June 2001 1 MIC861
MIC861 Micrel
MIC861
Teeny™ Ultra Low Power Op Amp
Preliminary Information
General Description
The MIC861 is a rail-to-rail output, input common-mode to
ground, operational amplifier in
Teeny
™ SC70 packaging.
The MIC861 provides 400kHz gain-bandwidth product while
consuming an incredibly low 4.6µA supply current.
The SC70 packaging achieves significant board space sav-
ings over devices packaged in SOT-23 or MSOP-8 packag-
ing. The SC70 occupies approximately half the board area of
a SOT-23 package.
Features
Teeny
™ SC70 packaging
400kHz gain-bandwidth product
650kHz, –3dB bandwidth
4.6µA supply current
Rail-to-Rail output
Ground sensing at input (common mode to GND)
Drives large capactive loads (1000pF)
Unity gain stable
Applications
Portable equipment
PDAs
Pagers
Cordless Phones
Consumer Electronics
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
Teeny
is a trademark of Micrel, Inc.
Ordering Information
Part Number Marking Ambient Temp. Range* Package
MIC861BC5 A33 –40°C to +85°C SC70-5
Pin Configuration
OUT V+
ININ+
13
45
2
V
A33
Part
Identification
SC-70
Functional Pinout
OUT V+
ININ+
13
45
2
V
MIC861 Micrel
MIC861 2 June 2001
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ V) .........................................+6.0V
Differentail Input Voltage (VIN+ VIN), Note 4......+6.0V
Input Voltage (VIN+ VIN).................. V+ + 0.3V, V 0.3V
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Output Short Circuit Current Duration .................. Indefinite
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 3
Operating Ratings (Note 2)
Supply Voltage (V+ V)........................ +2.43V to +5.25V
Ambient Temperature Range.....................40°C to +85°C
Package Thermal Resistance ...............................450°C/W
Electrical Characteristics
V+ = +2.7V, V = 0V, VCM = V+/2; RL= 500k to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate 40°C TA +85°C.
Symbol Parameter Condition Min Typ Max Units
VOS Input Offset Voltage Note 5 10 210 mV
Input Offset Voltage Temp Coefficient
15 µV/°C
IBInput Bias Current 20 pA
IOS Input Offset Current 10 pA
VCM Input Voltage Range CMRR > 60dB 1.8 V
CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 45 77 dB
PSRR Power Supply Rejection Ratio Supply voltage change of 3V 50 83 dB
AVOL Large-Signal Voltage Gain RL = 100k, VOUT 2V peak to peak 60 74 dB
RL = 500k, VOUT 2V peak to peak 73 83 dB
VOUT Maximum Output Voltage Swing RL = 500k
V+2mV V+0.7mV
V
VOUT Minimum Output Voltage Swing RL = 500k
V+0.2mV V+ 2mV
V
GBW Gain-Bandwidth Product RL = 200k, CL = 2pF, VOUT = 0 350 kHz
BW 3dB Bandwidth AV = 1, CL = 2pF, RL = 1M500 kHz
SR Slew Rate AV = 1, CL = 2pF, RL = 1M0.12 V/µs
ISC Short-Circuit Output Current Source 6 mA
Sink 5 mA
ISSupply Current No Load 4.2 9µA
V+= +5V, V= 0V, VCM= V+/2; RL= 500k to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate 40°C TA +85°C.
VOS Input Offset Voltage Note 5 10 210 mV
Input Offset Voltage Temp Coefficient
15 µV/°C
IBInput Bias Current 20 pA
IOS Input Offset Current 10 pA
VCM Input Voltage Range CMRR > 60dB 4.2 V
CMRR Common-Mode Rejection Ratio 0 < VCM < 3.5V 60 80 dB
PSRR Power Supply Rejection Ratio Supply voltage change of 1V 45 85 dB
AVOL Large-Signal Voltage Gain RL = 100k, VOUT 4.0V peak to peak 60 76 dB
RL = 500k, VOUT 4.0V peak to peak 68 83 dB
VOUT Maximum Output Voltage Swing RL = 500k
V+2mV V+0.7mV
V
VOUT Minimum Output Voltage Swing RL = 500k
V+0.7mV V+ 2mV
V
GBW Gain-Bandwidth Product RL = 200k, CL = 2pF, VOUT = 0 400 kHz
BW 3dB Bandwidth AV = 1, CL = 2pF, RL = 1M650 kHz
June 2001 3 MIC861
MIC861 Micrel
Symbol Parameter Condition Min Typ Max Units
SR Slew Rate AV = 1, CL = 2pF, RL = 1M0.12 V/µs
ISC Short-Circuit Output Current Source 10 24 mA
Sink 10 24 mA
ISSupply Current No Load 4.6 9µA
Note 1. Exceeding the absolute maximum rating may damage the device.
Note 2. The device is not guaranteed to function outside its operating rating.
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensetive
Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
Note 5. The offset voltage distribution is centered around 0V. The typical offset number shown, is equal to the standard deviation of the voltage offset
distribution.
MIC861 Micrel
MIC861 4 June 2001
Test Circuits
50½
RF
FET
PROBE FET
PROBE
0.1µF 10µF
0.1µF 10µF
V+
20k
200k
MIC861
Test Circuit 1. AV = 11
50½
RF
FET
PROBE
0.1µF 10µF
R
L
5k
0.1µF 10µF
V+
20k
20k
MIC861
FET
PROBE
Test Circuit 2:AV = 2
50½
RF
MIC861
FET
PROBE FET
PROBE
0.1µF 10µF
0.1µF 10µF
V+
Test Circuit 3. AV = 1
170k
48k
10k 10k
10µF
0.1µF
10µF
50
50
100µF
0.1µF
10µF
100µF
All resistors:
1% metal film
Output
Input
V+
V
MIC861
BNC
BNC
Test Circuit 5. Positive Power Supply Rejection Ratio Measurement
50½
FET
PROBE
FET
PROBE
0.1µF 10µF
50½
0.1µF 10µF
RF
V+
20k
20k
MIC861
Test Circuit 4. AV = 1
June 2001 5 MIC861
MIC861 Micrel
DC Performance Characteristics
0
1
2
3
4
5
0 5 10 15 20 25 30
OUTPUT VOLTAGE (V)
OUTPUT CURRENT (mA)
Output Voltage vs.
Output Current
85°C
25°C
-40°C
Sinking
0
1
2
3
4
5
0 5 10 15 20 25 30 35 40
OUTPUT VOLTAGE (V)
OUTPUT CURRENT (mA)
Output Voltage vs.
Out
p
ut Current
85°C25°C
-40°C
-
-- -- - ---
Sourcing
0
5
10
15
20
25
30
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
OUTPUT CURRENT (mA)
SUPPLY VOLTAGE (±V)
Short Circuit Current vs.
Supply Voltage
85°C
25°C
-40°C
Sourcing
0
5
10
15
20
25
30
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
OUTPUT CURRENT (mA)
SUPPLY VOLTAGE (±V)
Short Circuit Current vs.
Suppl
y
Volta
g
e
85°C
25°C
-40°C
Sinking
0.5
0.6
0.7
0.8
0.9
1
1.1
0 0.5 1 1.5 2 2.5
OFFSET VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
Offset Voltage vs.
Common-Mode Volta
g
e
85°C
40°C
25°C
V+ = 2.7V
0.5
0.6
0.7
0.8
0.9
1
1.1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
OFFSET VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
Offset Voltage vs.
Common-Mode Voltage
40°C
25°C
V+ = 5V
0
1
2
3
4
5
6
7
8
9
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
OFFSET VOLTAGE (V)
SUPPLY VOLTAGE (V)
Offset Voltage vs.
Suppl
y
Volta
g
e
85°C
25°C
-40°C
0
20
40
60
80
100
0.1 1 10 100 1000 10000
OPEN LOOP GAIN (dB)
RESISTIVE LOAD (k)
Open Loop Gain vs.
Resistive Load
V+ = 5V
V+ = 2.7V
-6
-5
-4
-3
-2
-1
0
-40 -20 0 20 40 60 80 100
OFFSET VOLTAGE (mV)
TEMPERATURE (°C)
Offset Voltage vs.
Temperature
5V
2.7V
0
1
2
3
4
5
6
7
-40 -20 0 20 40 60 80 100
SUPPLY CURRENT (µA)
TEMPERATURE (°C)
Supply Current vs.
Temperature
5V
2.7V
0
5
10
15
20
25
30
-40 -20 0 20 40 60 80 100
SHORT CIRCUIT CURRENT (mA)
TEMPERATURE (°C)
Short Circuit Current
vs. Temperature
5V
2.7V
Sourcing
-30
-25
-20
-15
-10
-5
0
-40 -20 0 20 40 60 80 100
SHORT CIRCUIT CURRENT (mA)
TEMPERATURE (°C)
Short Circuit Current
vs. Temperature
5V
2.7V
Sinking
MIC861 Micrel
MIC861 6 June 2001
AC Perfomance Characteristics
Gain Bandwidth and Phase Margin
FREQUENCY (Hz)
GAIN (dB)
-20
-30
-40
1k 10k
A
V
= 11
V+ = 2.5V
V = 2.5V
C
L
= 2pF
R
F
= 200k
100k 1M
-10
0
10
20
30
40
PHASE (°)
-90
-135
-180
-45
0
45
90
135
180
Gain Bandwidth and Phase Margin
FREQUENCY (Hz)
GAIN (dB)
-20
-30
-40
1k 10k
AV = 11
V+ = 1.35V
V = 1.35V
CL = 2pF
RF = 200k
100k 1M
-10
0
10
20
30
40
PHASE (°)
-90
-135
-180
-45
0
45
90
135
180
25
75
125
175
225
275
325
375
425
1 10 100 1000
GAIN BANDWIDTH (kHz)
CAPACITIVE LOAD (pF)
Gain Bandwidth vs.
Capacitive Load
5V
2.7V
-10
0
10
20
30
40
50
60
70
80
90
PSRR (dB)
FREQUENCY (Hz)
PSRR vs.
Frequenc
y
100k
110 100 1k 10k 1M
V+ = 5V
0
10
20
30
40
50
60
70
80
90
CMRR (dB)
FREQUENCY (Hz)
CMRR vs.
Frequenc
y
100k
110 100 1k 10k 1M
V+= 5V
Gain Frequency Response
FREQUENCY (Hz)
GAIN (dB)
-20
-30
-40
1k 10k
A
V
= 2
V+ = 1.35V
V = 1.35V
C
L
= 2pF
R
F
= 20k
100k 1M
-10
0
10
20
30
40
PHASE (°)
-90
-135
-180
-45
0
45
90
135
180
Gain Bandwidth and Phase Margin
FREQUENCY (Hz)
GAIN (dB)
-20
-30
-40
1k 10k
A
V
= 2
V+ = 2.5V
V = 2.5V
C
L
= 2pF
R
F
= 20k
100k 1M
-10
0
10
20
30
40
PHASE (°)
-90
-135
-180
-45
0
45
90
135
180
June 2001 7 MIC861
MIC861 Micrel
Close-loop Unity Gain Frequency Response
FREQUENCY (Hz)
GAIN (dB)
1µF
0.1µF0.01µF
1000pF
100pF
3pF
0
-3
-6
100 1k 10k 100k 1M 10M
3
6
9
12
15
18 A
V
= 1
V+ = 2.5V
V- = -2.5V
C
L
RF FET Probe
V+
V
Unity Gain Frequency Response
FREQUENCY (Hz)
GAIN (dB)
-20
-30
-40
1k 10k
A
V
= 1
V+ = 2.5V
V = 2.5V
C
L
= 2pF
R
L
= 1M
100k 1M
-10
0
10
20
30
40
PHASE (°)
-90
-135
-180
-45
0
45
90
135
180
Unity Gain Frequency Response
FREQUENCY (Hz)
GAIN (dB)
-20
-30
-40
1k 10k
A
V
= 1
V+ = 1.35V
V = 1.35V
R
L
= 1M
100k 1M
-10
0
10
20
30
40
PHASE (°)
-90
-135
-180
-45
0
45
90
135
180
MIC861 Micrel
MIC861 8 June 2001
Small Signal Pulse Response
Test Circuit 4: AV = -1
TIME 10µs/div
OUTPUT
50mV/div INPUT
50mV/div
AV = -1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 5k
RF = 20k
Small Signal Pulse Response
Test Circuit 4: AV = -1
TIME 10µs/div
OUTPUT
50mV/div INPUT
50mV/div
AV = -1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 5k
RF = 20k
Small Signal Pulse Response
Test Circuit 3: AV = 1
TIME 10µs/div
OUTPUT
50mV/div INPUT
50mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 1M
Small Signal Pulse Response
Test Circuit 3: AV = 1
TIME 10µs/div
OUTPUT
50mV/div INPUT
50mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1M
Small Signal Pulse Response
Test Circuit 3: AV = 1
TIME 10µs/div
OUTPUT
50mV/div INPUT
50mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 50pF
RL = 1M
Small Signal Pulse Response
Test Circuit 3: AV = 1
TIME 250ms/div
OUTPUT
50mV/div INPUT
50mV/div
A
V
= 1
V+ = 2.5V
V- = -2.5V
CL = 50pF
RL = 1M
June 2001 9 MIC861
MIC861 Micrel
Small Signal Pulse Response
Test Circuit 4: AV = -1
TIME 10µs/div
OUTPUT
50mV/div INPUT
50mV/div
AV = -1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1M
RF = 20k
Rail to Rail Output Operation
TIME 250µs/div
OUTPUT
2V/div INPUT
2V/div
AV = 2
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1M
RF = 20k
V
PP
= 5V
Rail to Rail Output Operation
TIME 250µs/div
OUTPUT
2V/div INPUT
2V/div
AV = 2
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 5k
RF = 20k
V
PP
= 5V
Rail to Rail Output Operation
TIME 250µs/div
OUTPUT
2V/div INPUT
2V/div
AV = 2
V+ = 1.35V
V- = -1.35V
C
L
= 2pF
R
L
= 1M
R
F
= 20k
V
PP
= 2.7V
Rail to Rail Output Operation
TIME 250µs/div
OUTPUT
1V/div INPUT
1V/div
AV = 2
V+ = 1.35V
V- = -1.35V
C
L
= 2pF
R
L
= 5k
R
F
= 20k
VPP = 2.7V
Small Signal Pulse Response
Test Circuit 4: AV = -1
TIME 10ms/div
OUTPUT
50mV/div INPUT
50mV/div
AV = -1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 1M
RF = 20k
MIC861 Micrel
MIC861 10 June 2001
Large Signal Pulse Response
Test Circuit 3: AV = 1
TIME 10µs/div
OUTPUT
500mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 100pF
RL = 5k
Positive Slew Rate = 0.14V/µs
Negative Slew Rate = 0.22V/µs
Large Signal Pulse Response
Test Circuit 3: A
V
= 1
TIME 10µs/div
OUTPUT
500mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 100pF
RL = 5k
Positive Slew Rate = 0.13V/µs
Negative Slew Rate = 0.18V/µs
June 2001 11 MIC861
MIC861 Micrel
Applications Information
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best perfor-
mance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resis-
tance). Surface-mount ceramic capacitors are ideal.
MIC861 Micrel
MIC861 12 June 2001
Package Information
0.30 (0.012)
0.10 (0.004)
2.20 (0.087)
1.80 (0.071)
2.40 (0.094)
1.80 (0.071)
1.35 (0.053)
1.15 (0.045)
0.65 (0.0256) BSC
1.00 (0.039)
0.80 (0.032)
0.10 (0.004)
0.00 (0.000)
DIMENSIONS:
MM (INCH)
0.30 (0.012)
0.15 (0.006)
0.18 (0.007)
0.10 (0.004)
1.10 (0.043)
0.80 (0.032)
SC70-5
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2001 Micrel Incorporated