LMC6084 www.ti.com SNOS657D - AUGUST 2000 - REVISED MARCH 2013 LMC6084 Precision CMOS Quad Operational Amplifier Check for Samples: LMC6084 FEATURES 1 (Typical Unless Otherwise Stated) 2 * * * * * * * Low Offset Voltage: 150 V Operates from 4.5V to 15V Single Supply Ultra Low Input Bias Current: 10 fA Output Swing to within 20 mV of Supply Rail, 100k Load Input Common-Mode Range Includes V- High Voltage Gain: 130 dB Improved Latchup Immunity APPLICATIONS * * * * * * Instrumentation Amplifier Photodiode and Infrared Detector Preamplifier Transducer Amplifiers Medical Instrumentation D/A Converter Charge Amplifier for Piezoelectric Transducers DESCRIPTION The LMC6084 is a precision quad low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6084 ideally suited for precision circuit applications. Other applications using the LMC6084 include precision full-wave rectifiers, integrators, references, and sample-and-hold circuits. This device is built with National's advanced DoublePoly Silicon-Gate CMOS process. For designs with more critical power demands, see the LMC6064 precision quad micropower operational amplifier. For a single or dual operational amplifier with similar features, see the LMC6081 or LMC6082 respectively. PATENT PENDING Connection Diagram Figure 1. 14-Pin PDIP/SOIC Top View Figure 2. Input Bias Current vs Temperature These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright (c) 2000-2013, Texas Instruments Incorporated LMC6084 SNOS657D - AUGUST 2000 - REVISED MARCH 2013 www.ti.com Absolute Maximum Ratings (1) (2) Differential Input Voltage Supply Voltage (V+) +0.3V, (V-) -0.3V Voltage at Input/Output Pin Supply Voltage (V+ - V-) 16V Output Short Circuit to V+ See (3) Output Short Circuit to V- See (4) Lead Temperature (Soldering, 10 Sec.) 260C Storage Temp. Range -65C to +150C Junction Temperature 150C ESD Tolerance (5) 2 kV Current at Input Pin 10 mA Current at Output Pin 30 mA Current at Power Supply Pin 40 mA Power Dissipation See (6) (1) (2) (3) (4) (5) (6) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications. Do not connect output to V+, when V+ is greater than 13V or reliability will be adversely affected. Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150C. Output currents in excess of 30 mA over long term may adversely affect reliability. Human body model, 1.5 k in series with 100 pF. The maximum power dissipation is a function of TJ(Max), JA, and TA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(Max) - TA) /JA. Operating Ratings (1) Temperature Range -55C TJ +125C LMC6084AM -40C TJ +85C LMC6084AI, LMC6084I 4.5V V+ 15.5V Supply Voltage Thermal Resistance (JA) (2) 14-Pin PDIP 81C/W 14-Pin SOIC 126C/W See (3) Power Dissipation (1) (2) (3) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. All numbers apply for packages soldered directly into a PC board. For operating at elevated temperatures the device must be derated based on the thermal resistance JA with PD = (TJ - TA)/JA. All numbers apply for packages soldered directly into a PC board. DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = 0V, VCM = 1.5V, VO = 2.5V and RL > 1M unless otherwise specified. Symbol VOS Parameter Conditions Input Offset Voltage TCVOS Typ (1) LMC6084AM 150 Input Offset Voltage Limit (2) LMC6084AI Limit (2) LMC6084I Limit (2) Units 350 350 800 V 1000 800 1300 Max V/C 1.0 Average Drift IB IOS (1) (2) 2 Input Bias Current 0.010 Input Offset Current pA 100 4 4 Max 100 2 2 Max 0.005 pA Typical values represent the most likely parametric norm. All limits are guaranteed by testing or statistical analysis. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 LMC6084 www.ti.com SNOS657D - AUGUST 2000 - REVISED MARCH 2013 DC Electrical Characteristics (continued) Unless otherwise specified, all limits guaranteed for TJ = 25C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = 0V, VCM = 1.5V, VO = 2.5V and RL > 1M unless otherwise specified. Symbol Parameter Conditions RIN Input Resistance CMRR Common Mode 0V VCM 12.0V Rejection Ratio V+ = 15V Positive Power Supply 5V V+ 15V Rejection Ratio VO = 2.5V Negative Power Supply 0V V- -10V +PSRR -PSRR Typ (1) LMC6084AM LMC6084AI LMC6084I Limit (2) Limit (2) Limit (2) 75 75 66 dB 72 72 63 Min 75 75 66 dB 72 72 63 Min 84 84 74 dB 81 81 71 Min -0.1 -0.1 -0.1 V 0 0 0 Max V+ - 2.3 V+ - 2.3 V+ - 2.3 V Tera >10 85 85 94 Rejection Ratio VCM Input Common-Mode V+ = 5V and 15V Voltage Range for CMRR 60 dB -0.4 V+ - 1.9 + AV Large Signal RL = 2 k (3) VO Output Swing V - 2.5 V - 2.5 Min 400 300 V/mV 300 300 200 Min 180 180 90 V/mV 70 100 60 Min 400 400 200 V/mV 150 150 80 Min 100 100 70 V/mV 35 50 35 Min 4.80 4.80 4.75 V 4.70 4.73 4.67 Min 0.13 0.13 0.20 V 0.19 0.17 0.24 Max 4.50 4.50 4.40 V 4.24 4.31 4.21 Min 0.40 0.40 0.50 V 0.63 0.50 0.63 Max 14.50 14.50 14.37 V 14.30 14.34 14.25 Min 0.26 0.35 0.35 0.44 V 0.48 0.45 0.56 Max 13.90 13.35 13.35 12.92 V 12.80 12.86 12.44 Min 1.16 1.16 1.33 V 1.42 1.32 1.58 Max 16 16 13 mA 8 10 8 Min 16 16 13 mA 11 13 10 Min 28 28 23 mA 18 22 18 Min 28 28 23 mA 19 22 18 Min Sinking 350 Sourcing 1200 V+ = 5V 150 4.87 RL = 2 k to 2.5V 0.10 V+ = 5V 4.61 RL = 600 to 2.5V 0.30 V+ = 15V 14.63 RL = 2 k to 7.5V V+ = 15V RL = 600 to 7.5V 0.79 IO Output Current Sourcing, VO = 0V 22 V+ = 5V Sinking, VO = 5V IO Output Current 21 Sourcing, VO = 0V 30 Sinking, VO = 13V (4) 34 + V = 15V (3) (4) + 400 1400 Sinking + V - 2.6 Sourcing Voltage Gain RL = 600 (3) Units V+ = 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V VO 11.5V. For Sinking tests, 2.5V VO 7.5V. Do not connect output to V+, when V+ is greater than 13V or reliability will be adversely affected. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 3 LMC6084 SNOS657D - AUGUST 2000 - REVISED MARCH 2013 www.ti.com DC Electrical Characteristics (continued) Unless otherwise specified, all limits guaranteed for TJ = 25C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = 0V, VCM = 1.5V, VO = 2.5V and RL > 1M unless otherwise specified. Symbol IS Parameter Supply Current Conditions All Four Amplifiers Typ (1) LMC6084AM LMC6084AI LMC6084I Limit (2) Limit (2) Limit (2) 3.0 3.0 3.0 mA 3.6 3.6 3.6 Max 3.4 3.4 3.4 mA 4.0 4.0 4.0 Max 1.8 V+ = +5V, VO = 1.5V All Four Amplifiers 2.2 V+ = +15V, VO = 7.5V Units AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25C, Boldface limits apply at the temperature extremes. V+ = 5V, V- = 0V, VCM = 1.5V, VO = 2.5V and RL > 1M unless otherwise specified. Symbol Parameter SR Slew Rate GBW Gain-Bandwidth Product m Phase Margin Conditions See (3) (4) Typ (1) 1.5 LMC6084AM LMC6084AI LMC6084I Limit (2) Limit (2) Limit (2) 0.8 0.8 0.8 0.5 0.6 0.6 Units V/s Min 1.3 MHz 50 Deg Amp-to-Amp Isolation See 140 dB en Input-Referred Voltage Noise F = 1 kHz 22 nV/Hz in Input-Referred Current Noise F = 1 kHz 0.0002 pA/Hz T.H.D. Total Harmonic Distortion F = 10 kHz, AV = -10 0.01 % RL = 2 k, VO = 8 VPP 5V Supply (1) (2) (3) (4) 4 Typical values represent the most likely parametric norm. All limits are guaranteed by testing or statistical analysis. V+ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates. Input referred V+ = 15V and RL = 100 k connected to 7.5V. Each amp excited in turm with 1 kHz to produce VO = 12 VPP. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 LMC6084 www.ti.com SNOS657D - AUGUST 2000 - REVISED MARCH 2013 Typical Performance Characteristics Distribution of LMC6084 Input Offset Voltage (TA = +25C) Distribution of LMC6084 Input Offset Voltage (TA = -55C) Figure 3. Figure 4. Distribution of LMC6084 Input Offset Voltage (TA = +125C) Input Bias Current vs Temperature Figure 5. Figure 6. Supply Current vs Supply Voltage Input Voltage vs Output Voltage Figure 7. Figure 8. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 5 LMC6084 SNOS657D - AUGUST 2000 - REVISED MARCH 2013 www.ti.com Typical Performance Characteristics (continued) 6 Common Mode Rejection Ratio vs Frequency Power Supply Rejection Ratio vs Frequency Figure 9. Figure 10. Input Voltage Noise vs Frequency Output Characteristics Sourcing Current Figure 11. Figure 12. Output Characteristics Sinking Current Gain and Phase Response vs Temperature (-55C to +125C) Figure 13. Figure 14. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 LMC6084 www.ti.com SNOS657D - AUGUST 2000 - REVISED MARCH 2013 Typical Performance Characteristics (continued) Gain and Phase Response vs Capacitive Load with RL = 600 Gain and Phase Response vs Capacitive Load with RL = 500 k Figure 15. Figure 16. Open Loop Frequency Response Inverting Small Signal Pulse Response Figure 17. Figure 18. Inverting Large Signal Pulse Response Non-Inverting Small Signal Pulse Response Figure 19. Figure 20. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 7 LMC6084 SNOS657D - AUGUST 2000 - REVISED MARCH 2013 www.ti.com Typical Performance Characteristics (continued) 8 Non-Inverting Large Signal Pulse Response Crosstalk Rejection vs Frequency Figure 21. Figure 22. Stability vs Capacitive Load, RL = 600 Stability vs Capacitive Load RL = 1 M Figure 23. Figure 24. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 LMC6084 www.ti.com SNOS657D - AUGUST 2000 - REVISED MARCH 2013 APPLICATIONS HINTS AMPLIFIER TOPOLOGY The LMC6084 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6084 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6084. Although the LMC6084 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. When high input impedances are demanded, guarding of the LMC6084 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work) The effect of input capacitance can be compensated for by adding a capacitor, Cf, around the feedback resistors (as in Figure 25 ) such that: (1) (2) (3) or R1 CIN R2 Cf Since it is often difficult to know the exact value of CIN, Cf can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance. Figure 25. Cancelling the Effect of Input Capacitance CAPACITIVE LOAD TOLERANCE All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves). Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unity-gain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 26. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 9 LMC6084 SNOS657D - AUGUST 2000 - REVISED MARCH 2013 www.ti.com Figure 26. LMC6084 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads In the circuit of Figure 26, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. Capacitive load driving capability is enhanced by using a pull up resistor to V+ Figure 27. Typically a pull up resistor conducting 500 A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). Figure 27. Compensating for Large Capacitive Loads with a Pull Up Resistor PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6084, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6084's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 28. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 1012, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6084's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 would cause only 0.05 pA of leakage current. See Figure 29 for typical connections of guard rings for standard op-amp configurations. 10 Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 LMC6084 www.ti.com SNOS657D - AUGUST 2000 - REVISED MARCH 2013 Figure 28. Example of Guard Ring in P.C. Board Layout Inverting Amplifier Non-Inverting Amplifier Follower Figure 29. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 30. Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 11 LMC6084 SNOS657D - AUGUST 2000 - REVISED MARCH 2013 www.ti.com Latchup CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6084 is designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility. (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board). Figure 30. Air Wiring Typical Single-Supply Applications (V+ = 5.0 VDC) The extremely high input impedance, and low power consumption, of the LMC6084 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. Figure 31 shows an instrumentation amplifier that features high differential and common mode input resistance (>1014), 0.01% gain accuracy at AV = 1000, excellent CMRR with 1 k imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than 2.5 V/C. R2 provides a simple means of adjusting gain over a wide range without degrading CMRR. R7 is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used. If R1 = R5, R3 = R6, and R4 = R7; then 12 Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 LMC6084 www.ti.com SNOS657D - AUGUST 2000 - REVISED MARCH 2013 AV 100 for circuit shown (R2 = 9.822k). Figure 31. Instrumentation Amplifier Figure 32. Low-Leakage Sample and Hold Figure 33. 1 Hz Square Wave Oscillator Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 13 LMC6084 SNOS657D - AUGUST 2000 - REVISED MARCH 2013 www.ti.com REVISION HISTORY Changes from Revision C (March 2013) to Revision D * 14 Page Changed layout of National Data Sheet to TI format .......................................................................................................... 13 Submit Documentation Feedback Copyright (c) 2000-2013, Texas Instruments Incorporated Product Folder Links: LMC6084 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (C) Device Marking (3) (4/5) (6) LMC6084AIM/NOPB ACTIVE SOIC D 14 55 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 LMC6084 AIM LMC6084AIMX/NOPB ACTIVE SOIC D 14 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 LMC6084 AIM LMC6084IM/NOPB ACTIVE SOIC D 14 55 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 LMC6084IM LMC6084IMX/NOPB ACTIVE SOIC D 14 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 LMC6084IM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 5-Dec-2014 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant LMC6084AIMX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LMC6084IMX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 5-Dec-2014 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LMC6084AIMX/NOPB SOIC D 14 2500 367.0 367.0 35.0 LMC6084IMX/NOPB SOIC D 14 2500 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2020, Texas Instruments Incorporated