
B
L
A
B
L
A
B
I/O
I/O
MegaLAB
Column
Row
MegaLAB
MegaLAB
Interconnect
Row & Column
Interconnect Drives
MegaLAB Interconnect
MegaLAB
Interconnect Drives
Local Interconnect
L
A
B
L
A
B
E
S
B
Row
Column
E
S
B
L
A
B
Altera Corporation 23
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 11 shows the intersection of a row and column interconnect, and
how these forms of interconnects and LEs drive each other.
Figure 11. Driving the FastTrack Interconnect
APE X 20KE devic es incl ude an e nhance d int erconne ct str ucture for f aste r
rou ting of input signals with high fan-out. Col umn I/O pi ns can drive the
FastRow interconnect, which routes signals directly into the local
inte rconnect with out having t o drive thr ough the MegaLAB in terc onnect .
FastRow lines traverse two MegaLAB structures. Also, these pins can
drive the local interconnect directly for fast setup times. On EP20K300E
and larger devices, the FastRow interconnect drives the two MegaLABs in
the top left corner, the two MegaLABs in the top right corner, the two
MegaLABS in the bottom left corner, a nd the two MegaLABs in the
bottom right corner. On EP20K200E and smaller devices, FastRow
inte rconnect driv es the two Mega LABs on th e top and the t wo MegaLABs
on the bottom of the device. On all devices, the FastRow interconnect
drives all local interconnect in the appropriate MegaLABs except the
inte rconnect areas on the fa r left a nd far r ight of the Me gaLAB. Pi ns usin g
the FastRow interconnect achieve a faster set-up time, as the signal does
not need to use a MegaLab interconnect line to reach the destination LE.
Figure 12 shows the FastRow interconnect.
Row Interconnect
MegaLAB Interconnect
LE
Column
Interconnec
t
Local
Interconnect
24 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figure 12. APEX 20KE FastRow Interconnect
Table 9 summarizes h ow vari ous elements of the APEX 20K ar chitectu r e
drive each other.
IOE IOE IOE IOE
FastRow Interconnect
Drives Local Interconnect
in Two MegaLAB Structures
MegaLAB MegaLAB
Local
Interconnect
Select Vertical I/O Pins
Drive Local Interconnec
t
and FastRow
Interconnect
FastRow
Interconnect
LEs
LABs
Altera Corporation 25
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Note:
(1) This connection is supported in APEX 20KE devices only.
Product-Term Logic
The product-term portion of the MultiCore architecture is implemented
with the ESB . The ESB can be configure d to act as a bloc k of macroc ells on
an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local
interconnect; therefore, it can be driven by the MegaLAB interconnect or
the adjacent LAB. Als o, ni ne ESB macro ce l l s feed ba ck int o the ESB
through the local interconnect for higher performance. Dedicated clock
pins, global signals, and additional inputs from the local interconnect
drive the ESB control signals .
In product-term mode, each ESB contains 16 macrocells. Each macrocell
consists of two product terms and a programmable register. Figure 13
shows the ESB in product-term mode.
Table 9. APEX 20K Routing Scheme
Source Destination
Row
I/O Pin Column
I/O Pin LE ESB Local
Interconnect MegaLAB
Interconnect Row
FastTrack
Interconnect
Column
FastTrack
Interconnect
FastRow
Interconnect
Row I/O Pin vvvv
Column I/O
Pin
vv
(1)
LE vvvv
ESB vvvv
Local
Interconnect
vvvv
MegaLAB
Interconnect
v
Row
FastTrack
Interconnect
v v
Column
FastTrack
Interconnect
vv
FastRow
Interconnect
v
(1)
26 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figur e 13. Pr oduc t -Term Logic in ESB
Note:
(1) APEX 20KE devices have four dedicated clocks.
Macrocells
APEX 20K macrocells can be confi gured individua lly for either s equential
or combinatorial logic operation. The macrocell consists of three
function al block s: the logi c arr ay, t he p roduct-t erm se lect mat rix, and th e
programmable register.
Combinatorial logic is implemented in the product terms. The product-
term sele ct matrix alloc ates the se pro du ct t erms for use as eith er pr ima ry
logic inputs (to the OR and XOR gates) to implement combinatorial
functions, or as parallel expanders to be used to increase the logic
available to another macrocell. One product term can be inverted; the
Quartus II software uses this feature to perform DeMorgan’s inversion for
more efficient implementation of wide OR functions. The Quartus II
soft ware Com pil er can us e a NOT-gate push-back technique to emulate an
asyn chro nous preset. Figure 14 shows the APEX 20K macrocell.
Global Signals
Dedicated Clocks
Macrocell
Inputs (1-16)
CLK[1..0]
ENA[1..0]
CLRN[1..0]
From
Adjacent
LAB
MegaLAB Interconnect
To Row
and Column
Interconnect
216
32
2
2
4 2 or 4
(1)
65
Local
Interconnect
9
Altera Corporation 27
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 14. APEX 20K Macr ocell
For registered functions, e ach macrocell register can be programmed
individually to implement D, T, JK, or SR operation with programmable
clock control. The register can be bypassed for combinatorial operation.
During design entry, the designer specifies the desired register type; the
Quartus II software then selects the most efficient register operation for
each registered function to optimize resource utilization. The Quartus II
softw are or oth er s ynt he sis tools ca n a lso select the mo st effic ien t reg is ter
operation automatically when synthesizing HDL designs.
Each programmable register can be c locked by one of two ESB-wide
clocks. The ESB-wide clocks can be generated from device dedicated clock
pins, global signals, or local interconnect. Each clock also has an
associated clock enable, generated from the local interconnect. The clock
and clock enable signals a re related for a particular ESB; any macrocell
using a clock also uses the associated clock enable.
If both the rising and falling edges of a clock are used in an ESB, both
ESB-wide clock sign als are used.
Clock/
Enable
Select
Product-
Term
Select
Matrix
Parallel Logic
Expanders
(From Other
Macrocells)
ESB-Wide
Clears ESB-Wide
Clock Enables ESB-Wide
Clocks
32 Signals
from Local
Interconnect
Clear
Select
ESB
Output
Programmable
Register
222
ENA
D
CLRN
Q
28 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
The programmable register also supports an asynchronous clear function.
Within the ESB, two asynchronous clears are generated from global
signals and the local interconnect. Each macrocell can either choose
between the two asynchronous clear signals or choose to not be cleared.
Either of the two cl ear signals can be invert ed within the ESB. Figure 15
shows the ESB control log ic when implementing product-terms.
Figure 15. ESB Product-Term Mode Control Logic
Note:
(1) APEX 20KE devices have four dedicated clocks.
Parallel Expanders
Parallel expanders are unused product terms that can be allocated to a
neighboring macrocell to implement fast, complex logic functions.
Paralle l expan ders allo w up to 32 prod uct ter ms to fee d the macroce ll OR
logic directly, with two product terms provided by the macrocell and 30
parallel expanders provided by the neighboring macrocells in the ESB.
The Quartus II software Compile r can allocate up to 15 sets of up to two
paralle l expand ers per set to the macrocel ls automatica lly. Each se t of two
parallel expanders incurs a small, incremental timing delay. Figure 16
shows the APEX 20K parallel expanders.
CLK2 CLKENA2 CLK1 CLKENA1 CLR2 CLR1
Dedicated
Clocks
Global
Signals
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
2 or 4
(1)
4
Altera Corporation 29
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 16. APEX 20K Parallel Expanders
Embedded
System Block
The ESB can implement various types of memory blocks, including
dual-port RAM, ROM, FIFO , an d CAM blocks. The ESB includes input
and output registers; the input registers synchronize writes, and the
output registers can pipeline designs to improve system performance. The
ESB offers a dual-port mode, which sup p or ts simul taneous reads and
writes at two different clock frequencies. Figure 17 shows the ESB block
diagram.
Figur e 17. ESB Block Diagra m
32 Signals from
Local Interconnect To Next
Macrocell
From
Previous
Macrocell
Product-
Term
Select
Matrix
Product-
Term
Select
Matrix
Macrocell
Product-
Term Logic
Macrocell
Product-
Term Logic
Parallel
Expander Switch
Parallel
Expander Switch
wraddress[]
data[]
wren
inclock
inclocken
inaclr
rdaddress[]
q[]
rden
outclock
outclocken
outaclr
30 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
ESBs can implement synchronous RAM, which is easier to use than
asynchronous RAM. A circuit using asynchronous RAM must generate
the RAM write enable (WE) signal, while ensuring that its data and address
signals meet setup and hold time specifications relative to the WE signal.
In contrast, the ESB’s synchronous RAM generates its own WE signal and
is self-timed w ith resp ec t to the g lob al clock . Cir c uits usin g t he ESB ’s se lf-
timed RAM must only mee t the set up and hold time specifica tion s of the
global clock.
ESB in puts are driv en by the adjac ent local interconne ct, which in turn c an
be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can
be driven by the local interconn ect, an adjacent LE can drive it direct ly for
fast memory acce ss. ESB outpu ts dri v e t he Meg aLA B and FastTrack
Inter conn ect. In addi tion , ten ESB outputs , nine of which are uniq ue
output lines, drive the local interconnect for fast connection to adjacent
LEs or for fast feedback product-term logic.
When im plem enting m e m ory, each ESB can be config ured i n any of th e
following sizes: 128 ×16, 256 ×8, 512 ×4, 1,0 24 ×2, or 2,04 8 ×1. By
combining multiple ESBs, the Quartus II software implements larger
memory blocks automatically. For example, two 128 ×16 RA M blocks can
be combined to form a 128 ×32 RAM block, a nd two 512 ×4 RAM blocks
can be combined to form a 512 ×8 RAM block. Memory performance does
not degrade for memory bl o cks up to 2,048 words deep. Each ESB can
implement a 2,048-word-deep memory; the ESBs are used in parallel,
eliminating the need for any external control logic and its associated
delays.
To cr eate a hi gh-s peed me mory blo ck th at is mo re th an 2, 048 w ord s de ep,
ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column
of MegaLAB structures, an d dri ves the MegaLAB interconnect and row
and column FastTrack Interconnect throughout the column. Each ESB
incorporat es a programmab le decoder to activate the tri-sta te driver
appr opriatel y. For instance , to im plemen t 8,192- word-de ep memor y, four
ESBs are used. Eleven address lines drive the ESB memory, and two more
drive the tri-state decoder. Depending on which 2,048-word memory
page is selected, the appropriate ESB driver is turned on, driving the
output to the tri-state line. The Quartus II software automatically
combines ESBs with tri-state lines to form deeper memory blocks. The
interna l tri-state cont rol logic is design ed to avoid inter nal conte ntion and
floating lines. See Figure 18.
Altera Corporation 31
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 18. D eep Memo ry Block Implement ed wi th Multiple ESBs
The ESB implements two forms of dual-port memory: read/write clock
mode and input/o utput clock mode. The ES B ca n also be used for
bidirectional, dual-port memory applications in which two ports read or
write simultaneously. To implement this type of dual-port memory, two
or four ESBs are used to support two simultaneous reads or writes. This
functionality is shown in Figure 19.
Figure 19. APEX 20K ESB Implementing Dual-Port RAM
ESB
ESB
ESB
to System Logic
Address Decoder
Port A Port B
address_a[] address_b[]
data_a[] data_b[]
we_a we_b
clkena_a clkena_b
Clock A Clock B
32 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Read/W rite Cloc k Mo de
The read/write clock mode contains two clocks. One clock controls all
registers associated with writing: data input, WE, and wr ite addr ess . The
other clock controls all registers associated with reading: read enable
(RE), read address, and data output. The ESB also supports clock enable
and asynchronous clea r sig nals; these signals also control the read and
write regis ters inde pendently. Rea d/write cloc k mode is commonly used
for applications where reads and writes occur at different system
frequencies. Figure 20 shows the ESB in read/write clock mode.
Figure 20. ESB in Read/Write Clock Mode Note (1)
Notes:
(1) All re gister s can b e clea re d a synchro no usly b y ESB l o cal int erconn ect signa ls, gl obal signals, or the chi p-w ide re set .
(2) APEX 20KE devices have four dedicated clocks.
Dedicated Clocks
2 or 4 4
D
ENA Q
D
ENA
Q
D
ENA Q
D
ENA Q
D
ENA
Q
data[ ]
rdaddress[ ]
wraddress[ ]
RAM/ROM
128 × 16
256 × 8
512 × 4
1,024 × 2
2,048 × 1
Data In
Read Address
Write Address
Read Enable
Write Enable
Data Out
outclocken
inclocken
inclock
outclock
D
ENA Q
Write
Pulse
Generator
rden
wren
Dedicated Inputs &
Global Signals
To MegaLAB,
FastTrack &
Local
Interconnect
(2)
Altera Corporation 33
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Input/Output Clock Mode
The input /output clock mode contains tw o clocks. One clock controls all
registers for i npu ts i nto the ESB: data input, WE, RE, read addres s, an d
write address. The othe r clock cont rols the ESB data outp ut regist ers. The
ESB also supports clock enable and asynchronous clear signals; these
signals also control the reading and writing of registers independently.
Input/output clock mode is commonly used for applications where the
reads and writes occur at the same system frequency, but require different
clock enable signals for the input and output registers. Figure 21 shows
the ESB in input/output clock mode.
Figure 21. ESB in I nput/Output Cloc k Mo de Notes (1) , (2)
Notes:
(1) All registers can be cleared asynchronously by ESB l ocal interconnect sign als, global signals, or the ch ip-wide re set.
(2) APEX 20KE devices have four dedicated clocks.
Dedicated Clocks
2 or 4 4
D
ENA Q
D
ENA
Q
D
ENA Q
D
ENA Q
D
ENA
Q
data[ ]
rdaddress[ ]
wraddress[ ]
RAM/ROM
128 × 16
256 × 8
512 × 4
1,024 × 2
2,048 × 1
Data In
Read Address
Write Address
Read Enable
Write Enable
Data Out
outclken
inclken
inclock
outclock
D
ENA Q
Write
Pulse
Generator
rden
wren
Dedicated Inputs &
Global Signals
to MegaLAB,
FastTrack &
Local
Interconnect
(2)
34 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Sing le- P or t Mode
The APEX 20K ESB also supports a single-port mode, which is used when
si multaneous reads and wr ite s are not r equ ired. S ee Figure 22.
Figure 22. ESB i n Single-Port Mode Note (1)
Notes:
(1) All re gister s ca n b e asynchronously cleared b y ESB l o ca l interconn ect signa ls, gl obal si gnals, or the chip-wide re set .
(2) APEX 20KE devices have four dedicated clocks.
Content-Addressable Memory
In APEX 20KE devices, the ESB ca n implement CAM. CAM can be
thought of as the inverse of RAM. When read, RAM outputs the data for
a given address. Co nversely, CAM outpu ts an address for a gi v en dat a
wo r d . For example, if the data FA12 is stored in address 14, the CAM
outputs 14 when FA12 is driven into it.
CAM is used for high-speed search operations. When searching for data
within a RAM block, the search is performed serially. Thus, finding a
particul ar data word can ta ke man y cycles. CAM searc hes all add resses in
paralle l and out puts t he addres s storing a pa rticular w ord. Whe n a match
is found, a match flag is set high. Figure 23 shows the CAM bl ock
diagram.
Dedicated Clocks
2 or 4 4
D
ENA Q
D
ENA
Q
D
ENA Q
D
ENA
Q
data[ ]
address[ ]
RAM/ROM
128 × 16
256 × 8
512 × 4
1,024 × 2
2,048 × 1
Data In
Address
Write Enable
Data Out
outclken
inclken
inclock
outclock
Write
Pulse
Generator
wren
Dedicated Inputs &
Global Signals
to MegaLAB,
FastTrack &
Local
Interconnect
(2)
Altera Corporation 35
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 23. APEX 20KE CAM Bloc k D iagram
CAM ca n b e used in an y a ppl ica tion r e qui ri ng h ig h-spe ed s ea rche s, s uch
as networking, communications, data compression, and cache
management.
The APEX 20KE on-chip CAM provid es faste r system perf ormanc e tha n
trad itional discre te CAM. Inte grating CAM an d logic into th e APEX 20KE
device eliminates off-chip and on-chip delays, improving system
performance.
When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or
deeper CAM can be implemented by combining multiple CAMs with
some ancillary logic implemented in LEs. The Quartus II software
combines ESBs an d LEs automati cal ly to c rea te larger CAMs.
CAM supports writing “don’t care” bits into words of the memory. The
“don’t-care” bit can be used as a mask for CAM comparisons; any bit set
to “don’t-care” has no effect on matches.
The output of the CAM can be encoded or unencoded. When encoded, the
ESB ou tputs a n encode d addres s of the data’s loca tion. F or instan ce, if t he
data is loc ated in addre ss 12, the ESB output is 12. When unen coded, the
ESB uses its 16 outputs to show the location of the data over two clock
cyc les. In this case, if the data is locat ed in address 12, the 12 th output line
goe s high . When using unenco ded output s, two clock cycle s are requir ed
to read the output because a 16-bit output bus is used to show the status
of 32 words.
The enc oded output is bet ter suited for designs that ens ure duplicate d ata
is not written int o the CAM. If d uplicate da ta is writte n into two locatio ns,
the CAM’s output will be incorrect. If the CAM may contain duplicate
data, the unencoded output is a better solution; CAM with unencoded
outputs can distinguish multiple data locations.
CAM can be pre-loaded with data during configuration, or it can be
written during system operation. In most cases, two clock cycles are
required to write each word into CAM. When “don’t-care” bits are used,
a third clock cycle is required.
wraddress[]
data[]
wren
inclock
inclocken
inaclr
data_address[]
match
outclock
outclocken
outaclr
36 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
fFor more information on APEX 20KE devices and CAM, see Application
Note 119 (Implementing High-Speed Search Applications with APEX CAM).
Drivi ng Si gnals to the ESB
ESBs provide flexib le option s for d riving cont r ol sig nals. D iffere nt c lock s
can be used for the ESB inputs and outputs. Registers can be inserted
independently on the data input, data output, read address, write
address, WE, a nd RE s ign als . The g lobal sig nals an d the l oca l inte r con nect
can driv e the WE and RE signa ls. The glo bal sig na ls, d edicated cloc k pin s,
and local interconnect can drive the ESB clock signals. Because the LEs
drive th e local intercon nect, the LEs can co ntrol the WE and RE signals an d
the ESB clock, clock enable, and asynchronous clear signals. Figure 24
shows the ESB control signal generation logic.
Figu r e 24 . ESB Co nt rol Sign al Ge ne r at i on
Note:
(1) APEX 20KE devices have four dedicated clocks.
An ESB is fed by the local interconnect, which is driven by adjacent LEs
(for high-sp eed conn ection to the ESB) or the MegaLAB intercon nect. The
ESB can drive the local, MegaLAB, or FastTrack Interconnect routing
structure to drive LEs and IOEs in the same MegaLAB structure or
anywhere in the device.
RDEN WREN INCLOCK
INCLKENA
OUTCLOCK
OUTCLKENA
Dedicated
Clocks
Global
Signals
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
2 or 4
4
Local
Interconnect
Local
Interconnect INCLR OUTCLR
(1)
Altera Corporation 37
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Imple menting Lo gic in ROM
In addition to implementing logic with product terms, the ESB can
implement logic functions when it is programmed with a read-only
patt er n duri ng configuration, creating a larg e LUT. Wi th LUTs ,
combinat orial functions a re implemented by looking up th e results, rat her
than by compu ting the m. This impl ementa tion of combinator ial fun ctions
can be faster than using algorithms implemented in general logic, a
performance advantage that is further enhanced by the fast access times of
ESBs. The large capa city of ESBs enables desig ners to imple ment compl ex
functions in one logic level without the routing delays associated with
linked LEs o r di stri buted RAM blo cks. Parame terized funct ions such as
LPM functions ca n take advantage of the ESB automatically. Further, the
Quartus II software can implement portions of a design with ESBs where
appropriate.
Programmable Speed/Power Control
APEX 20K ESBs offer a high-speed mode that supports very fast operation
on an ESB-by-ESB basis. When high speed is not required, this feature can
be turned off to reduce the ESB’s power dissipation by up to 50%. ESBs
that run at low power incur a nominal timing delay adder. This
Turbo BitTM option is available for ESBs that implement product-term
logic or memor y function s. An ESB t hat is not used wi ll be p owered d own
so that it does not consume DC current.
Designers can program each ESB in the APEX 20K device for either
high-s peed or low-pow er operation . As a result, s peed-criti cal paths in t he
design can run at high speed, while the remaining paths operate at
reduced power.
I/O Structure The APEX 20K IOE contains a bidirectiona l I/O buffer and a regis ter that
can be used either as an input register for external data requiring fast setup
times, or as an output register for data requiring fast clock-to-output
performance. IOEs can be used as input, output, or bidirectional pins. For
fast bidirect ional I/O timin g, LE re gisters using l ocal r outing c an impr ove
setup times and OE timing. The Quartus II software Compiler uses the
programmable inversion option to invert signals from the row and column
interconnect automatically where appropriate. Because the APEX 20K IOE
offers one output enable per pin, the Quartus II software Compiler can
emulate ope n-drain ope ration efficiently .
The APEX 20K IOE includes programmable delays that can be activated to
ensure zero hold times, minimum clock-to-output times, input IOE
regis ter-t o-core regist er tra nsfe rs, or c ore-t o-output I OE reg ister trans fers.
A path in which a pin directly drives a register may require the delay to
ensure zero hol d time, wherea s a path in which a pin d riv es a regi ster
through combinatorial logic may not require the delay.
38 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 10 describes the APEX 20K programmable delays and their logic
options in the Quartus II software.
The Quartus II software Compiler can program these delays
automatically to minimize setup time while providing a zero hold time.
Figure 25 shows how fast bidirectional I/Os are implemented in
APEX 20K devices.
The register in the APEX 20K IOE can be programmed to power-up high
or low after configuration is complete. If it is programmed to power-up
low, an asynchronous clear can control the register. If it is programmed to
power-up high, the register cannot be asynchronously cleared or preset.
This feature is useful for cases where the APEX 20K device controls an
active-low input or another device; it prevents inadvertent activation of
the input upon power-up.
Table 10. APE X 20K Progra mmable Delay Ch ains
Programmable Delays Quar tus II Logic Optio n
Inp ut pin to core delay Decrease inpu t del ay to int ernal cells
Inp ut pin to inpu t reg ister delay Decreas e input delay to input register
Cor e to ou tpu t reg ister delay Decreas e input delay to out put regis t er
Output register tCO delay Increas e delay to output pin
Altera Corporation 39
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 25. APEX 20K Bidirectiona l I /O Regi st ers Note (1)
Note:
(1) The output enable and input registers are LE registers in the LAB adjacent to th e bidirectional pin.
VCC
OE[7..0]
CLK[1..0]
ENA[5..0]
CLRn[1..0]
Peripheral Control
Bus
CLRN
DQ
ENA
VCC
2 Dedicated
Clock Inputs
Chip-Wide
Output Enable
CLK[3..2]
2
12
VCC
VCC
Chip-Wide
Reset
Input Pin to
Core Delay
Slew-Rate
Control
VCCIO
Optional
PCI Clamp
Output Register
t Delay
Core to Output
Register Delay
Input Pin to Input
Register Delay
CLRN
DQ
ENA
VCC
Chip-Wide
Reset
Input Register
Output Register
CLRN
DQ
ENA
Chip-Wide Reset
VCC
OE Register
VCC
4 Dedicated
Inputs
Row, Column,
or Local Interconnect
CO
Open-Drain
Output
40 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
APEX 20KE devices include an enhanced IOE, which drives the FastRow
interconnect. The FastRow interconnect connects a column I/O pin
directly to the LAB local interconnect within two MegaLAB structures.
This feature provides fast setup times for pins that drive high fan-outs
with c omplex logic, such as PCI des igns. For fast bidirect ional I/O timi ng,
LE registers using local routing can improve setup times and OE timing.
The APEX 20KE IOE also includes direct support for open-drain
operation, giving faster clock-to-output for open-drain signals. Some
programmable delays in the APEX 20KE IOE offer multiple levels of delay
to fine-tune setup and hold time requirements. The Quartus II software
Compile r can set the se delays aut omaticall y to minimiz e setup time while
providing a zero hold time.
Table 11 describes the APEX 20KE programmable delays and their logic
options in the Quartus II software.
The register in the APEX 20KE IOE can be programmed to power-up high
or low after configuration is complete. If it is programmed to power-up
low, an asynchronous clear can control the register. If it is programmed to
power-up high, an asynchronous preset can control the register. Figure 26
shows how fast bidirectional I/O pins are implemented in APEX 20KE
devices. This feature is useful for cases where the APEX 20KE device
controls an active-low input or another device; it prevents inadvertent
activation of the input upon power-up.
Table 11. APEX 20KE Programmable Delay Chains
Programmable Delays Quartus II Logic Option
Inp ut Pin to Core D elay Decreas e input delay to inte rnal c ells
Inp ut Pin to Input Re gis ter Dela y Decreas e input delay to input regis te rs
Cor e to Ou tpu t Regis t er D elay Decreas e input delay to outp ut regis te r
Output Register tCO Del ay Increase delay to ou tpu t pin
Clock Enable Delay Increase clock enable delay
Altera Corporation 41
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1 ), (2)
Notes:
(1) This programmable delay has four settings: off and three levels of delay.
(2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.
VCC
OE[7..0]
CLK[1..0]
ENA[5..0]
CLRn[1..0]
Peripheral Control
Bus
CLRN/
PRN
DQ
ENA
VCC
4 Dedicated
Clock Inputs
Chip-Wide
Output Enable
CLK[3..0]
4
12
VCC
VCC
Chip-Wide
Reset
Input Pin to
Core Delay
(1)
Slew-Rate
Control
Open-Drain
Output
VCCIO
Optional
PCI Clamp
Output Register
t Delay
Core to Output
Register Delay
Input Pin to Input
Register Delay
CLRN
DQ
ENA
VCC
Chip-Wide
Reset
Input Register
Output Register
CLRN
DQ
ENA
Chip-Wide Reset
VCC
OE Register
VCC
4 Dedicated
Inputs
Row, Column, FastRow,
or Local Interconnect
Clock Enable
Delay
(1
)
Input Pin to
Core Delay
(1)
CO
Input Pin to
Core Delay
(1)
42 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Each IOE drives a row, column, MegaLAB, or local interconnect when
used as an input or bidirectional pin. A row IOE can drive a local,
MegaLAB, row, and column interconnect; a column IOE can drive the
column inte rconn ec t. Figure 27 shows how a row IOE connects to the
interconnect.
Figure 27. Row IOE Connec t ion to the Interconnec t
Row Interconnect MegaLAB Interconnect
Any LE can drive a
pin through the row,
column, and MegaLAB
interconnect.
An LE can drive a pin through the
local interconnect for faster
clock-to-output times.
IOE
IOE
Each IOE can drive local,
MegaLAB, row, and column
interconnect. Each IOE data
and OE signal is driven by
the local interconnect.
LAB
Altera Corporation 43
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 28 shows how a column IOE connects to th e interconnect.
Figure 28. Colu mn IOE Connec tion to the Interc on ne ct
Dedicated Fast I/O Pins
APEX 20KE devices inco rporate an enhan cement to s uppo rt bidir ectional
pins with high internal fanout such as PCI control signals. These pins are
calle d Dedicated Fa st I/O pins (FAST1, FAST2, FAST3, and FAST4) and
replace dedicated inputs. These pins can be used for fast clock, clear, or
high fanout logic signal distribution. They also can drive out. The
Dedicated Fast I/O pin data output and tri-state control are driven by
local interconnect from the adjacent MegaLAB for high speed.
Row Interconnect
Column Interconnec
t
Each IOE can drive column interconnect. In APEX 20KE devices,
IOEs can also drive FastRow interconnect. Each IOE data
and OE signal is driven by local interconnect.
Any LE or ESB can drive
a column pin through a
row, column, and MegaLAB
interconnect.
IOE IOE
LAB
An LE or ESB can drive a
pin through a local
interconnect for faster
clock-to-output times.
MegaLAB Interconnect
44 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Advanced I/O Standard Support
APEX 20KE IOEs support the following I/O standards: LVTTL,
LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS,
LVPECL, GTL+, CTT, HS TL Class I, S ST L-3 Class I and II, a nd SS TL-2
Class I and II.
fFor more informat i o n on I/O standards sup ported by AP EX 20KE
device s, se e Application Note 117 (Using Selectable I/O Standards in Altera
Devices).
The APEX 20KE device contains eight I/O banks. In QFP packages, the
banks ar e link ed to fo rm four I /O bank s. T he I/O b an ks dire ct ly s uppor t
all standards except LVDS and LVPECL. All I/O banks can support LVDS
and LVPECL with the addition of external resistors. In addition, one block
within a bank contains circuitry to support high-speed True-LVDS and
LVPECL inpu ts, and anothe r bl o ck within a parti cular bank supports
high-speed True-LVDS and LV PECL outputs. The LV DS bl o ck s support
all of the I /O sta ndards. E ac h I/O b ank ha s its own VCCIO pins. A s i ng le
device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can
support a different standard independently. Each bank can also use a
separate VREF level so that each bank can support any of the terminated
sta ndard s (suc h as SSTL -3) indep en dent ly. Within a bank, any one of the
terminated sta ndards can be suppo rted. EP20K3 00 E and larger
APEX 20KE devices su pport the LVDS interface for data pins (smal l er
devices support LVDS clock pins, but not data pins). All EP20K300E and
lar ger devices supp ort the LV DS interf ace for d ata pins up t o 155 Mbit pe r
channel; EP20K400E devices an d larger with an X-suffix on the ordering
code add a serializer/deserializer circuit and PLL for higher-speed
support.
Each bank can support multiple standards with the same VCCIO for
outpu t pins. Each bank can support on e voltage-r eferenced I/O st andar d,
but it can suppor t multip le I/O stand ards wit h the same VCCIO voltage
level. Fo r exampl e, when VCCIO is 3.3 V, a bank can support LVTTL,
LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.
When the LVDS banks are not use d as L VDS I /O ba nk s, the y su ppor t all
of the other I/O standards. Figure 29 shows the arrangement of the
APEX 20KE I/O banks.
Altera Corporation 45
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 29. APEX 20KE I/O Banks
Notes:
(1) For more information on placing I/O pins in LVDS blocks, refer to the “Guidelines
for Using LVDS Blocks” section in Application Note 120 (Using LVDS in APEX 20KE
Devices).
(2) If the LVDS input and output blocks are not used for LVDS, they can support all of
the I/O st an d ard s an d can be use d as inpu t, ou tpu t , or bidi r ect ional pins wi th
VCCIO set to 3.3 V, 2.5 V, or 1.8 V.
Power Sequencing & Hot Socketin g
Because APEX 20K and APE X 20KE devices can be used in a mixed-
volta ge environ ment, t hey have been design ed specifica lly t o tolera te any
possible power-up sequence. Therefore, the VCCIO and VCCINT power
supplies may be powered in any order.
Signals can be driven into APEX 2 0K devices before and during power-up
without damaging the device. In addition, APEX 20K devices do not drive
out during power-up. Once operating conditions are reached and the
device is configured, APEX 20K and APEX 20KE de v ices operate as
spec ifi ed by th e user.
Under hot socketing cond itio ns, APE X 20 KE de vices will not sustai n any
dam age, but the I/O pins will drive out.
LVDS/LVPEC
L
Input
Block (2)
(1)
LVDS/LVPECL
Output
Block (2)
(1)
Regular I/O Blocks Support
LVTTL
LVCMOS
2.5 V
1.8 V
3.3 V PCI
LVPECL
HSTL Class I
GTL+
SSTL-2 Class I and II
SSTL-3 Class I and II
CTT
AGP
Individual
Power Bus
I/O Bank 8
I/O Bank 1 I/O Bank 2
I/O Bank 3
I/O Bank 4
I/O Bank 5I/O Bank 6
I/O Bank 7
46 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
MultiVolt I/O
Interface
The APEX device architecture supports the MultiVolt I/O interface
feature, which allows APEX devices in all packages to interface with
systems of d ifferent supply voltages. The de vices have one s et of VCC pins
for internal operation and i nput buffers (VCCINT), and another set for I/O
output driv ers ( VCCIO).
The A PE X 20K VCCINT pins must always be connected to a 2.5 V power
supply . With a 2.5- V VCCINT level, input pi ns are 2.5-V and 3.3-V to lerant.
Certain devices, identi fied by a “V” suffix following the speed grade in the
ordering code (e.g., EP20K400BC652-1V), are 5.0-V tolerant. The VCCIO
pins c an b e connected to either a 2.5-V or 3 .3-V p o we r s upply, depending
on the output requirements. When VCCIO pins are connected to a 2.5-V
power su pply, the outpu t levels are compa tible with 2.5-V s ystems . When
the VCCIO pins are conn ected to a 3.3 -V power sup ply, the output high is
3.3 V and is compatible with 3.3-V or 5.0-V systems.
Table 12 summarizes 5.0-V tolerant APEX 20K MultiVolt I/O support.
Notes:
(1) The PCI clamping diod e m ust be disabled to drive an input wit h vol t age s hi gher
than VCCIO.
(2) APE X 20K devic e s with a “V” suffix are 5.0-V to l era n t .
(3) W hen VCCIO = 3.3 V , an A PEX 20K dev ice can drive a 2. 5-V devi c e with 3. 3-V
to lerant inpu t s.
Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that
require a VIH of 3.5 V. Whe n the pin is inact ive, the trace will be pulled up
to 5.0 V by the resisto r. The open-dra in pin will only drive low or tri-stat e;
it will never driv e hig h. The rise time is dep endent on the va lue of the pu ll-
up resistor and load impedance. The IOL current specification should be
considered when selecting a pull-up resistor.
Table 12 . 5.0-V Tolerant APEX 20K Mult iVolt I/O Sup po r t
VCCIO (V ) Input Signal s (V) Output Si gnals (V)
2.5 3.3 5.0 2.5 3.3 5.0
2.5 vv(1) v(1), (2) v
3.3 vvv(1), (2) v(3) vv
Altera Corporation 47
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
APEX 20KE devic es also suppo rt the MultiVolt I/O interface feature. The
APEX 2 0 KE VCCINT pins must always be connected to a 1.8-V power
supply. With a 1. 8-V VCCINT level, input pins are 1.8-V, 2.5- V, and 3.3-V
tole rant. The VCCIO pins can be connected to eithe r a 1.8 -V, 2.5-V , or 3.3- V
power supply, depending on the I/O standard requirements. When the
VCCIO pins are connected to a 1.8-V power supply, the output levels are
compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V
powe r supply, the output leve ls are c ompatible w ith 2.5-V sy stems. Wh en
VCCIO pins are connected to a 3.3-V power supply, the output high is
3.3 V and com p atible with 3.3-V or 5.0-V syste ms . An APE X 20 KE de vice
is 5.0-V tolerant with the addition of a resistor.
Table 13 summarizes APEX 20KE MultiVolt I/O support.
Notes:
(1) T h e P C I c lampin g d iode mu s t be dis abled t o drive an in put with v o ltages h ig h er than VCCIO, except for the 5.0-V
inp ut c a se.
(2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI
clamp and series resistor.
(3) When VCCIO = 3.3 V, an AP E X 20K E d evice can dri v e a 2. 5-V de vice with 3.3-V toler an t inpu t s.
ClockLock &
ClockBoost
Features
APEX 20K devices support the ClockLock and ClockBoost clock
mana gement feat ures, whi ch are imple ment ed with PLLs. Th e ClockLock
circuitry uses a synchronizing PLL that reduces the clock delay and skew
within a device. This reduction minimizes clock-to-output and setup
times while maintain ing zero hold time s. The ClockBoost circu itry, which
provides a clock multiplier, allows the designer to enhance device area
efficiency by sharing resources within the device. The ClockBoost
circuit ry allows the des igner to distribute a low-sp eed cloc k and multiply
that clock on-device. APEX 2 0K devices include a high-speed clock tree;
unlike ASICs, the user does not have to design and optimize the clock tree.
The ClockLock and ClockBoost features work in conjunction with the
APEX 20K device’s high-speed clock to provide significant improvements
in system performance and band-width. Devices with an X-suffix on the
ordering code include the ClockLock circuit.
The ClockLock and ClockBoost features in APEX 20K devices are enabled
thr oug h the Quar tus II sof t war e . Exte r na l devices are not req uir ed to use
these features.
Table 13. APEX 20KE MultiVolt I/O Support
VCCIO (V ) Inp ut Signals (V) Out put Si gnals (V)
1.8 2.5 3.3 5.0 1.8 2.5 3.3 5.0
1.8 vv (1) v(1) v
2.5 vv(1) v
3.3 vvv (2) v (2) vv
48 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
For designs that require both a multiplied and non-multip lied clock, the
clock tr ace on the bo ard can b e connected to CLK2p. Table 14 shows the
combi nations supported by the Cl ock Lock a nd Cloc kBoos t circu i try . The
CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the
APEX 20K device. However, when both circuits are used, the other clock
pin (CLK1p) cannot be used.
APEX 20KE ClockLock Feature
APEX 20KE devices include an enhanced ClockLock feature set. These
devices include up to four PLLs, which can be used independently. Two
PLLs are designed for either general-purpose use or LVDS use (on devices
that support LVDS I/O pins). The remaining two PLLs are designed for
general-purpose use. The EP20K200E and smaller devices have two PLLs;
the EP20K300E and larger device s have four PLLs.
The following sections describe some of the features offered by the
APEX 20KE PLLs.
External PLL Feedba ck
The ClockLock circuit’s output can be driven off-chip to clock other
device s in the syst em; furth er, the feed back loop of the PL L can be rout ed
off-chip . This feature allows the designer to exercis e fine cont rol over the
I/O i nterfac e between the APE X 20KE dev ice and an other high-sp eed
device, such as SDRAM.
Clock Multiplication
Th e APEX 20KE ClockBoost circui t can m ultiply or divi de clo cks b y a
programmable number. The clock can be multiplied by m/(n × k) or
m/(n × v), where m and k range fr om 2 to 16 0, an d n and v range from 1 t o
16. Clock multiplication and division can be used for time-domain
multiplexi ng and other fu nctions, which can reduce des i gn LE
requirements.
Table 14. Multiplication Factor Combi nations
Clock 1 Clock 2
×1×1
×1, ×2×2
×1, ×2, ×4×4
Altera Corporation 49
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Clock Phase & Delay Adju stm en t
The APEX 20KE ClockShift feat ure allows the clock phase and delay to be
adjusted. The clock phase can be adjusted by 90° steps. The clock delay
can be adjusted to increase or decrease the clock delay by an arbitrary
amount, up to one clock period.
LVDS Support
Two PLLs are designed to support the LVDS interface. When using LVDS,
the I /O clock run s a t a slow er r a te tha n the data tra nsf e r r ate . T hu s, PL Ls
are used to multiply the I/O clock internally to capture the LVDS data. For
example, an I/O clock may run at 105 MHz to support 840 megabits per
second (Mbps) LVDS data transfer. In this example, the PLL multiplies the
incom in g clock by eight to su ppor t the hig h- sp ee d data tr ans f er. Y ou can
use PLLs in EP20K4 00 E and larger devices for high-speed LVDS
interfacing.
Lock Signals
The APEX 20KE ClockLock circuitry supports individual LOCK signals.
The LOCK signal drives high when the ClockLock circuit has locked onto
the inp ut c lock . Th e LOCK signals are opt iona l for ea ch ClockLock circu it;
whe n not used, the y are I/O pins .
ClockL ock & C lock Boost Timing Pa rameters
For the ClockLock and ClockBoost circuitry to function properly, the
incoming clock must meet certain requirements. If these specifications are
not met, the circuitry may not lock onto the incoming clock, which
generates an erroneous clock within the device. The clock generated by
the ClockLock and ClockBoost circuitry must also meet certain
specifications. If the incoming clock meets these requirements during
config urat ion, the APEX 20K Clock Lock and Clock Boost cir cui tr y will
lock ont o th e clock d urin g config ura tion . T he circuit will be r e ady for us e
immediately after configuration. In APEX 20KE devices, the clock input
standard is programmable, so the PLL cannot respond to the clock until
the device is configured. The PLL locks onto the input clock as soon as
config urat ion is comple te . Figure 30 shows the incoming and generated
clock specifications.
1For more information on ClockLock and ClockBoost circuitry,
see Appl icatio n Note 11 5: Using t h e Cl oc kLock and C l ockB oos t PLL
Features in APEX Devices.
50 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figure 30. Specifications for the Incoming & Generated Clocks
The t I parameter refer s to the nominal input clock period; the tO paramet er refe rs to the
nomina l output clock per iod.
Table 15 summarizes the APEX 20K ClockLock and ClockBoost
parameters for -1 speed-grade devices.
Tabl e 1 5. APE X 20K Cl ockLock & ClockB oo st Parameters f or -1 Speed- G rade
Devices (Part 1 of 2)
Symbol Parameter Min Max Unit
fOUT Output frequency 25 180 MHz
fCLK1 (1) Input clo ck fre quency (Cloc kB oos t
clock multiplication factor equals 1) 25 180
(1) MHz
fCLK2 Input clock fre quency (Cloc kB oos t
clock multiplication factor equals 2) 16 90 MHz
fCLK4 Input clock fre quency (Cloc kB oos t
clock multiplication factor equals 4) 10 48 MHz
tOUTDUTY Duty cycle for
ClockLock/ClockBoost-generated
clock
40 60 %
fCLKDEV I nput dev iat ion f rom use r
specification in the Quartus II
soft wa r e (Cl o ckB o os t cl oc k
multiplic at ion f ac to r equals 1) (2)
25,000
(3) PPM
tRInput rise time 5 ns
tFInput fal l time 5 ns
Input
Clock
ClockLock
Generated
Clock
f
CLK1
f
CLK2
f
CLK4
t
INDUTY
t
I+
t
CLKDEV
t
R
t
F
t
O
t
I
+
t
INCLKSTB
t
O
t
O
t
JITTER
t
O
+
t
JITTER
t
OUTDUTY
,,
Altera Corporation 51
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Notes:
(1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is
25 MHz to 175 M Hz.
(2) All input clock specifications must be met. The PLL may not lock onto an incoming
clock if the clock specifications are not met, cr eating an erro neous clock within the
device.
(3) During dev ice conf igurati on, the Clo ckLock and Clo ckBoost circui try is conf igured
fir s t . If the in c o ming clo c k is supp lied d ur ing c o n f iguratio n , t h e C lockL o c k an d
Clo c kBoo s t c ir c uitr y locks d ur ing c onfig u ratio n , becau se t he lock time is les s t han
the configuration time.
(4) The jitter specific ation is measu red under lo n g-ter m obse rv ation .
(5) If the input clock stability is 100 ps, tJITTER is 250 ps.
tLOCK Time required for
ClockLock/ClockBoost to acquire
lock(4)
10 µs
tSKEW Sk ew delay bet w een related
ClockLock/ClockBoost-generated
clocks
500 ps
tJITTER Jitter on Cloc k Loc k /Cloc k Boost-
generat ed c loc k (5) 200 ps
tINCLKSTB Input clo ck stability (measured
between adjacent clocks) 50 ps
Tabl e 1 5. APE X 20K Cl ockLock & ClockB oo st Parameters f or -1 Speed- G rade
Devices (Part 2 of 2)
Symbol Parameter Min Max Unit
52 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 16 summari z es the APEX 20K Cl ock Lo ck and Clock Bo o st
parameters for -2 speed grade devices.
Notes:
(1) To implement the ClockLock and ClockBoost circuitry with the Quartus II
software, designers must specify the input frequency . The Quar tus II software
tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The
fCLKDEV parameter specifies how much the incoming clock can differ from the
spec ifi ed fr eq uenc y dur in g d evice op er at ion. Sim ulati on does not reflec t t hi s
parameter.
(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock
period.
(3) During device config uration , the Cl ockLo ck and Cl ockBoost circ uitry i s conf igured
before the rest of the device. If the incoming clock is supplied during configuration,
the ClockLock and ClockBoost circuitry locks during configuration because the
tLOCK value is less than the time required for configuration.
(4) The tJITTER spec ific at ion is me a sured under lo n g-ter m obs er v ation.
Tabl e 1 6. APE X 20K Clo ckL ock & Cloc kBoost P ar a me te r s f o r - 2 S pee d Grade
Devices
Symbol Parameter Min Max Unit
fOUT Output frequency 25 170 MHz
fCLK1 Input clock frequency (ClockBoost
clock multiplication factor equals 1) 25 170 MHz
fCLK2 Input clock frequency (ClockBoost
clock multiplication factor equals 2) 16 80 MHz
fCLK4 Input clock frequency (ClockBoost
clock multiplication factor equals 4) 10 34 MHz
tOUTDUTY Duty cycle for ClockLock/ClockBoost-
generated clock 40 60 %
fCLKDEV Input deviation from user specification
in the Quartus II software (ClockBoost
clock multiplication factor equals one)
(1)
25,000
(2) PPM
tRInput rise time 5ns
tFInput fall time 5ns
tLOCK Time required for ClockLock/
ClockBoost to acquire lock
(3)
10 µs
tSKEW Skew delay between related
ClockLock/ ClockBoost-generated
clock
500 500 ps
tJITTER Jitter on ClockLock/ ClockBoost-
generated clock (4) 200 ps
tINCLKSTB Input clock stability (measured between
adjacent clocks) 50 ps
Altera Corporation 53
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 17 and 18 summarize the ClockLock and ClockBoost parameters
for APEX 20KE device s.
Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)
Symbol Parameter Condition Min Typ Max Unit
tRInput rise time 5ns
tFInput fall time 5ns
tINDUTY Input duty cycle 40 60 %
tINJITTER Input jitter peak-to-peak 2% of input
period peak-to-
peak
tOUTJITTER Jitter on ClockLock or ClockBoost-
generated clock 0.35% of
output period RMS
tOUTDUTY Duty cycle for ClockLock or
ClockBoost-generated clock 45 55 %
tLOCK (2),
(3) Time required for ClockLock or
ClockBoost to acquire lock 40 µs
54 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Notes to table s:
(1) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications
are not met, creating an erroneous clock within the device.
(2) Th e maxim um lock time is 40 µs or 2000 in pu t cl ock cycles, wh ich ever occur s first .
(3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still
disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins
once th e CLKLK_ENA pin goes high in user mode.
(4) Th e P L L VCO opera tin g r an ge is 200 MHz ð fVCO ð 840 MH z for L VDS mode .
Table 18. APEX 20KE Clock Input & Output Parameters Note (1)
Symbol Parameter I/O Standard -1X Speed Grade -2X Speed Grade Units
Min Max Min Max
fVCO (4) Voltage controlled oscillator
operating range 200 500 200 500 MHz
fCLOCK0 Clock0 PLL output frequency
for internal use 1.5 335 1.5 200 MHz
fCLOCK1 Clock1 PLL output frequency
for internal use 20 335 20 200 MHz
fCLOCK0_EXT Output clock frequency for
external clock0 output 3.3-V LVTTL 1.5 245 1.5 226 MHz
2.5-V LVTTL 1.5 234 1.5 221 MHz
1.8-V LVTTL 1.5 223 1.5 216 MHz
GTL+ 1.5 205 1.5 193 MHz
SSTL-2 Class I 1.5 158 1.5 157 MHz
SSTL-2 Class II 1.5 142 1.5 142 MH z
SSTL-3 Class I 1.5 166 1.5 162 MHz
SSTL-3 Class II 1.5 149 1.5 146 MH z
LVDS 1.5 420 1.5 350 MHz
fCLOCK1_EXT Output clock frequency for
external clock1 output 3.3-V LVTTL 20 245 20 226 MHz
2.5-V LVTTL 20 234 20 221 MHz
1.8-V LVTTL 20 223 20 216 MHz
GTL+ 20 205 20 193 MHz
SSTL-2 Class I 20 158 20 157 MHz
SSTL-2 Class II 20 142 20 142 MHz
SSTL-3 Class I 20 166 20 162 MHz
SSTL-3 Class II 20 149 20 146 MHz
LVDS 20 420 20 350 MHz
fIN Input clock frequency 3.3-V LVTTL 1.5 290 1.5 257 MHz
2.5-V LVTTL 1.5 281 1.5 250 MHz
1.8-V LVTTL 1.5 272 1.5 243 MHz
GTL+ 1.5 303 1.5 261 MHz
SSTL-2 Class I 1.5 291 1.5 253 MHz
SSTL-2 Class II 1.5 291 1.5 253 MH z
SSTL-3 Class I 1.5 300 1.5 260 MHz
SSTL-3 Class II 1.5 300 1.5 260 MH z
LVDS 1.5 420 1.5 350 MHz
Altera Corporation 55
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
SignalTap
Embedded
Logic Analyzer
APE X 20K devices include device enhancem ents t o suppor t the SignalTap
embedded logic analyzer. By including this circuitry, the APEX 20K
device provide s the abil ity to monitor design ope ration over a period of
time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze
internal logic at speed without bringing internal signals to the I/O pins.
This feature is particularly important for advanced packages such as
FineLine BGA packages because adding a connection to a pin during the
debugging process can be difficult after a board is designed and
manufactured.
IEEE Std.
1149.1 (JTAG)
Boundary-Scan
Support
All APEX 20K devices pr ovide JTAG BST circuit ry that complie s with the
IEEE Std. 1149.1-1990 speci f i cation. JTAG bo undary-scan te st i ng can be
perfor med before or after config urat ion, bu t not during config urat ion.
APEX 20K devices can also use the JTAG port for configuration with the
Quar tus II so ftwa re or wi th h ardware using e ither Jam F iles (.jam) or Jam
Byte-Code Files (.jbc). Fin all y, APEX 20K devices use the JTA G port to
monitor the logic operation of the device with the SignalTap embedded
logic analyzer. APEX 20K devices support the JTAG instructions shown in
Table 19. Alt ho ugh EP20K1500E d evices suppor t the JTAG BYPASS and
Sign alT ap inst r uct ions, they do not support bou nd ary - sca n te st ing or the
use of the JTAG port for configuration.
Note:
(1) Th e E P 20K 1500E device suppo r ts the JT AG BYPAS S in str uct i on and t h e Sig n alTap instru cti on s.
Table 19. APEX 20K JTAG Instructions
JTAG In stru ction Descrip tion
SAMP LE/ PR ELOAD Allows a snapshot of si gnals at the device pins to be captur ed and exami ned during
normal device operation, and permits an initial data pattern to be output at the device
pins. Also used by the SignalTap em bedded log ic an aly ze r.
EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a
test patte rn at the out put pins and capt uring test resu lts at the inp ut pins.
BYPASS
(1) Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST
data to pass s ynchronou sly th rough selected devices to adjac ent dev ic es during
normal device operation.
USERCODE Selects the 32-bit USERCODE register and places it between the TDI and TDO pins,
allowing the USERCODE to be serially shifted out of TDO.
IDCO DE Selects the IDCODE registe r and plac es it be tween TDI and TDO, allowing the
IDCODE t o be se rially sh ifted out of TDO.
ICR Instructions Used when configuring an APEX 20K device via the JTAG port with a MasterBlasterTM
or ByteBlasterMVTM download cable, or when using a Jam File or Jam Byte-Code File
via an embedded proces s or.
SignalT ap I ns tru ctions
(1) Monitors internal device operation with the SignalTap embedded logic analyzer.
56 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
The A PEX 20K device ins truc tion regist er len gth is 1 0 bits. The APE X 20K
device USERCODE register length is 32 bits. Tables 20 and 21 show the
boundary-scan register length and device IDCODE i n for m ati o n for
APEX 20K devices.
Note:
(1) This device does not support JTAG boundary scan testing.
Table 20. APEX 20K Boundary-Scan Register Lengt h
Device Boundary-Scan Register Length
EP20K30E 420
EP20K60E 624
EP20K100 786
EP20K100E 774
EP20K160E 984
EP20K200 1,176
EP20K200E 1,164
EP20K300E 1,266
EP20K400 1,536
EP20K400E 1,506
EP20K600E 1,806
EP20K1000E 2,190
EP20K1500E 1 (1)
Altera Corporation 57
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Notes:
(1) The m os t si gn ific ant bit (MSB) is o n th e left .
(2) Th e ID CODE s least sig n ifi c an t bit (L SB) is alwa ys 1.
Figure 31 shows the timing requirements for the JTAG signals.
Figure 31. APEX 2 0K JTAG Wavefo r ms
Table 21. 32-Bit APEX 20K Device IDCODE
Devic e IDCODE (32 Bits ) (1)
Version
(4 Bits) Part Number (16 Bits) Manufacturer
Identity (11 Bits) 1 (1 Bit)
(2)
EP20K30E 0000 1000 0000 0011 0000 000 0110 1110 1
EP20K60E 0000 1000 0000 0110 0000 000 0110 1110 1
EP20K100 0000 0000 0100 0001 0110 000 0110 1110 1
EP20K100E 0000 1000 0001 0000 0000 000 0110 1110 1
EP20K160E 0000 1000 0001 0110 0000 000 0110 1110 1
EP20K200 0000 0000 1000 0011 0010 000 0110 1110 1
EP20K200E 0000 1000 0010 0000 0000 000 0110 1110 1
EP20K300E 0000 1000 0011 0000 0000 000 0110 1110 1
EP20K400 0000 0001 0110 0110 0100 000 0110 1110 1
EP20K400E 0000 1000 0100 0000 0000 000 0110 1110 1
EP20K600E 0000 1000 0110 0000 0000 000 0110 1110 1
EP20K1000E 0000 1001 0000 0000 0000 000 0110 1110 1
TDO
TCK
tJPZX tJPCO
tJPH
tJPXZ
tJCP tJPSU
tJCL
tJCH
TDI
TMS
Signal
to Be
Captured
Signal
to Be
Driven
tJSZX
tJSSU tJSH
tJSCO tJSXZ
58 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 22 shows the JTAG timing parameters and values for APEX 20K
devices.
fFor more information, see the following documents:
Appl ication Note 39 (IEEE Std . 1149.1 (JTAG) Bounda r y-Scan Testin g in
Altera Devices)
Jam Pr og ramming & Test La nguage Specific ation
Generic Testing Each APEX 20K device is functionally tested. Complete testing of each
configurable static random access memory (SRAM) bit and all logic
functionality ensures 100% yield. AC test measurements for APEX 20K
devices are made under conditions equivalent to those shown in
Figure 32. Multiple test patterns can be used to configure devices during
all stages of the production flow.
Table 22 . APEX 20K JTAG Timing Par ame t ers & Values
Symbol Parameter Min Max Unit
tJCP TCK clock period 100 ns
tJCH TCK clock high time 50 ns
tJCL TCK clock low time 50 ns
tJPSU JTAG port setup time 20 ns
tJPH JTAG port hold time 45 ns
tJPCO JTAG port clock to output 25 ns
tJPZX JTAG port high impedance to valid output 25 ns
tJPXZ JTAG port valid output to high impedance 25 ns
tJSSU Capture r egister setup time 20 ns
tJSH Capture r egister hold time 45 ns
tJSCO Update register clock to output 35 ns
tJSZX Update register high imp edance to valid output 35 ns
tJSXZ Update register valid output to high impedance 35 ns
Altera Corporation 59
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 32. APEX 20K AC Test Co nditions
Operating
Conditions
Tables 23 through 26 provid e i nformat ion on absol ute maximum r ating s,
recommended operating conditions, DC operating conditions, and
capacitance for 2.5-V APEX 20K devices.
System
C1 (includes
JIG capacitance)
Device input
rise and fall
times < 3 ns
Device
Output to Test
Power supply transients can affect AC
measurements. Simultaneous transitions of
multi ple outputs should be avoided for
accurate measurement. Threshold tests
must not be performed und er AC conditi ons.
Large-amplitude, fast-ground-current
transients normally occur as the device
outputs discharge the load capacitances.
When these transients flow through the
parasitic inductance between the device
groun d pin and the tes t system ground,
significant reductions in observable noise
immunity can result.
Table 23. APEX 20K Device Abs olute Maxi mu m Ratings Note (1)
Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V
VCCIO –0.5 4.6 V
VIDC input voltage –0.5 4.6 V
IOUT DC output current, per pin –25 25 mA
TSTG Storage temperature No bias –65 150 ° C
TAMB Ambient temperature Under bias –65 135 ° C
TJJunction temperature PQFP, RQFP, TQFP, and BGA packa ges,
under bias 135 ° C
Ceramic PGA packages, under bias 150 ° C
60 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 24. APEX 20K Device Recommended Operating Conditions
Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic and
input buffers (3), (4) 2.375
(2.375) 2.625
(2.625) V
VCCIO Supply voltage for output buffers, 3.3-V
operation (3), (4) 3.00 ( 3.00) 3.60 (3.60) V
Supply voltage for output buffers, 2.5- V
operation (3), (4) 2.375
(2.375) 2.625
(2.625) V
VIInput v o lta g e (2), (5) –0.5 4.1 V
VOOutput voltage 0V
CCIO V
TJJunction temperature For commercial use 0 85 ° C
For industrial use –40 100 ° C
tRInput ris e time (10% to 90%) 40 ns
tFInput fall time ( 90 % to 10 %) 40 ns
Table 25. APEX 20K Devi ce DC O perating Condi t ions (Part 1 of 2) Notes (6), (7)
Symbol Parameter Conditions Min Typ Max Unit
VIH High-level LVTTL, LVCMOS, or
3.3-V PCI input voltage 1.7, 0.5 ×VCCIO
(8) 4.1 V
VIL Low-level LVTTL, LVCM OS, or
3.3-V PCI input voltage –0.5 0.8, 0.3 ×VCCIO
(8) V
VOH 3.3-V high-level LVTTL output
voltage IOH = –12 mA DC,
VCCIO =3.00 V (9) 2.4 V
3.3-V high-level LVCMOS output
voltage IOH = –0.1 mA DC,
VCCIO =3.00 V (9) VCCIO –0.2 V
3.3-V high-level PCI output voltage IOH = –0.5 mA DC,
VCCIO = 3.00 to 3.60 V (9) 0.9 ×VCCIO V
2.5-V high-level output voltage IOH = –0.1 mA DC,
VCCIO =2.30 V (9) 2.1 V
IOH = –1 mA DC,
VCCIO =2.30 V (9) 2.0 V
IOH = –2 mA DC,
VCCIO =2.30 V (9) 1.7 V
Altera Corporation 61
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
VOL 3.3-V low-level LVTTL output
voltage IOL = 12 mA DC,
VCCIO =3.00 V (10) 0.4 V
3.3-V low-level LVCM OS output
voltage IOL = 0.1 mA DC,
VCCIO =3.00 V (10) 0.2 V
3.3-V low-level PCI output voltage IOL = 1.5 mA DC,
VCCIO = 3.00 to 3.60 V
(10)
0.1 ×VCCIO V
2.5-V low-level output voltage IOL = 0.1 mA DC,
VCCIO =2.30 V (10) 0.2 V
IOL = 1 mA DC,
VCCIO =2.30 V (10) 0.4 V
IOL = 2 mA DC,
VCCIO =2.30 V (10) 0.7 V
IIInput pin leakage current VI = 4.1 to –0.5 V (11) –10 10 µA
IOZ Tri-stated I/O pin leakage current VO = 4.1 to –0.5 V (11) –10 10 µA
ICC0 VCC supply current (standby)
(All ESBs in power-dow n m ode) VI = ground, no load, no
toggling inputs, -1 speed
grade
10 mA
VI = ground, no load, no
toggling inputs,
-2, -3 speed grades
5mA
RCONF Value of I/O pin pull-up resistor
before and during configuration VCCIO =3.0 V (12) 20 50
VCCIO = 2.37 5 V (12) 30 80
Table 26. APEX 20K Device Capacitance Note (13)
Symbol Parameter Conditions Min Max Unit
CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF
CINCLK Input capacitance on dedicated
clock pin VIN = 0 V, f = 1.0 MHz 12 pF
COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
Table 25. APEX 20K Devi ce DC O perating Condi t ions (Part 2 of 2) Notes (6), (7)
Symbol Parameter Conditions Min Typ Max Unit
62 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Notes to tables:
(1) See th e Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for
input curren ts less th an 100 mA an d pe riods sh or ter than 20 ns.
(3) Numbers in parenthes es are for industri al-t e mperatur e-ra nge devices.
(4) Max i mum VCC rise time is 100 ms, and VCC must rise mo notonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are
powered.
(6 ) T ypical values are fo r TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the APEX 20K device recommended operating conditions, shown in Table 24 on
page 60.
(8) Th e AP EX 2 0K i npu t b uff er s are comp a tib le wi th 2. 5- V and 3. 3-V (L VTT L an d LVCMO S) sig n als . A dd it io na lly , the
input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship shown in Figure 33 on page 68.
(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. Thi s parameter applies to open-drain pins
as well as outpu t pins.
(11) This v alue is specifi ed for n ormal de v ice operation . Th e v alue ma y v ar y durin g p ower-up.
(12) Pin pull-u p resist an c e valu es will be lo we r if an external sourc e d rives the p in hi gher t h an V CCIO.
(13 ) Cap a c it an ce is samp le-te st e d only.
Tables 27 through 30 provide infor ma tion on abs olut e maximu m ratin gs,
recommended operating conditions, DC operating conditions, a nd
capacitance for 5.0-V tolerant APEX 20K devices. These devices are
identifie d by a “V” suffix following the spe ed gra de in the ordering code
(e.g., EP20K400 BC652-1V).
Table 27. APEX 20K 5 .0-V Tol erant Device Absolute M aximum Rati ngs No te (1)
Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V
VCCIO –0.5 4.6 V
VIDC input voltage –2.0 5.75 V
IOUT DC output current, per pin –25 25 mA
TSTG Storage temperature No bias –65 150 ° C
TAMB Ambient temperature Under bias –65 135 ° C
TJJunction temperature PQFP , RQFP, TQF P, and BGA packages,
under bias 135 ° C
Ceramic PGA packages, under bias 150 ° C
Altera Corporation 63
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 28. APEX 20K 5.0-V Tolerant Device Recommended Operating Conditions
Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic
and input buffers (3), (4) 2.375
(2.375) 2.625
(2.625) V
VCCIO Supply voltage for output buffers,
3.3-V operation (3), (4) 3.00 (3.00) 3.60 (3.60) V
Supply voltage for output buffers,
2.5-V operation (3), (4) 2.375
(2.375) 2.625
(2.625) V
VIInput voltage (2), (5) –0.5 5.75 V
VOOutput voltage 0V
CCIO V
TJJunction temperature For commercial use 0 85 ° C
For industrial use 40 100 ° C
tRInput rise time 40 ns
tFInput fall time 40 ns
Table 29. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 1 of 2) Notes (6), (7)
Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 1.7, 0.5 ×VCCIO
(8) 5.75 V
VIL Low-level input voltage –0.5 0.8, 0.3 ×VCCIO
(8) V
VOH 3.3-V high-level TTL output
voltage IOH = –8 mA DC,
VCCIO = 3.00 V (9) 2.4 V
3.3-V high-level CMOS output
voltage IOH = –0.1 mA DC,
VCCIO = 3.00 V (9) VCCIO –0.2 V
3.3-V high-level PCI output voltage IOH = –0.5 mA DC,
VCCIO = 3.00 to 3.60 V (9) 0.9 ×VCCIO V
2.5-V high-level output vo ltage IOH = –0.1 mA DC,
VCCIO = 2.30 V (9) 2.1 V
IOH = –1 mA DC,
VCCIO = 2.30 V (9) 2.0 V
IOH = –2 mA DC,
VCCIO = 2.30 V (9) 1.7 V
64 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
VOL 3.3-V low-level TTL output voltage IOL = 12 mA DC,
VCCIO =3.00 V (10) 0.45 V
3.3-V low-level CMOS output
voltage IOL = 0.1 mA DC,
VCCIO =3.00 V (10) 0.2 V
3.3-V low-level PCI output voltage IOL = 1.5 mA DC,
VCCIO = 3.00 to 3.60 V
(10)
0.1 ×VCCIO V
2.5-V low-level output voltage IOL = 0.1 mA DC,
VCCIO =2.30 V (10) 0.2 V
IOL = 1 mA DC,
VCCIO =2.30 V (10) 0.4 V
IOL = 2 mA DC,
VCCIO =2.30 V (10) 0.7 V
IIInput pin leakage current VI = 5.75 to –0.5 V –10 10 µA
IOZ Tri-stated I/O pin leakage current VO = 5.75 to –0.5 V –10 10 µA
ICC0 VCC supply current (standby)
(All ESBs in power-dow n m ode) VI = ground, no load, no
toggling inputs, -1 speed
grade (11)
10 mA
VI = ground, no load, no
toggling inputs,
-2, -3 speed grades (11)
5mA
RCONF Value of I/O pin pull-up resistor
before and during configuration VCCIO =3.0 V (12) 20 50
VCCIO = 2.37 5 V (12) 30 80
Table 30. APEX 20K 5 .0-V Tol erant Device Capacitance Note (13)
Symbol Parameter Conditions Min Max Unit
CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF
CINCLK Input capacitance on dedicated
clock pin VIN = 0 V, f = 1.0 MHz 12 pF
COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
Table 29. APEX 20K 5 .0-V Tolera nt De vice DC Operating Condi t ions (Part 2 of 2) Notes (6), (7)
Symbol Parameter Conditions Min Typ Max Unit
Altera Corporation 65
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Notes to table s:
(1) See the Opera t i ng Re qui reme nt s f or Al t era Devic es Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.75 V for
input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, an d VCC m ust rise monotonically.
(5) All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before VCCINT and VCCIO are
powered.
(6) Typical values are for TA= 25 ° C, VCCINT = 2.5 V, and VCCIO = 2.5 or 3.3 V.
(7) These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on
page 62.
(8) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the
input buffers are 3.3-V PCI compliant when VCCIO and VCCINT me et the rela tion ship sh own in Fig ure 33 on pag e 68.
(9) Th e IOH parameter refers to high-level TTL, PCI or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applie s to open-drain pins
as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) Pin pull -up re sistan ce values wil l be lower if an exter n al sour ce d rives t he pin h ighe r than VCCIO.
(13) Capacitance is sample-tested only.
Tables 31 through 34 provid e i nformat ion on absol ute maximum r ating s,
recommended operating conditions, DC operating conditions, and
capacitance for 1.8-V APEX 20KE devices.
Table 31. APEX 20KE Device Absolute Maximum Ratings Note (1)
Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage With respect to ground (2) –0.5 2.5 V
VCCIO –0.5 4.6 V
VIDC input voltage –0.5 4.6 V
IOUT DC output current, per pin –25 25 mA
TSTG Storage temperature No bias –65 150 ° C
TAMB Ambient temperature Under bias –65 135 ° C
TJJunction temperature PQFP, RQFP, TQFP, and BGA packa ges,
under bias 135 ° C
Ceramic PGA packages, under bias 150 ° C
66 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 32. APEX 20KE D evice Re commen ded Operating Conditions
Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic and
input buffers (3), (4) 1.71 (1.71) 1.89 (1.89) V
VCCIO Supply voltage for output buffers, 3.3-V
operation (3), (4) 3.00 (3.00) 3.60 (3.60) V
Supply voltage for output buffers, 2.5-V
operation (3), (4) 2.375
(2.375) 2.625
(2.625) V
Supply voltage for output buffers, 1.8-V
operation (3), (4) 1.71 (1.71) 1.89 (1.89) V
VIInput voltage (5), (6) –0.5 4.1 V
VOOutput voltage 0V
CCIO V
TJJunction temperature For commercial use 0 85 ° C
For industrial use –40 100 ° C
tRInput rise time 40 ns
tFInput fall time 40 ns
Altera Corporation 67
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 33. APEX 20KE Devi ce DC Operat i ng Condi t ions Notes (7), (8), (9)
Symbol Parameter Conditions Min Typ Max Unit
VIH High-level LVTTL, CMOS, or 3.3-V
PC I input voltag e 1.7, 0.5 ×VCCIO
(10) 4.1 V
VIL Low-level LVTTL, CMOS, or 3.3-V
PC I input voltag e –0.5 0.8, 0.3 ×VCCIO
(10) V
VOH 3.3-V high-level LVTTL output
voltage IOH = –12 mA DC,
VCCIO = 3.00 V (11) 2.4 V
3.3-V high-level LVCMOS output
voltage IOH = –0.1 mA DC,
VCCIO = 3.00 V (11) VCCIO –0.2 V
3.3-V high-level PCI output voltage IOH = –0.5 mA DC,
VCCIO = 3.00 to 3.60 V
(11)
0.9 ×VCCIO V
2.5-V high-level output vo ltage IOH = –0.1 mA DC,
VCCIO = 2.30 V (11) 2.1 V
IOH = –1 mA DC,
VCCIO = 2.30 V (11) 2.0 V
IOH = –2 mA DC,
VCCIO = 2.30 V (11) 1.7 V
VOL 3.3-V low-level LVTTL output
voltage IOL = 12 mA DC,
VCCIO = 3.00 V (12) 0.4 V
3.3-V low-level LVCMO S output
voltage IOL = 0.1 mA DC,
VCCIO = 3.00 V (12) 0.2 V
3.3-V low-level PCI output voltage IOL = 1.5 mA DC,
VCCIO = 3.00 to 3.60 V
(12)
0.1 ×VCCIO V
2.5-V low-level output voltage IOL = 0.1 mA DC,
VCCIO = 2.30 V (12) 0.2 V
IOL = 1 mA DC,
VCCIO = 2.30 V (12) 0.4 V
IOL = 2 mA DC,
VCCIO = 2.30 V (12) 0.7 V
IIInput pin leakage current VI = 4.1 to –0.5 V (13) –10 10 µA
IOZ Tri-stated I/O pin leakage current VO = 4.1 to –0.5 V (13) –10 10 µA
ICC0 VCC supply current (standby)
(All ESBs in power-down mode) VI = gr ound, no load, no
toggling inputs, -1 speed
grade
10 mA
VI = ground, no load, no
toggling inputs,
-2, -3 speed grades
5mA
RCONF Value of I/O pin pull-up resistor
before and dur ing co nfig uration VCCIO = 3.0 V (14) 20 50
VCCIO = 2.375 V (14) 30 80
VCCIO = 1.71 V (14) 60 150
68 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
1For DC Operating Specifications on APEX 20KE I/O standards,
please refer to Application Note 117 (Using Selectable I/O Standards
in Altera Devices).
Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to 2.0 V or overshoot to 5.75 V for
input curren ts less th an 100 mA an d pe riods sh or ter than 20 ns.
(3) Numbers in parenthes es are for industri al-t e mperatur e-ra nge devices.
(4) Max i mum VCC rise time is 100 ms, and VCC must rise mo notonically.
(5) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for
input curren ts less th an 100 mA an d pe riods sh or ter than 20 ns.
(6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are
powered.
(7 ) T ypical values are fo r TA = 25° C, VCCINT = 1.8 V, and VCCIO = 1.8 V, 2.5 V or 3.3 V.
(8) These values are speci f ied u nder the APEX 20KE devic e re commended operati ng condi tions, show n in Table 28 on
page 63.
(9) Refer to A ppl ica tion No te 11 7 (U sin g Se l ec ta ble I/O S ta nd a rds in Alte r a De vi ce s) for th e V IH, VIL, V OH, V OL, an d II
parameters when VCCIO = 1.8 V.
(10) The APEX 20K E in pu t bu ffer s ar e c om patible wi th 1. 8-V , 2.5- V an d 3. 3-V (L VTTL and LVCMO S) sig n als.
Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP,
SSTL- 2, SS T L-3, an d HST L .
(11) The I OH parameter refers to high-level TTL, PCI, or CMOS output current.
(12) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. Thi s parameter applies to open-drain pins
as well as outpu t pins.
(13) This v alue is specifi ed for n ormal de v ice operation . Th e v alue ma y v ar y durin g p ower-up.
(14) Pin pull-u p resist an c e valu es will be lo we r if an external sourc e d rives the p in hi gher t h an V CCIO.
(15 ) Cap a c it an ce is samp le-te st e d only.
Figure 33 shows the relationship between VCCIO and VCCINT for 3.3-V PCI
compl ian ce on AP EX 20K devices .
Table 34. APEX 20KE Device Capacitance Note (15)
Symbol Parameter Conditions Min Max Unit
CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF
CINCLK Input capacitance on dedicated
clock pin VIN = 0 V, f = 1.0 MHz 12 pF
COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
Altera Corporation 69
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 33. Relationship between VCCIO & VCCINT for 3.3-V PCI Compliance
Figure 34 shows the typical output drive characteristics of APEX 20K
devices with 3.3-V and 2.5-V VCCIO. The out put driver is compatib le with
the 3.3-V PCI Local Bus Specification, Revision 2.2 (when VCCIO pin s are
con nec ted to 3.3 V). 5-V tolerant APEX 20K devices in the -1 spee d grad e
are 5-V PCI compliant over all operating conditions.
Figure 34. O utput Drive Charac t eristics of APEX 20K Device Note (1)
Note:
(1) These are transient (AC) currents.
3.0 3.1 3.3
VCCIO
3.6
2.3
2.5
2.7
VCCINT (V)
(V)
PCI-Compliant Region
VO Output Voltage (V)
IOL
IOH IOH
V
V
VCCINT = 2.5
VCCIO = 2.5
Room Temperature
V
V
VCCINT = 2.5
VCCIO = 3.3
Room Temperature
123
10
20
30
50
60
40
70
80
90
VO Output Voltage (V)
123
10
20
30
50
60
40
70
80
90 IOL
O
Typical I
Output
Current (mA)
O
Typical I
Output
Current (mA)
70 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figure 35 shows the output drive characteristics of APEX 20KE devices.
Figure 35. Output Drive Characteristics of APEX 20KE Devices Note (1)
Note:
(1) The se ar e tr an sie nt (A C) curren ts.
Vo Output Voltage (V)
IOL
IOH
2
4
6
8
10
12
14
16
18
20
22
24
26
Vo Output Voltage (V)
IOL
IOH
5
10
15
20
45
0.5 1 1.5 22.5
3
25
30
35
40
50
55
60
Typical IO
Output
Current (mA)
10
20
30
40
50
60
70
80
90
0.5 1 1.5 22.5 3
Vo Output Voltage (V)
VCCINT = 1.8 V
VCCIO = 3.3 V
Room Temperature
IOH
IOL
Typical IO
Output
Current (mA)
100
110
120
0.5 1 1.5 2.0
VCCINT = 1.8 V
VCCIO = 2.5V
Room Temperature
VCCINT = 1.8V
VCCIO = 1.8V
Room Temperature
Typical IO
Output
Current (mA)
Altera Corporation 71
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
T i mi ng Model The high-performance FastTrack and MegaLAB interconnect routing
resour c es en sur e pred ic ta ble perf orm an ce, accur a te simulation, and
accurate timing anal ysis. This predictable performance contrasts with that
of FPGAs, which use a segmen ted connection sch eme and therefore have
unpredictable performance.
All specifications are always representative of worst-case supply voltage
and junction temperature conditions. All output-pin-timing specifications
are reported for maxi mum dri ver stre ng th.
Figure 36 shows the fMAX timing model for APEX 20K devices.
Figure 36. APEX 20K fMAX T imi ng Mode l
Figure 37 shows the fMAX timing model for APEX 20KE devi ces. These
parameters can be used to estimate fMAX for multiple levels of logic.
Quartus II software timing analysis should be used for more accurate
timing information.
SU
H
CO
LUT
t
t
t
t
ttt
t
t
t
tttt
t
ESBRC
ESBWC
ESBWESU
ESBDATASU
ESBADDRSU
ESBDATACO1
ESBDATACO2
ESBDD
PD
PTERMSU
PTERMCO
t
t
t
F1—4
F5—20
F20+
LE
ESB
Routing Delay
72 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Altera Corporation 73
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 37. APEX 20KE fMAX Timing Model
SU
H
CO
LUT
t
t
t
t
t
t
t
F1
4
F5
20
F20+
LE
Routing Delay
t
t
t
t
t
t
t
t
t
t
t
ESBARC
ESBSRC
ESBSWDSU
ESBDATASU
t
ESBWADDRSU
ESBRADDRSU
ESBDATACO1
ESBDATACO2
ESBDD
t
t
t
t
ESBWDH
ESBRASU
ESBRAH
ESBWESU
t
ESBWEH
PD
PTERMSU
PTERMCO
ESB
t
ESBSRASU
t
ESBWDSU
t
ESBWASU
t
ESBSWC
t
ESBAWC
74 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figures 38 and 39 show the asynchronous and synchronous timing
waveforms, respectively, for the ESB macroparameters in Table 35.
Figu re 38. ESB As ync hr o no us Timing W ave f or ms
ESB Asynchronous Write
ESB Asynchronous Read
RE
a0
d0 d3
t
ESBARC
a1 a2 a3
d2d1
Rdaddress
Data-Out
WE
a0
din1 dout2
t
ESBDD
a1 a2
din1
din0
t
ESBWCCOMB
t
ESBWASU
t
ESBWAH
t
ESBWDH
t
ESBWDSU
t
ESBWP
din0
Data-In
Wraddress
Data-Out
Altera Corporation 75
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Figure 39. ESB Synchronous Timing Waveforms
Figure 40 shows the ti ming m odel for b idirectional I/O pin timing .
WE
CLK
ESB Synchronous Read
a0
d2
t
ESBDATASU
t
ESBARC
t
ESBDATACO2
a1 a2 a3
d1
t
ESBDATAH
a0
WE
CLK
dout0 din1 din2 din3 din2
t
ESBWESU
t
ESBSWC
t
ESBWEH
t
ESBDATACO1
a1 a2 a3 a2
din3
din2
din1
t
ESBDATAH
t
ESBDATASU
ESB Synchronous Write (ESB Output Registers Used)
dout1
Rdaddress
Data-Out
Wraddress
Data-Out
Data-In
76 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Figure 40. Synchronous Bidirectional Pin External Timing
Notes:
(1) The output enable and input registers are LE registers in the LAB adjacent to a
bidirectional row pin. The output enable register is set with “Output Enable
Rou tin g = Si gnal-Pin” option in the Qu ar tus II softwar e.
(2) The LAB adjacent input registe r is set with “Decrease Input De lay to Internal Cells=
Off”. This maintains a zero hold time for lab adjacent registers while giving a fast,
position independent setup time. A faster setup time with zero hol d time is possible
by setting “Decrease Input Delay to Internal Cells= ON” and moving the input
register farthe r away from the bidirecti onal pin. Th e exact position where ze ro hold
oc c urs with the min imum s etup time, varies with d ev ic e den sit y an d speed g ra d e.
Table 35 describes the fMAX timing parameters shown in Figure 36.
PRN
CLRN
DQ
PRN
CLRN
DQ
(1)
IOE Register
Bidirectional Pin
Dedicated
Clock
PRN
CLRN
DQ
(1)
XZBIDIR
t
ZXBIDIR
t
OUTCOBIDIR
t
INSUBIDIR
t
INHBIDIR
t
OE Register
Output IOE Register
Input Register
(2)
Table 35 . APEX 20K f MAX Timing Parameters (Part 1 of 2)
Symbol Parameter
tSU LE regis t er se tu p time bef ore clock
tHLE regis t er hold time after clock
tCO LE regis t er cl oc k-to-output delay
tLUT LUT del ay for dat a-in
tESBRC ESB Asy nc hronous read c ycle t im e
tESBWC E SB Asynchronous write cycle time
tESBWESU E SB W E s etu p time bef ore clock wh en us ing input register
tESBDATASU E SB data setup time before clock w hen us ing input regis te r
tESBADDRSU E SB address setup t ime bef ore cl oc k when us ing input regis te rs
tESBDATACO1 E SB c loc k- to -out put delay w hen us ing output reg isters
tESBDATACO2 E SB c loc k- to -out put delay w itho ut outp ut regis ter s
Altera Corporation 77
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 36 and 37 describe APEX 20K external timing parameters.
Note to tables:
(1) These timing parameters are sample-tested only.
tESBDD ES B dat a-in t o dat a-out delay for RAM mode
tPD ESB macrocell input to non-registered output
tPTERMSU ESB macrocell register setup time before clock
tPTERMCO ESB macrocell register clock-to-output delay
tF1-4 Fanout delay using local interconnect
tF5-20 Fanout delay using MegaLab Interconnect
tF20+ Fanout delay using FastTrack Interconnect
tCH Minimum cl ock high time from clock pin
tCL Minimum clock low time from clock pin
tCLRP LE clear pulse width
tPREP LE preset pul se width
tESBCH Cloc k hig h time
tESBCL Clock low time
tESBWP Writ e puls e w idth
tESBRP Read pulse width
Table 35. APEX 20K fMAX Timing Paramete rs (Part 2 of 2)
Symbol Parameter
Table 36. APEX 20K External Timing Parameters Note (1)
Symb ol Clo ck Pa r ame t er Con di t i ons
tINSU Setup time with globa l clock at IOE register
tINH Hold time w ith global c loc k at IOE regis t er
tOUTCO Clock-to-output delay wit h global clock at IOE register
Table 37. APEX 20K External Bidirectional Timing Parameters No te (1)
Symbol Parameter Condition
tINSUBIDIR S et up time f or bidirectional pins with global cloc k at same-row or same-
column LE register
tINHBIDIR Hold time for bidirectional pins with global clock at same-row or same-
column LE register
tOUTCOBIDIR Cloc k -t o-output del ay for bidir ec tio nal pins wi th glo bal c loc k at IOE
register C1 = 35 pF
tXZBIDIR S yn ch ronous IOE output buffer dis able delay C1 = 35 pF
tZXBIDIR S yn ch ronous IOE output buffer enable delay, slow s lew rate = off C1 = 35 pF
78 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 38 through 41 show APEX 20KE LE, ESB, rou tin g, an d fu nctional
timing microparameters for the fMAX timing model.
Table 38. APEX 20KE LE Timing Microparameters
Symbol Parameter
tSU LE register s et up time before clo ck
tHLE register hold time afte r clock
tCO LE register c loc k- to- out put delay
tLUT LUT delay for data-in to data-o ut
Table 39. APEX 20KE ESB Timin g Mic ropar am et ers
Symbol Parameter
tESBARC ESB Asynchronous read cycle time
tESBSRC ESB Synchronous read cycle time
tESBAWC ESB Asynchronous write cycle time
tESBSWC ESB Synchronous write cycle time
tESBWASU ESB write addr es s setu p time w it h res pec t to WE
tESBWAH ESB write addr es s hold time w ith resp ec t to WE
tESBWDSU ESB data setup tim e with resp e ct to WE
tESBWDH E S B da ta hold ti me with r e spe ct t o WE
tESBRASU ESB read addr es s setu p time w it h res pec t to RE
tESBRAH ESB read addr es s hold time w ith resp ec t to RE
tESBWESU ESB WE setup time before clo ck wh en us ing input register
tESBWEH ESB WE hold time af te r clock wh en us ing input register
tESBDATASU ESB data setup time before clock when using input register
tESBWADDRSU ESB write address setu p time before clo ck wh en us ing input
registers
tESBRADDRSU ESB read address setu p time before clo ck wh en us ing input
registers
tESBDATACO1 ESB clock -to -out put delay when using output regis ter s
tESBDATACO2 ESB clock-to-output delay without output registers
tESBDD ESB data-in to data-out delay for RAM mode
tPD ESB Macrocell input to non-registered output
tPTERMSU ESB Macrocell register setup time before clock
tPTERMCO ESB Macrocell register clock-to-output delay
Altera Corporation 79
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Note to Table:
(1) These parameters are worst-case values for typical applications. Post-compilation
timing simulation and timing analysis are requi re d to de ter mine actual worst-ca se
performance.
Tables 42 and 43 describe the APEX 20KE ex te rnal timing parame ters.
Table 40. APEX 20KE Routing Timing Microparameters Note (1)
Symbol Parameter
tF1-4 Fanout delay using Local Interconnect
tF5-20 Fanout delay esti m at e us ing M egaLab Inte rco nnec t
tF20+ Fanout delay estim at e us ing F astT rac k Interc onnect
Table 41. APEX 20K E Functional Timing Mi croparame t ers
Symbol Parameter
TCH Minimum c loc k hig h time f rom clock pin
TCL Minimum clock low time from clock pin
TCLRP LE clear Pulse Width
TPREP LE preset pulse width
TESBCH Clock high time for ESB
TESBCL Clock low time for ESB
TESBWP Write puls e w idt h
TESBRP Read pulse width
Table 42. APEX 20KE External Timing Parameters Note (1)
Symb ol Clo ck Pa r ame t er Con di t i ons
tINSU Setup time with globa l clock at IOE input register
tINH Hold time w ith global c loc k at IOE input regis t er
tOUTCO Clock-to-output de lay with global clock at IOE out put register C1 = 35 pF
tINSUPLL S et up time with PLL cloc k at IO E input regis t er
tINHPLL Hold time with PLL clock at IOE input register
tOUTCOPLL Clock-to-output de lay with PLL c loc k at IOE out put regis t er C1 = 35 pF
80 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Note to ta bles:
(1) These timing parameters are sample-tested only.
Table 43 . APE X 20KE Externa l Bi dir ectional Timing Par am et ers Note (1)
Symbol Parameter Condition
tINSUBIDIR Setup time for bidirec t ional pins with global clock at LAB adjac ent Input
Register
tINHBIDIR H old t im e for bid irec ti onal pins with global c loc k at LAB adjac ent Inp ut
Register
tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE output
register C 1 = 35 pF
tXZBIDIR Sy nc hronous Out put Enable Regis te r to output buffer dis able delay C1 = 35 pF
tZXBIDIR Sy nc hronous Out put Enable Regis te r out put buffer enable de lay C1 = 35 pF
tINSUBIDIRPLL Setup time for bidirectional pins with PLL clock at LAB adjacent Input
Register
tINHBIDIRPLL Hold t im e for bid irec ti onal pins with PLL cl oc k at LAB adjacent Inpu t
Register
tOUTCOBIDIRPLL Clock- to -out put delay fo r bidirec t ional pins with PLL c loc k at IOE out put
register C 1 = 35 pF
tXZBIDIRPLL Sync hronous Out put Enable Register to output buff er dis able delay with
PLL C1 = 35 pF
tZXBIDIRPLL Synchronous Output Enable Register output buffer enable delay with PLL C1 = 35 pF
Altera Corporation 81
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 44 through 46 show the fMAX timing parameters for EP20K100,
EP20K200, and EP2 0K4 00 APEX 2 0K de v ices.
Table 44. EP20K100 fMAX Timing Parameters
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade
Min Max Min Max Min Max
tSU 0.5 0.6 0.8
tH0.7 0.8 1.0
tCO 0.3 0.4 0.5
tLUT 0.8 1.0 1.3
tESBRC 1.7 2.1 2.4
tESBWC 5.7 6.9 8.1
tESBWESU 3.3 3.9 4.6
tESBDATASU 2.2 2.7 3.1
tESBADDRSU 2.4 2.9 3.3
tESBDATACO1 1.3 1.6 1.8
tESBDATACO2 2.6 3.1 3.6
tESBDD 2.5 3.3 3.6
tPD 2.5 3.0 3.6
tPTERMSU 2.3 2.6 3.2
tPTERMCO 1.5 1.8 2.1
tF1-4 0.5 0.6 0.7
tF5-20 1.6 1.7 1.8
tF20+ 2.2 2.2 2.3
tCH 2.0 2.5 3.0
tCL 2.0 2.5 3.0
tCLRP 0.3 0.4 0.4
tPREP 0.5 0.5 0.5
tESBCH 2.0 2.5 3.0
tESBCL 2.0 2.5 3.0
tESBWP 1.6 1.9 2.2
tESBRP 1.0 1.3 1.4
82 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 45. EP2 0K200 f MAX Timing Para me te rs
Sym bol -1 Speed Grade -2 Sp eed Gr ade -3 Speed Gr ade
Min Max Min Max Min Max
tSU 0.5 0.6 0.8
tH0.7 0.8 1.0
tCO 0.3 0.4 0.5
tLUT 0.8 1.0 1.3
tESBRC 1.7 2.1 2.4
tESBWC 5.7 6.9 8.1
tESBWESU 3.3 3.9 4.6
tESBDATASU 2.2 2.7 3.1
tESBADDRSU 2.4 2.9 3.3
tESBDATACO1 1.3 1.6 1.8
tESBDATACO2 2.6 3.1 3.6
tESBDD 2.5 3.3 3.6
tPD 2.5 3.0 3.6
tPTERMSU 2.3 2.7 3.2
tPTERMCO 1.5 1.8 2.1
tF1-4 0.5 0.6 0.7
tF5-20 1.6 1.7 1.8
tF20+ 2.2 2.2 2.3
tCH 2.0 2.5 3.0
tCL 2.0 2.5 3.0
tCLRP 0.3 0.4 0.4
tPREP 0.4 0.5 0.5
tESBCH 2.0 2.5 3.0
tESBCL 2.0 2.5 3.0
tESBWP 1.6 1.9 2.2
tESBRP 1.0 1.3 1.4
Altera Corporation 83
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 47 through 52 show the I/O exte r nal and ex ternal bi d ir e ctional
timing paramete r values for EP2 0K100, EP20K200, and EP20 K400
APEX 20K devices.
Table 46. EP20K400 fMAX Timing Parameters
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade
Min Max Min Max Min Max
tSU 0.1 0.3 0.6
tH0.5 0.8 0.9
tCO 0.1 0.4 0.6
tLUT 1.0 1.2 1.4
tESBRC 1.7 2.1 2.4
tESBWC 5.7 6.9 8.1
tESBWESU 3.3 3.9 4.6
tESBDATASU 2.2 2.7 3.1
tESBADDRSU 2.4 2.9 3.3
tESBDATACO1 1.3 1.6 1.8
tESBDATACO2 2.5 3.1 3.6
tESBDD 2.5 3.3 3.6
tPD 2.5 3.1 3.6
tPTERMSU 1.7 2.1 2.4
tPTERMCO 1.0 1.2 1.4
tF1-4 0.4 0.5 0.6
tF5-20 2.6 2.8 2.9
tF20+ 3.7 3.8 3.9
tCH 2.0 2.5 3.0
tCL 2.0 2.5 3.0
tCLRP 0.5 0.6 0.8
tPREP 0.5 0.5 0.5
tESBCH 2.0 2.5 3.0
tESBCL 2.0 2.5 3.0
tESBWP 1.5 1.9 2.2
tESBRP 1.0 1.2 1.4
84 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 47 . EP2 0K100 External Tim i ng Parameter s
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tINSU (1) 2.32.8 3.2ns
tINH (1) 0.00.0 0.0ns
tOUTCO (1) 2.0 4.5 2.0 4.9 2.0 6.6 ns
tINSU (2) 1.1 1.2 ns
tINH (2) 0.0 0.0 ns
tOUTCO (2) 0.5 2.7 0.5 3.1 4.8 ns
Table 48 . EP20K100 E xternal Bidirectional Timi ng Pa rameters
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tINSUBIDIR (1) 2.3 2.8 3.2 ns
tINHBIDIR (1) 0.0 0.0 0.0 ns
tOUTCOBIDIR (1) 2.0 4.5 2.0 4.9 2.0 6.6 ns
tXZBIDIR (1) 5.0 5.9 6.9 ns
tZXBIDIR (1) 5.0 5.9 6.9 ns
tINSUBIDIR (2) 1.0 1.2 ns
tINHBIDIR (2) 0.0 0.0 ns
tOUTCOBIDIR (2) 0.5 2.7 0.5 3.1 ns
tXZBIDIR (2) 4.3 5.0 ns
tZXBIDIR (2) 4.3 5.0 ns
Table 49 . EP2 0K200 External Tim i ng Parameter s
Symbol -1 Speed Grade -2 Sp eed Gr ade -3 Speed Grade Unit
Min Max Min Max Min Max
tINSU (1) 1.9 2.3 2.6 ns
tINH (1) 0.0 0.0 0.0 ns
tOUTCO (1) 2.0 4.6 2.0 5.6 2.0 6.8 ns
tINSU (2) 1.1 1.2 ns
tINH (2) 0.0 0.0 ns
tOUTCO (2) 0.5 2.7 0.5 3.1 ns
Altera Corporation 85
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 50. EP20K200 External Bidirectional Timing Parameters
Sym bol - 1 Sp eed Gr ade -2 Spee d G rade -3 Speed G rade Unit
Min Max Min Max Min Max
tINSUBIDIR (1) 1.9 2.3 2.6 ns
tINHBIDIR (1) 0.0 0.0 0.0 ns
tOUTCOBIDIR (1) 2.0 4.6 2.0 5.6 2.0 6.8 ns
tXZBIDIR (1) 5.0 5.9 6.9 ns
tZXBIDIR (1) 5.0 5.9 6.9 ns
tINSUBIDIR (2) 1.1 1.2 ns
tINHBIDIR (2) 0.0 0.0 ns
tOUTCOBIDIR (2) 0.5 2.7 0.5 3.1 ns
tXZBIDIR (2) 4.3 5.0 ns
tZXBIDIR (2) 4.3 5.0 ns
Table 51. EP20K400 External Timing Parameters
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tINSU (1) 1.4 1.8 2.0 ns
tINH (1) 0.0 0.0 0.0 ns
tOUTCO (1) 2.0 4.9 2.0 6.1 2.0 7.0 ns
tINSU (2) 0.4 1.0 ns
tINH (2) 0.0 0.0 ns
tOUTCO (2) 0.5 3.1 0.5 4.1 ns
86 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Notes to tables:
(1) This para met er is measured withou t using Clock L ock or Clock B oo st circu its.
(2) This para met e r is mea sured u s ing Clock Loc k or Clo ckBoost circuits.
Tables 53 through 58 describe fMAX LE Timing Microparameters, fMAX
ESB Timin g Mi croparam et ers, fMAX Routing Delays, Minimum Pulse
Width Timing Parameters, External Timing Parameters, and External
Bidirectional Timin g Para meters for EP20K3 0E AP EX 20 KE devi ces.
Table 52 . EP20K400 E xternal Bidirectional Timi ng Pa rameters
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tINSUBIDIR (1) 1.4 1.8 2.0 ns
tINHBIDIR (1) 0.0 0.0 0.0 ns
tOUTCOBIDIR (1) 2.0 4.9 2.0 6.1 2.0 7.0 ns
tXZBIDIR (1) 7.3 8.9 10.3 ns
tZXBIDIR (1) 7.3 8.9 10.3 ns
tINSUBIDIR (2) 0.5 1.0 ns
tINHBIDIR (2) 0.0 0.0 ns
tOUTCOBIDIR (2) 0.5 3.1 0.5 4.1 ns
tXZBIDIR (2) 6.2 7.6 ns
tZXBIDIR (2) 6.2 7.6 ns
Table 53. EP2 0K30E f MAX LE Timing Microparameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tSU 0.01 0.02 0.02 ns
tH0.11 0.16 0.23 ns
tCO 0.32 0.45 0.67 ns
tLUT 0.85 1.20 1.77 ns
Altera Corporation 87
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 54. EP20K30E fMAX ESB Timing Mi croparamet ers
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tESBARC 2.03 2.86 4.24 ns
tESBSRC 2.58 3.49 5.02 ns
tESBAWC 3.88 5.45 8.08 ns
tESBSWC 4.08 5.35 7.48 ns
tESBWASU 1.77 2.49 3.68 ns
tESBWAH 0.00 0.00 0.00 ns
tESBWDSU 1.95 2.74 4.05 ns
tESBWDH 0.00 0.00 0.00 ns
tESBRASU 1.96 2.75 4.07 ns
tESBRAH 0.00 0.00 0.00 ns
tESBWESU 1.80 2.73 4.28 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU 0.07 0.48 1.17 ns
tESBWADDRSU 0.30 0.80 1.64 ns
tESBRADDRSU 0.37 0.90 1.78 ns
tESBDATACO1 1.11 1.32 1.67 ns
tESBDATACO2 2.65 3.73 5.53 ns
tESBDD 3.88 5.45 8.08 ns
tPD 1.91 2.69 3.98 ns
tPTERMSU 1.04 1.71 2.82 ns
tPTERMCO 1.13 1.34 1.69 ns
Table 55. EP20K30E fMAX Rou ting Delays
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tF1-4 0.24 0.27 0.31 ns
tF5-20 1.03 1.14 1.30 ns
tF20+ 1.42 1.54 1.77 ns
88 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 56. EP20K30E Minimum Pulse Width Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tCH 0.55 0.78 1.15 ns
tCL 0.55 0.78 1.15 ns
tCLRP 0.22 0.31 0.46 ns
tPREP 0.22 0.31 0.46 ns
tESBCH 0.55 0.78 1.15 ns
tESBCL 0.55 0.78 1.15 ns
tESBWP 1.43 2.01 2.97 ns
tESBRP 1.15 1.62 2.39 ns
Table 57. EP20K30E External Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSU 2.02 2.13 2.24 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 4.88 2.00 5.36 2.00 5.88 ns
tINSUPLL 2.11 2.23 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 2.60 0.50 2.88 - - ns
Table 58. EP20K30E External Bidirectional Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSUBIDIR 1.85 1.77 1.54 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 4.88 2.00 5.36 2.00 5.88 ns
tXZBIDIR 7.48 8.46 9.83 ns
tZXBIDIR 7.48 8.46 9.83 ns
tINSUBIDIRPLL 4.12 4.24 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 2.60 0.50 2.88 - - ns
tXZBIDIRPLL 5.21 5.99 - ns
tZXBIDIRPLL 5.21 5.99 - ns
Altera Corporation 89
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 59 through 64 describe fMAX LE Timing Microparameters, fMAX
ESB Timing Microparameters, fMAX Routing Delays, Minimum Pulse
Width Timing Para met ers, Exte rna l Ti mi ng Parameters, and External
Bidirecti ona l Tim ing Pa rame ters for EP20K60E APEX 20KE devices.
Table 59. EP20K60E fMAX LE Timin g Microparamet ers
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tSU 0.17 0.15 0.16 ns
tH0.32 0.33 0.39 ns
tCO 0.29 0.40 0.60 ns
tLUT 0.77 1.07 1.59 ns
Table 60. EP20K60E fMAX ESB Timing Mi croparamet ers
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tESBARC 1.83 2.57 3.79 ns
tESBSRC 2.46 3.26 4.61 ns
tESBAWC 3.50 4.90 7.23 ns
tESBSWC 3.77 4.90 6.79 ns
tESBWASU 1.59 2.23 3.29 ns
tESBWAH 0.00 0.00 0.00 ns
tESBWDSU 1.75 2.46 3.62 ns
tESBWDH 0.00 0.00 0.00 ns
tESBRASU 1.76 2.47 3.64 ns
tESBRAH 0.00 0.00 0.00 ns
tESBWESU 1.68 2.49 3.87 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU 0.08 0.43 1.04 ns
tESBWADDRSU 0.29 0.72 1.46 ns
tESBRADDRSU 0.36 0.81 1.58 ns
tESBDATACO1 1.06 1.24 1.55 ns
tESBDATACO2 2.39 3.35 4.94 ns
tESBDD 3.50 4.90 7.23 ns
tPD 1.72 2.41 3.56 ns
tPTERMSU 0.99 1.56 2.55 ns
tPTERMCO 1.07 1.26 1.08 ns
90 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 61. EP2 0K60E f MAX Routing Delays
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tF1-4 0.24 0.26 0.30 ns
tF5-20 1.45 1.58 1.79 ns
tF20+ 1.96 2.14 2.45 ns
Table 62. EP20K60E Minimum Pulse Width Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tCH 2.00 2.50 2.75 ns
tCL 2.00 2.50 2.75 ns
tCLRP 0.20 0.28 0.41 ns
tPREP 0.20 0.28 0.41 ns
tESBCH 2.00 2.50 2.75 ns
tESBCL 2.00 2.50 2.75 ns
tESBWP 1.29 1.80 2.66 ns
tESBRP 1.04 1.45 2.14 ns
Table 63 . EP2 0K60E External Tim i ng Parameter s
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSU 2.03 2.12 2.23 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 4.84 2.00 5.31 2.00 5.81 ns
tINSUPLL 1.12 1.15 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 3.37 0.50 3.69 - - ns
Altera Corporation 91
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 65 through 70 describe fMAX LE Timing Microparameters,
fMAX ES B Ti ming Mic ropa ram eter s, fMAX Routing Dela ys, Minimum
Pulse Width Timing P arameters, Ex te rn al Ti mi ng Paramete rs, and
External Bidirectional Timi ng Paramete rs for EP20K100E
APEX 20KE devices.
Table 64. EP20K60E External Bidirectional Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSUBIDIR 2.77 2.91 3.11 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 4.84 2.00 5.31 2.00 5.81 ns
tXZBIDIR 6.47 7.44 8.65 ns
tZXBIDIR 6.47 7.44 8.65 ns
tINSUBIDIRPLL 3.44 3.24 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 3.37 0.50 3.69 - - ns
tXZBIDIRPLL 5.00 5.82 - ns
tZXBIDIRPLL 5.00 5.82 - ns
Table 65. EP20K100E fMAX LE Timing Microparameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tSU 0.25 0.25 0.25 ns
tH0.25 0.25 0.25 ns
tCO 0.28 0.28 0.34 ns
tLUT 0.80 0.95 1.13 ns
92 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 66. EP2 0K100E fMAX ESB Timing Mi cropa rameter s
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tESBARC 1.61 1.84 1.97 ns
tESBSRC 2.57 2.97 3.20 ns
tESBAWC 0.52 4.09 4.39 ns
tESBSWC 3.17 3.78 4.09 ns
tESBWASU 0.56 6.41 0.63 ns
tESBWAH 0.48 0.54 0.55 ns
tESBWDSU 0.71 0.80 0.81 ns
tESBWDH .048 0.54 0.55 ns
tESBRASU 1.57 1.75 1.87 ns
tESBRAH 0.00 0.00 0.20 ns
tESBWESU 1.54 1.72 1.80 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU -0.16 -0.20 -0.20 ns
tESBWADDRSU 0.12 0.08 0.13 ns
tESBRADDRSU 0.17 0.15 0.19 ns
tESBDATACO1 1.20 1.39 1.52 ns
tESBDATACO2 2.54 2.99 3.22 ns
tESBDD 3.06 3.56 3.85 ns
tPD 1.73 2.02 2.20 ns
tPTERMSU 1.11 1.26 1.38 ns
tPTERMCO 1.19 1.40 1.08 ns
Table 67. EP2 0K100E fMAX Routing Dela ys
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tF1-4 0.24 0.27 0.29 ns
tF5-20 1.04 1.26 1.52 ns
tF20+ 1.12 1.36 1.86 ns
Altera Corporation 93
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 68. EP20K100E Minimum Pulse Width Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tCH 2.00 2.00 2.00 ns
tCL 2.00 2.00 2.00 ns
tCLRP 0.20 0.20 0.20 ns
tPREP 0.20 0.20 0.20 ns
tESBCH 2.00 2.00 2.00 ns
tESBCL 2.00 2.00 2.00 ns
tESBWP 1.29 1.53 1.66 ns
tESBRP 1.11 1.29 1.41 ns
Table 69. EP20K100E External Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSU 2.23 2.32 2.43 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 4.86 2.00 5.35 2.00 5.84 ns
tINSUPLL 1.58 1.66 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 2.96 0.50 3.29 - - ns
Table 70. EP20K100E External Bidirectional Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSUBIDIR 2.74 2.96 3.19 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 4.86 2.00 5.35 2.00 5.84 ns
tXZBIDIR 5.00 5.48 5.89 ns
tZXBIDIR 5.00 5.48 5.89 ns
tINSUBIDIRPLL 4.64 5.03 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 2.96 0.50 3.29 - - ns
tXZBIDIRPLL 3.10 3.42 - ns
tZXBIDIRPLL 3.10 3.42 - ns
94 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Tables 71 through 76 describe fMAX LE Timing Microparameters, fMAX
ESB Timin g Mi croparam et ers, fMAX Routing Delays, Minimum Pulse
Width Timing Parameters, External Timing Parameters, and External
Bidirectional Timin g Para meters for EP20K1 60 E APEX 2 0KE devices.
Table 71. EP2 0K160E fMAX LE Timing Mi croparam et ers
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tSU 0.22 0.24 0.26 ns
tH0.22 0.24 0.26 ns
tCO 0.25 0.31 0.35 ns
tLUT 0.69 0.88 1.12 ns
Table 72. EP2 0K160E fMAX ESB Timing Mi cropa rameter s
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tESBARC 1.65 2.02 2.11 ns
tESBSRC 2.21 2.70 3.11 ns
tESBAWC 3.04 3.79 4.42 ns
tESBSWC 2.81 3.56 4.10 ns
tESBWASU 0.54 0.66 0.73 ns
tESBWAH 0.36 0.45 0.47 ns
tESBWDSU 0.68 0.81 0.94 ns
tESBWDH 0.36 0.45 0.47 ns
tESBRASU 1.58 1.87 2.06 ns
tESBRAH 0.00 0.00 0.01 ns
tESBWESU 1.41 1.71 2.00 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU -0.02 -0.03 0.09 ns
tESBWADDRSU 0.14 0.17 0.35 ns
tESBRADDRSU 0.21 0.27 0.43 ns
tESBDATACO1 1.04 1.30 1.46 ns
tESBDATACO2 2.15 2.70 3.16 ns
tESBDD 2.69 3.35 3.97 ns
tPD 1.55 1.93 2.29 ns
tPTERMSU 1.01 1.23 1.52 ns
tPTERMCO 1.06 1.32 1.04 ns
Altera Corporation 95
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 73. EP20K160E fMAX R out i n g De lays
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tF1-4 0.25 0.26 0.28 ns
tF5-20 1.00 1.18 1.35 ns
tF20+ 1.95 2.19 2.30 ns
Table 74. EP20K160E Minimum Pulse Width Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tCH 1.34 1.43 1.55 ns
tCL 1.34 1.43 1.55 ns
tCLRP 0.18 0.19 0.21 ns
tPREP 0.18 0.19 0.21 ns
tESBCH 1.34 1.43 1.55 ns
tESBCL 1.34 1.43 1.55 ns
tESBWP 1.15 1.45 1.73 ns
tESBRP 0.93 1.15 1.38 ns
Table 75. EP20K160E External Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSU 2.23 2.34 2.47 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 5.07 2.00 5.59 2.00 6.13 ns
tINSUPLL 2.12 2.07 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 3.00 0.50 3.35 - - ns
96 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Tables 77 through 82 describe fMAX LE Timing Microparameters, fMAX
ESB Timin g Mi croparam et ers, fMAX Routing Delays, Minimum Pulse
Width Timing Parameters, External Timing Parameters, and External
Bidirectional Timin g Para meters for EP20K2 00 E APEX 2 0KE devices.
Table 76. EP2 0K160E External Bidirection al Timing Paramete rs
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSUBIDIR 2.86 3.24 3.54 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 5.07 2.00 5.59 2.00 6.13 ns
tXZBIDIR 7.43 8.23 8.58 ns
tZXBIDIR 7.43 8.23 8.58 ns
tINSUBIDIRPLL 4.93 5.48 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 3.00 0.50 3.35 - - ns
tXZBIDIRPLL 5.36 5.99 - ns
tZXBIDIRPLL 5.36 5.99 - ns
Table 77. EP2 0K200E fMAX LE Timing Mi croparam et ers
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tSU 0.23 0.24 0.26 ns
tH0.23 0.24 0.26 ns
tCO 0.26 0.31 0.36 ns
tLUT 0.70 0.90 1.14 ns
Altera Corporation 97
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 78. EP20K200E fMAX ES B Ti mi ng Mic r op ar am et e r s
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tESBARC 1.68 2.06 2.24 ns
tESBSRC 2.27 2.77 3.18 ns
tESBAWC 3.10 3.86 4.50 ns
tESBSWC 2.90 3.67 4.21 ns
tESBWASU 0.55 0.67 0.74 ns
tESBWAH 0.36 0.46 0.48 ns
tESBWDSU 0.69 0.83 0.95 ns
tESBWDH 0.36 0.46 0.48 ns
tESBRASU 1.61 1.90 2.09 ns
tESBRAH 0.00 0.00 0.01 ns
tESBWESU 1.42 1.71 2.01 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU -0.06 -0.07 0.05 ns
tESBWADDRSU 0.11 0.13 0.31 ns
tESBRADDRSU 0.18 0.23 0.39 ns
tESBDATACO1 1.09 1.35 1.51 ns
tESBDATACO2 2.19 2.75 3.22 ns
tESBDD 2.75 3.41 4.03 ns
tPD 1.58 1.97 2.33 ns
tPTERMSU 1.00 1.22 1.51 ns
tPTERMCO 1.10 1.37 1.09 ns
Table 79. EP20K200E fMAX R out i n g De lays
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tF1-4 0.25 0.27 0.29 ns
tF5-20 1.02 1.20 1.41 ns
tF20+ 1.99 2.23 2.53 ns
98 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 80. EP20K200E Minimum Pulse Width Ti ming Paramete rs
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tCH 1.36 2.44 2.65 ns
tCL 1.36 2.44 2.65 ns
tCLRP 0.18 0.19 0.21 ns
tPREP 0.18 0.19 0.21 ns
tESBCH 1.36 2.44 2.65 ns
tESBCL 1.36 2.44 2.65 ns
tESBWP 1.18 1.48 1.76 ns
tESBRP 0.95 1.17 1.41 ns
Table 81. EP20K200E Ext ernal Timing P arameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSU 2.24 2.35 2.47 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 5.12 2.00 5.62 2.00 6.11 ns
tINSUPLL 2.13 2.07 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 3.01 0.50 3.36 - - ns
Altera Corporation 99
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 83 through 88 describe fMAX LE Timing Microparameters, fMAX
ESB Timing Microparameters, fMAX Routing Delays, Minimum Pulse
Width Timing Para met ers, Exte rna l Ti mi ng Parameters, and External
Bidirecti ona l Tim ing Pa rameters for EP20K 30 0E APEX 20KE devices.
Table 82. EP20K200E External Bidirectional Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSUBIDIR 2.81 3.19 3.54 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 5.12 2.00 5.62 2.00 6.11 ns
tXZBIDIR 7.51 8.32 8.67 ns
tZXBIDIR 7.51 8.32 8.67 ns
tINSUBIDIRPLL 3.30 3.64 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 3.01 0.50 3.36 - - ns
tXZBIDIRPLL 5.40 6.05 - ns
tZXBIDIRPLL 5.40 6.05 - ns
Table 83. EP20K300E fMAX LE Timing Microparameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tSU 0.16 0.17 0.18 ns
tH0.31 0.33 0.38 ns
tCO 0.28 0.38 0.51 ns
tLUT 0.79 1.07 1.43 ns
100 Altera Corp ora t ion
APEX 20K Programmable Logic Device Family Data Sheet
Table 84. EP2 0K300E fMAX ESB Timing Mi cropa rameter s
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tESBARC 1.79 2.44 3.25 ns
tESBSRC 2.40 3.12 4.01 ns
tESBAWC 3.41 4.65 6.20 ns
tESBSWC 3.68 4.68 5.93 ns
tESBWASU 1.55 2.12 2.83 ns
tESBWAH 0.00 0.00 0.00 ns
tESBWDSU 1.71 2.33 3.11 ns
tESBWDH 0.00 0.00 0.00 ns
tESBRASU 1.72 2.34 3.13 ns
tESBRAH 0.00 0.00 0.00 ns
tESBWESU 1.63 2.36 3.28 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU 0.07 0.39 0.80 ns
tESBWADDRSU 0.27 0.67 1.17 ns
tESBRADDRSU 0.34 0.75 1.28 ns
tESBDATACO1 1.03 1.20 1.40 ns
tESBDATACO2 2.33 3.18 4.24 ns
tESBDD 3.41 4.65 6.20 ns
tPD 1.68 2.29 3.06 ns
tPTERMSU 0.96 1.48 2.14 ns
tPTERMCO 1.05 1.22 1.42 ns
Table 85. EP2 0K300E fMAX Routing Dela ys
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tF1-4 0.22 0.24 0.26 ns
tF5-20 1.33 1.43 1.58 ns
tF20+ 3.63 3.93 4.35 ns
Altera Corporation 101
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 86. EP20K300E Minimum Pulse Width Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tCH 1.25 1.43 1.67 ns
tCL 1.25 1.43 1.67 ns
tCLRP 0.19 0.26 0.35 ns
tPREP 0.19 0.26 0.35 ns
tESBCH 1.25 1.43 1.67 ns
tESBCL 1.25 1.43 1.67 ns
tESBWP 1.25 1.71 2.28 ns
tESBRP 1.01 1.38 1.84 ns
Table 87. EP20K300E External Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSU 2.31 2.44 2.57 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 5.29 2.00 5.82 2.00 6.24 ns
tINSUPLL 1.76 1.85 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 2.65 0.50 2.95 - - ns
Table 88. EP20K300E External Bidirectional Timing Parameters
Symbol -1 -2 -3 Unit
Min Max Min Max Min Max
tINSUBIDIR 2.77 2.85 3.11 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 5.29 2.00 5.82 2.00 6.24 ns
tXZBIDIR 7.59 8.30 9.09 ns
tZXBIDIR 7.59 8.30 9.09 ns
tINSUBIDIRPLL 2.50 2.76 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 2.65 0.50 2.95 - - ns
tXZBIDIRPLL 5.00 5.43 - ns
tZXBIDIRPLL 5.00 5.43 - ns
102 Altera Corp ora t ion
APEX 20K Programmable Logic Device Family Data Sheet
Tables 89 through 94 describe fMAX LE Timing Microparameters, fMAX
ESB Timin g Mi croparam et ers, fMAX Routing Delays, Minimum Pulse
Width Timing Parameters, External Timing Parameters, and External
Bidirectional Timin g Para meters for EP20K4 00 E APEX 2 0KE devices.
Table 89. EP2 0K400E fMAX LE Timing Mi croparam et ers
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tSU 0.23 0.23 0.23 ns
tH0.23 0.23 0.23 ns
tCO 0.25 0.29 0.32 ns
tLUT 0.70 0.83 1.01 ns
Table 90. EP2 0K400E fMAX ESB Timing Mi cropa rameter s
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tESBARC 1.67 1.91 1.99 ns
tESBSRC 2.30 2.66 2.93 ns
tESBAWC 3.09 3.58 3.99 ns
tESBSWC 3.01 3.65 4.05 ns
tESBWASU 0.54 0.63 0.65 ns
tESBWAH 0.36 0.43 0.42 ns
tESBWDSU 0.69 0.77 0.84 ns
tESBWDH 0.36 0.43 0.42 ns
tESBRASU 1.61 1.77 1.86 ns
tESBRAH 0.00 0.00 0.01 ns
tESBWESU 1.35 1.47 1.61 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU -0.18 -0.30 -0.27 ns
tESBWADDRSU -0.02 -0.11 -0.03 ns
tESBRADDRSU 0.06 -0.01 -0.05 ns
tESBDATACO1 1.16 1.40 1.54 ns
tESBDATACO2 2.18 2.55 2.85 ns
tESBDD 2.73 3.17 3.58 ns
tPD 1.57 1.83 2.07 ns
tPTERMSU 0.92 0.99 1.18 ns
tPTERMCO 1.18 1.43 1.17 ns
Altera Corporation 103
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 91. EP20K400E fMAX R out i n g De lays
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tF1-4 0.25 0.25 0.26 ns
tF5-20 1.01 1.12 1.25 ns
tF20+ 3.71 3.92 4.17 ns
Table 92. EP20K400E Minimum Pulse Width Timing Parameters
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tCH 1.36 2.22 2.35 ns
tCL 1.36 2.26 2.35 ns
tCLRP 0.18 0.18 0.19 ns
tPREP 0.18 0.18 0.19 ns
tESBCH 1.36 2.26 2.35 ns
tESBCL 1.36 2.26 2.35 ns
tESBWP 1.17 1.38 1.56 ns
tESBRP 0.94 1.09 1.25 ns
Table 93. EP20K400E External Timing Parameters
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tINSU 2.51 2.64 2.77 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 5.25 2.00 5.79 2.00 6.32 ns
tINSUPLL 3.221 3.38 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 2.25 0.50 2.45 - - ns
104 Altera Corp ora t ion
APEX 20K Programmable Logic Device Family Data Sheet
Tables 96 through 100 describe fMAX LE Timing Microparameters, fMAX
ESB Timin g Mi croparam et ers, fMAX Routing Delays, Minimum Pulse
Width Timing Parameters, External Timing Parameters, and External
Bidirectional Timin g Para meters for EP20K6 00 E APEX 2 0KE devices.
Table 94. EP2 0K400E External Bidirection al Timing Paramete rs
Symbol -1 Speed G rade -2 Speed G rade -3 Speed Grad e Uni t
Min Max Min Max Min Max
tINSUBIDIR 2.93 3.23 3.44 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 5.25 2.00 5.79 2.00 6.32 ns
tXZBIDIR 5.95 6.77 7.12 ns
tZXBIDIR 5.95 6.77 7.12 ns
tINSUBIDIRPLL 4.31 4.76 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 2.25 0.50 2.45 - - ns
tXZBIDIRPLL 2.94 3.43 - ns
tZXBIDIRPLL 2.94 3.43 - ns
Table 95. EP2 0K600E fMAX LE Timing Mi croparam et ers
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tSU 0.16 0.16 0.17 ns
tH0.29 0.33 0.37 ns
tCO 0.65 0.38 0.49 ns
tLUT 0.70 1.00 1.30 ns
Altera Corporation 105
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 96. EP20K600E fMAX ES B Ti mi ng Mic r op ar am et e r s
Symbol -1 Speed Grade -2 S peed G rade -3 Speed Grade Unit
Min Max Min Max Min Max
tESBARC 1.67 2.39 3.11 ns
tESBSRC 2.27 3.07 3.86 ns
tESBAWC 3.19 4.56 5.93 ns
tESBSWC 3.51 4.62 5.72 ns
tESBWASU 1.46 2.08 2.70 ns
tESBWAH 0.00 0.00 0.00 ns
tESBWDSU 1.60 2.29 2.97 ns
tESBWDH 0.00 0.00 0.00 ns
tESBRASU 1.61 2.30 2.99 ns
tESBRAH 0.00 0.00 0.00 ns
tESBWESU 1.49 2.30 3.11 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU -0.01 0.35 0.71 ns
tESBWADDRSU 0.19 0.62 1.06 ns
tESBRADDRSU 0.25 0.71 1.17 ns
tESBDATACO1 1.01 1.19 1.37 ns
tESBDATACO2 2.18 3.12 4.05 ns
tESBDD 3.19 4.56 5.93 ns
tPD 1.57 2.25 2.92 ns
tPTERMSU 0.85 1.43 2.01 ns
tPTERMCO 1.03 1.21 1.39 ns
Table 97. EP20K600E fMAX R out i n g De lays
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tF1-4 0.22 0.25 0.26 ns
tF5-20 1.26 1.39 1.52 ns
tF20+ 3.51 3.88 4.26 ns
106 Altera Corp ora t ion
APEX 20K Programmable Logic Device Family Data Sheet
Table 98. EP20K600E Minimum Pulse Width Ti ming Paramete rs
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tCH 2.00 2.50 2.75 ns
tCL 2.00 2.50 2.75 ns
tCLRP 0.18 0.26 0.34 ns
tPREP 0.18 0.26 0.34 ns
tESBCH 2.00 2.50 2.75 ns
tESBCL 2.00 2.50 2.75 ns
tESBWP 1.17 1.68 2.18 ns
tESBRP 0.95 1.35 1.76 ns
Table 99. EP20K600E Ext ernal Timing P arameters
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tINSU 2.74 2.74 2.87 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 5.51 2.00 6.06 2.00 6.61 ns
tINSUPLL 1.86 1.96 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 2.62 0.50 2.91 - - ns
Table 100. EP20 K600E External Bidirectiona l Ti ming Parameters
Symbol -1 Speed G rade -2 Speed G rade -3 Speed Grad e Uni t
Min Max Min Max Min Max
tINSUBIDIR 0.64 0.98 1.08 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 5.51 2.00 6.06 2.00 6.61 ns
tXZBIDIR 6.10 6.74 7.10 ns
tZXBIDIR 6.10 6.74 7.10 ns
tINSUBIDIRPLL 2.26 2.68 - ns
tINHBIDIRPLL 0.00 0.00 - ns
tOUTCOBIDIRPLL 0.50 2.62 0.50 2.91 - - ns
tXZBIDIRPLL 3.21 3.59 - ns
tZXBIDIRPLL 3.21 3.59 - ns
Altera Corporation 107
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 101 through 106 describe fMAX LE Ti m ing Micr oparameters, fMAX
ESB Timing Microparameters, fMAX Routing Delays, Minimum Pulse
Width Timing Para met ers, Exte rna l Ti mi ng Parameters, and External
Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.
Table 101. EP20K1000E fMAX LE Timing Microparameters
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tSU 0.25 0.25 0.25 ns
tH0.25 0.25 0.25 ns
tCO 0.28 0.32 0.33 ns
tLUT 0.80 0.95 1.13 ns
Table 102. EP20K1000E fMAX ESB Ti ming Microparameters
Symbol -1 Speed Grade -2 S peed G rade -3 Speed Grade Unit
Min Max Min Max Min Max
tESBARC 1.78 2.02 1.95 ns
tESBSRC 2.52 2.91 3.14 ns
tESBAWC 3.52 4.11 4.40 ns
tESBSWC 3.23 3.84 4.16 ns
tESBWASU 0.62 0.67 0.61 ns
tESBWAH 0.41 0.55 0.55 ns
tESBWDSU 0.77 0.79 0.81 ns
tESBWDH 0.41 0.55 0.55 ns
tESBRASU 1.74 1.92 1.85 ns
tESBRAH 0.00 0.01 0.23 ns
tESBWESU 2.07 2.28 2.41 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU 0.25 0.27 0.29 ns
tESBWADDRSU 0.11 0.04 0.11 ns
tESBRADDRSU 0.14 0.11 0.16 ns
tESBDATACO1 1.29 1.50 1.63 ns
tESBDATACO2 2.55 2.99 3.22 ns
tESBDD 3.12 3.57 3.85 ns
tPD 1.84 2.13 2.32 ns
tPTERMSU 1.08 1.19 1.32 ns
tPTERMCO 1.31 1.53 1.66 ns
108 Altera Corp ora t ion
APEX 20K Programmable Logic Device Family Data Sheet
Table 103. EP20 K1000E fMAX Routing Dela ys
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tF1-4 0.27 0.27 0.27 ns
tF5-20 1.45 1.63 1.75 ns
tF20+ 4.15 4.33 4.97 ns
Table 104. EP20K1000E Mi ni mu m Pulse Wid th Ti ming Param et er s
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tCH 1.25 1.43 1.67 ns
tCL 1.25 1.43 1.67 ns
tCLRP 0.20 0.20 0.20 ns
tPREP 0.20 0.20 0.20 ns
tESBCH 1.25 1.43 1.67 ns
tESBCL 1.25 1.43 1.67 ns
tESBWP 1.28 1.51 1.65 ns
tESBRP 1.11 1.29 1.41 ns
Table 105. EP20K1000 E External Timing Parameters
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tINSU 2.70 2.84 2.97 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 5.75 2.00 6.33 2.00 6.90 ns
tINSUPLL 1.64 2.09 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 2.25 0.50 2.99 - - ns
Altera Corporation 109
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Tables 107 through 112 describe fMAX LE Ti m ing Micr oparameters, fMAX
ESB Timing Microparameters, fMAX Routing Delays, Minimum Pulse
Width Timing Para met ers, Exte rna l Ti mi ng Parameters, and External
Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices.
Table 106. EP20K1000E External Bidirectional Timing Parameters
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tINSUBIDIR 3.22 3.33 3.51 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 5.75 2.00 6.33 2.00 6.90 ns
tXZBIDIR 6.31 7.09 7.76 ns
tZXBIDIR 6.31 7.09 7.76 ns
tINSUBIDIRPLL 3.25 3.26 ns
tINHBIDIRPLL 0.00 0.00 ns
tOUTCOBIDIRPLL 0.50 2.25 0.50 2.99 ns
tXZBIDIRPLL 2.81 3.80 ns
tZXBIDIRPLL 2.81 3.80 ns
Table 107. EP20K1500E fMAX LE Timing Microparameters
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tSU 0.25 0.25 0.25 ns
tH0.25 0.25 0.25 ns
tCO 0.28 0.32 0.33 ns
tLUT 0.80 0.95 1.13 ns
110 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Table 108. EP20 K1500E fMAX ESB Timing Mi cropa rameter s
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tESBARC 1.78 2.02 1.95 ns
tESBSRC 2.52 2.91 3.14 ns
tESBAWC 3.52 4.11 4.40 ns
tESBSWC 3.23 3.84 4.16 ns
tESBWASU 0.62 0.67 0.61 ns
tESBWAH 0.41 0.55 0.55 ns
tESBWDSU 0.77 0.79 0.81 ns
tESBWDH 0.41 0.55 0.55 ns
tESBRASU 1.74 1.92 1.85 ns
tESBRAH 0.00 0.01 0.23 ns
tESBWESU 2.07 2.28 2.41 ns
tESBWEH 0.00 0.00 0.00 ns
tESBDATASU 0.25 0.27 0.29 ns
tESBWADDRSU 0.11 0.04 0.11 ns
tESBRADDRSU 0.14 0.11 0.16 ns
tESBDATACO1 1.29 1.50 1.63 ns
tESBDATACO2 2.55 2.99 3.22 ns
tESBDD 3.12 3.57 3.85 ns
tPD 1.84 2.13 2.32 ns
tPTERMSU 1.08 1.19 1.32 ns
tPTERMCO 1.31 1.53 1.66 ns
Table 109. EP20 K1500E fMAX Routing Dela ys
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max
tF1-4 0.28 0.28 0.28 ns
tF5-20 1.36 1.50 1.62 ns
tF20+ 4.43 4.48 5.07 ns
Altera Corporation 111
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Table 110. EP20K1500E Minimum Pulse Width Timing Parameters
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tCH 1.25 1.43 1.67 ns
tCL 1.25 1.43 1.67 ns
tCLRP 0.20 0.20 0.20 ns
tPREP 0.20 0.20 0.20 ns
tESBCH 1.25 1.43 1.67 ns
tESBCL 1.25 1.43 1.67 ns
tESBWP 1.28 1.51 1.65 ns
tESBRP 1.11 1.29 1.41 ns
Table 111. EP20K1500E External Timing Parameters
Symbol -1 Speed G rade -2 Spee d Grade -3 Speed Gr ade Unit
Min Max Min Max Min Max
tINSU 3.09 3.30 3.58 ns
tINH 0.00 0.00 0.00 ns
tOUTCO 2.00 6.18 2.00 6.81 2.00 7.36 ns
tINSUPLL 1.94 2.08 - ns
tINHPLL 0.00 0.00 - ns
tOUTCOPLL 0.50 2.67 0.50 2.99 - - ns
112 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
Tables 113 and 114 show selectable I/O standard input and output
delays for APEX 20KE devices. If you select an I/O standard input or
output delay other than LVCMOS, add or subtract the selected speed
grade to or from the LVCMOS value.
Table 112. EP20K1500E External Bidirectional Timing Parameters
Symbol -1 Spe ed Grade -2 Sp eed Gr ade -3 Spe ed Gr ade Uni t
Min Max Min Max Min Max
tINSUBIDIR 3.47 3.68 3.99 ns
tINHBIDIR 0.00 0.00 0.00 ns
tOUTCOBIDIR 2.00 6.18 2.00 6.81 2.00 7.36 ns
tXZBIDIR 6.91 7.62 8.38 ns
tZXBIDIR 6.91 7.62 8.38 ns
tINSUBIDIRPLL 3.05 3.26 ns
tINHBIDIRPLL 0.00 0.00 ns
tOUTCOBIDIRPLL 0.50 2.67 0.50 2.99 ns
tXZBIDIRPLL 3.41 3.80 ns
tZXBIDIRPLL 3.41 3.80 ns
Table 113. Select able I/O Stand ard Input Dela ys
Symbol -1 Spee d Gra de -2 Speed Grade - 3 Spee d G rade Unit
Min Max Min Max Min Max Min
LVCMOS 0.00 0.00 0.00 ns
LVTTL 0.00 0.00 0.00 ns
2. 5 V 0. 00 0 .0 4 0.05 ns
1.8 V –0.11 0.03 0.04 ns
PCI 0.01 0.09 0.10 ns
GTL+ –0.24 –0.23 –0.19 ns
SSTL-3 Class I –0.32 –0.21 –0.47 ns
SSTL-3 Class II –0.08 0.03 –0.23 ns
SSTL-2 Class I –0.17 –0.06 –0.32 ns
SSTL-2 Class II –0.16 –0.05 –0.31 ns
LVDS –0.12 –0.12 –0.12 ns
CTT 0.00 0.00 0.00 ns
AGP 0.00 0.00 0.00 ns
Altera Corporation 113
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Power
Consumption
To estimate device powe r consumption, use the interactive power
est imator on the Altera web site at http://www.altera.com.
Configuration &
Operation
The A PE X 20K archit ec ture support s s ever al con figu ratio n s che mes . Th is
section summarizes the device operating modes and available device
config urat ion sche mes.
Operating Modes
The A PEX ar chitecture uses SRAM configu r at io n elements that require
configuration data to be loaded each time the circuit powers up. The
process of physically loading the SRAM data into the device is called
configuration. During initialization, which occurs immediately after
conf igur at ion, the device r es ets reg ist er s, ena bl es I/ O pin s, and beg ins t o
operate as a logic device. The I/O pins are tri-stated during power-up,
and before and during configuration. Together, the configuration and
initia lizati on pr ocesses a re cal led command mode; normal device operat ion
is called user mode.
Before and during device configuration, all I/O pins are pulled to VCCIO
by a built-in weak pull-up resistor.
Table 114. Selectable I/O Standard Output Delays
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit
Min Max Min Max Min Max Min
LVCMOS 0.00 0.00 0.00 ns
LVTTL 0.00 0.00 0.00 ns
2.5 V 0.00 0.09 0. 10 ns
1.8 V 2.49 2.98 3. 03 ns
PCI –0.03 0.17 0.16 ns
GTL+ 0.75 0.75 0.76 ns
SSTL-3 Class I 1.39 1.51 1.50 ns
SSTL -3 Cla ss II 1.11 1.23 1.23 ns
SSTL-2 Class I 1.35 1.48 1.47 ns
SSTL -2 Cla ss II 1.00 1.12 1.12 ns
LVDS –0.48 –0.48 –0.48 ns
CTT 0.00 0.00 0.00 ns
AGP 0.00 0.00 0.00 ns
114 Altera Corporation
APEX 20K Programmable Logic Device Family Data Sheet
SRAM configuration elements allow APEX 20K devices to be
reconfigured in-circuit by loading new configuration data into the
device. Re al-time reconfiguratio n is p erformed by forcing t he devi ce
into command mode with a device pin, loading different
configuration data, reinitializing the device, and resuming user-
mod e oper at ion. In -fiel d u pgra des c an be perfo rme d by dist ri buti ng
new configuration files.
Configur ation Sc hemes
The conf i gu rat i o n data for an APEX 20K device can be loa ded with
one of five configuration schemes (see Table 115), chosen on the basis
of the target application. An EPC2 or EPC16 configuration device,
intelligent controller, or the JTAG port can be used to control the
configuration of an APEX 2 0K device. When a configuration device
is used, the system can configure automatically at system power-up.
Multiple APEX 20K devices can be configured in any of five
configu ration s chemes b y connec ting t he conf iguration e nabl e (nCE)
and configuration enable output (nCEO) pins on each device.
fFor more information on configuration, see Application Note 116
(Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.)
Device Pin-Outs See the Altera web sit e (http://www.altera.com) or the Altera Digital
Library for pin-out information
Table 115. Data Sources for Conf igurat ion
Configuration Scheme Da t a Source
Configurat ion device EPC1, EPC 2, EPC 16 c onf iguration dev ices
Passive serial (PS) MasterBlaster or ByteBlasterMV download cable or serial data source
Passive parallel asynchro nous (PPA) Para llel dat a s ourc e
Passive parallel synchronous (PPS) Parallel data source
JTAG MasterBlaster or ByteBlasterMV download cable or a microprocessor
wi th a J am or JBC Fil e
Altera Corporation 115
APEX 20 K Pro grammabl e Log i c Dev ic e Fam ily D ata Sh eet
Revision
History
The information contained in the APEX 20K Programmable Logic Device
Fami ly Data Shee t version 4.3 supersedes information published in
previous versions.
Version 4.3
APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains
the following changes:
Updated Figure 20.
Updated Note (2) to Table 13.
Updated notes to Tables 31 through 34.
Version 4.2
APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains
the following changes:
Updated Figure 29.
Updated Note (1) to Figure 29.
Version 4.1
APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains
the following changes:
tESBWEH added to Figure 37 and Tables 39, 54, 60, 66, 72, 78, 90, 96,
101, and 108.
Updated EP20K300E device internal and external timing numbers in
Tables 83 through 88.
Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Altera products are protected under numerous U.S. and foreign patents and pending
appl ica tio ns, m ask wor k ri ght s, a nd c opy righ ts. A lt era warr ant s per fo rman ce of it s sem ico ndu cto r pro duc ts
to current specifications in accordance with Altera’s standar d warranty, but reserves the
right to make changes to any products and services at any time without notice. Altera
assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing
by Altera Corp orati o n. A ltera c us tome rs are advised to obtain th e la test ver sio n of de vice
specifications before relying on any published information and before placing orders for
products or services.
101 Innovati on Drive
San J ose, CA 95134
(408) 544-7000
http://www.altera.com
Applicat ions Hotlin e:
(8 00 ) 80 0 - EPLD
Customer Marketing:
(408) 544-7104
Li tera tu r e Se r vi ce s:
lit_req@altera.com
APEX 20K Programmable Logic Device Family Data Sheet
116 Altera Corporation