2001.8.30 Step-up DC/DC Controller R1211X Series OUTLINE The R1211X Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1211X Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Phase compensation has been made internally in the R1211X002B/D Series, while phase compensation can be made externally as for R1211X002A/C Series. B/D version has stand-by mode. Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211X Series latch the external driver with its off state, or Latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again. FEATURES Standby Current * * * * * * * * * * * * * * * * * TYP. 0A (for B/D version) Input Voltage Range * * * * * * * * * * * * * * * 2.5V to 6.0V Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) Two Options of Basic Oscillator Frequency * * 300kHz, 700kHz Max Duty Cycle * * * * * * * * * * * * * * * * * * Typ. 90% High Reference Voltage Accuracy * * * * * * * 1.5% U.V.L.O. Threshold level * * * * * * * * * * * * * Typ. 2.2V (Hysteresis TYP. 0.13V) Small Package * * * * * SOT-23-6W or thin (package height MAX. 0.85mm) SON-6 (Under Development) APPLICATIONS Constant Voltage Power Source for portable equipment. Constant Voltage Power Source for LCD and CCD. Rev. 1.10 -1- BLOCK DIAGRAMS Version A VFB OSC EXT DTC AMPOUT VIN Vref GND UVLO Latch DELAY Version B VFB OSC EXT DTC VIN Vref GND UVLO CE Chip Enable Latch DELAY Rev. 1.10 -2- SELECTION GUIDE In the R1211X Series, the oscillator frequency, the optional function, and the package type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R1211X002X-TR a Code a b b Contents Designation of Package Type: D: SON-6 N: SOT23-6W Designation of Optional Function A : 700kHz, with AMPOUT pin (External Phase Compensation Type) B : 700 kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) C : 300kHz, with AMPOUT pin (External Phase Compensation Type) D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) PIN CONFIGURATIONS SON-6 SOT-23-6W 6 EXT 1 DELAY 2 GND 3 EXT AMPOUT/CE (MARK SIDE) GND 4 VIN 6 VFB 5 VIN 4 (MARK SIDE) DELAY 1 Rev. 1.10 5 -3- AMPOUT/CE 2 VFB 3 PIN DESCRIPTIONS Pin No. SON6 1 2 3 4 5 6 Symbol SOT23-6W 1 DELAY 5 GND 6 EXT 4 VIN 3 VFB 2 AMPOUT or CE Description Pin for External Capacitor (for Setting Output Delay of Protection) Ground Pin External FET Drive Pin (CMOS Output) Power Supply Pin Feedback Pin for monitoring Output Voltage Amplifier Output Pin(A/C Version) or Chip Enable Pin(B/D Version, Active at "H") ABSOLUTE MAXIMUM RATINGS Symbol VIN VEXT VDLY VAMP VCE VFB IAMP IEXT PD Topt Tstg Rev. 1.10 Item VIN Pin Voltage EXT Pin Output Voltage DELAY Pin Voltage AMPOUT Pin Voltage CE Pin Input Voltage VFB Pin Voltage AMPOUT Pin Current EXT Pin Inductor Drive Output Current Power Dissipation Operating Temperature Range Storage Temperature Range -4- Rating 6.5 -0.3VIN+0.3 -0.3VIN+0.3 -0.3VIN+0.3 -0.3VIN+0.3 -0.3VIN+0.3 10 50 250 -40+85 -55+125 Unit V V V V V V mA mA mW C C ELECTRICAL CHARACTERISTICS R1211X002A Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance VFB/ VFB Voltage Temperature Coefficient T IFB VFB Input Current fOSC Oscillator Frequency fOSC/ Oscillator Frequency Temperature Coefficient T IDD1 Supply Current 1 maxdty Maximum Duty Cycle REXTH EXT "H" ON Resistance Conditions VIN=3.3V -40C Topt 85C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C Topt 85C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA MIN. 2.5 0.985 -0.1 595 82 TYP. 1.000 150 (Topt=25C) MAX. Unit 6.0 V 1.015 V ppm/C 0.1 805 A kHz kHz/C 600 90 5 900 94 10 A % 3 6 700 1.4 REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.5 5.0 7.5 A IDLY2 Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V at 90% of rising edge VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V 0.95 4.5 2.1 0.08 0.45 30 1.00 9.0 2.2 0.13 0.90 60 1.05 13.5 2.3 0.18 1.50 90 V ms V V mA A VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current Rev. 1.10 -5- R1211X002B Symbol Item Conditions MIN. TYP. VIN Operating Input Voltage VFB VFB Voltage Tolerance VIN=3.3V VFB/ T IFB VFB Voltage Temperature Coefficient VFB Input Current -40C Topt 85C VIN=6V, VFB=0V or 6V -0.1 fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 595 Oscillator Frequency Temperature Coefficient Supply Current 1 -40C Topt 85C 1.4 VIN=6V, VDLY=VFB=0V, EXT at no load 600 900 A 90 94 % fOSC/ T IDD1 2.5 (Topt=25C) MAX. Unit 0.985 1.000 6.0 V 1.015 V 150 700 ppm/C 0.1 A 805 kHz kHz/C maxdty Maximum Duty Cycle VIN=3.3V, EXT "H" side REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=-20mA 5 10 REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6 IDLY1 IDLY2 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.5 2.5 5.0 5.5 7.5 9.0 A mA VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V2V 0.95 1.00 1.05 V Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage VIN=3.3V VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V6V VIN=2.5V, VCE=2V0V 4.5 2.1 0.08 9.0 2.2 0.13 0 13.5 2.3 0.18 1 0.5 0.5 ms V V A A A V V TSTART VUVLO1 VUVLO2 ISTB ICEH ICEL VCEH VCEL Rev. 1.10 -6- 82 -0.5 -0.5 1.5 0.3 R1211X002C Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance VFB/ VFB Voltage Temperature Coefficient T IFB VFB Input Current fOSC Oscillator Frequency fOSC/ Oscillator Frequency Temperature Coefficient T IDD1 Supply Current 1 maxdty Maximum Duty Cycle REXTH EXT "H" ON Resistance Conditions VIN=3.3V -40C Topt 85C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C Topt 85C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA MIN. 2.5 0.985 -0.1 240 82 TYP. 1.000 150 (Topt=25C) MAX. Unit 6.0 V 1.015 V ppm/C 0.1 360 A kHz kHz/C 300 90 5 500 94 10 A % 3 6 300 0.6 REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.0 4.5 7.0 A IDLY2 Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V 0.95 5.0 2.1 0.08 0.45 25 1.00 10.5 2.2 0.13 0.90 50 1.05 16.0 2.3 0.18 1.50 75 V ms V V mA A VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current Rev. 1.10 -7- R1211X002D Symbol Item Conditions MIN. TYP. Unit 6.0 V 1.015 V VIN Operating Input Voltage VFB VFB Voltage Tolerance VIN=3.3V VFB/ T IFB VFB Voltage Temperature Coefficient VFB Input Current -40C Topt 85C VIN=6V, VFB=0V or 6V -0.1 fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 240 Oscillator Frequency Temperature Coefficient Supply Current 1 -40C Topt 85C 0.6 VIN=6V, VDLY=VFB=0V, EXT at no load 300 500 A 90 94 % fOSC/ T IDD1 2.5 MAX. 0.985 1.000 150 300 ppm/C 0.1 A 360 kHz kHz/C maxdty Maximum Duty Cycle VIN=3.3V, EXT "H" side REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=-20mA 5 10 REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6 IDLY1 IDLY2 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V 2.0 2.5 4.5 5.5 7.0 9.0 A mA VDLY Delay Pin Detector Threshold 0.95 1.00 1.05 V TSTART Soft-start Time VIN=3.3V VUVLO1 UVLO Detector Threshold VIN=3.3V0V, VDLY=VFB=0V 5.0 2.1 10.5 2.2 16.0 2.3 ms V VUVLO2 ISTB ICEH ICEL VCEH VCEL 0.08 0.13 0 0.18 1 0.5 0.5 V A A A V V UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Rev. 1.10 VIN=3.3V, VFB=0V, VDLY=0V2V VIN=0V3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V6V VIN=2.5V, VCE=2V0V -8- 82 -0.5 -0.5 1.5 0.3 TYPICAL APPLICATIONS AND TECHNICAL NOTES Inductor C1 Diode VIN EXT DELAY VFB C4 NMOS R1 C3 C2 R3 R2 GND AMPOUT C5 R4 NMOS: IRF7601 (International Rectifier) Inductor : LDR655312T-100 10H (TDK) for R1211X002A : LDR655312T-220 22H (TDK) for R1211X002C Diode: CRS02 (Toshiba) C1: 4.7F (Ceramic) R1: Output Voltage Setting Resistor 1 C2: 0.22F (Ceramic) R2: Output Voltage Setting Resistor 2 C3: 10F (Ceramic) R3: 30k C4: 680pF(Ceramic) R4: 30k C5: 2200pF(Ceramic) Inductor VIN C1 DELAY Diode EXT NMOS C4 C3 VFB C2 R3 GND R1 CE R2 CE Control NMOS: IRF7601 (International Rectifier) Inductor: LDR655312T-100 10H (TDK) for R1211X002B LDR655312T-220 22H (TDK) for R1211X002D Diode: CRS02 (Toshiba) C1: 4.7F (Ceramic) R1: Setting Output Voltage Resistor1 C2: 0.22F (Ceramic) R2: Setting Output Voltage Resistor2 C3: 10F (Ceramic) R3 : 30k C4: 680pF(Ceramic) [Note] These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose other external components. Rev. 1.10 -9- Use a 1F or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical applications above. In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance. Connect a 1F or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the previous page. (Recommended value is from 10F to 22F.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type. Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is between 100pF and 1000pF. Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical applications of the previous page. Refer to the next formula. Output Voltage = VFBx(R1+R2)/R2 R1+R2=100k is recommended range of resistances. The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of B/D version. Otherwise, restart with power on. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2xVDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". As for R1211X002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram are just an example combination. These are for making phase compensation. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the range from 10k to 50k. Then, noise level will be decreased. As for R1211X002B/D version, EXT pin outputs GND level at standby mode. Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type, and with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting voltage or more. The performance of power circuit with using this IC depends on external components. Choose the most suitable components for your application. Rev. 1.10 - 10 - Output Current and Selection of External Components i2 Diode Inductor IOUT VOUT VIN i1 CL Lx Tr GND Discontinuous Mode Continuous Mode ILxmax IL IL ILxmax ILxmin ILxmin Tf Iconst t Ton t Ton Toff Toff T=1/fosc T=1/fosc There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN xt/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. TON 2 PON=VIN xt/L dt Formula 1 0 With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT-VIN)xt/L, therefore electric power, POFF is described as in next formula. Tf POFF=VINx(VOUT-VIN)xt/L dt Formula 2 0 In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, PAV is described as in the next formula. TON 2 Tf PAV=1/(Ton+Toff)x{VIN xt/L dt + VINx(VOUT-VIN)xt/L dt} Formula 3 0 0 In PWM control, when Tf=Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time. VINxTon/L=(VOUT-VIN)xToff/L Formula 4 Further, the electric power, PAV is equal to output electric power, VOUTxIOUT, thus, 2 2 2 IOUT = fOSC x VIN xTON /{2xL x(VOUT-VIN)}=VIN xTON/(2xLxVOUT) Formula 5 When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes Rev. 1.10 - 11 - continuous. The continuous current through the inductor is described as Iconst, then, 2 2 IOUT = fOSC xVIN xtON /(2xLx(VOUT-VIN))+VINxIconst/VOUT Formula 6 In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILxmax = Iconst +VINxTon/L Formula 7 With the formula 4,6, and ILxmax is, ILxmax = VOUT/VINxIOUT+VINxTon/(2xL) Formula 8 Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. TIMING CHART R1211X002A/R1211X002C DTC VREF SS EXT VOUT EXT VFB R1 R2 AMPOUT PWM Comparator OP AMP R1211X002B/R1211X002D DTC VREF SS EXT VOUT EXT VFB AMPOUT R1 R2 OP AMP PWM Comparator Soft-start operation is starting from power-on as follows: (Step1) The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on, therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT is at "L", and switching does not start. (Step2) Rev. 1.10 - 12 - When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM comparator. (Step3) When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching operation becomes normal mode. SS,VREF SS VFB,VREF DTC VFB AMPOUT AMPOUT Step1 Step2 VOUT V IN The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of R1211X002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY pin is fixed at GND level. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2xVDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". Output Short AMPOUT AMPOUT VDLY DTC Normal DELAY maxduty Operation EXT Rev. 1.10 - 13 - Latched TEST CIRCUITS R1211X002A/R1211X002C *Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test 3.3V VIN *Consumption Current Test 6V A EXT VIN OSC OSCILLOSCO ILLOSCOPE VFB VFB GND DELAY GND DELAY *EXT "H" ON Resistance *EXT "L" ON Resistance 3.3V 3.3V VIN EXT VIN EXT 150 OSC OSCILLOSCO ILLOSCOPE 150 V FB V GND GND DELAY DELAY *DELAY Pin Charge Current *DELAY PIn Discharge Current 3.3V 2.5V VIN VIN VFB VFB GND V FB DELAY GND DELAY A A 0.1V Rev. 1.10 - 14 - *DELAY Pin Detector Threshold Voltage Test *AMP "H" Output Current/"L" Output Current Test 3.3V 3.3V VIN EXT VIN AMPOUT OSC OSCILLOSC OPE A V FB 1V V FB GND DELAY GND DELAY *UVLO Detector Threshold/Hysteresis Range Test VIN EXT OSC OSCILLOSC OPE V FB GND DELAY *Soft-start Time Test Coil Diode C 5 VIN C2 NMOS Rout EXT C1 AMPOUT C3 V FB GND V OUT DELAY C4 R1 R4 R3 Inductor (L) Diode (SD) Capacitors R2 : 22H (TDK LDR655312T-220) : CRS02 (Toshiba) C1: 680pF(Ceramic), C2: 22F (Tantalum)+2.2F (Ceramic), C3: 68F (Tantalum)+2.2F (Ceramic), C4: 2200pF(Ceramic), C5: 22F(Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90k, R2:10k, R3:30k, R4:30k, Rout:1k/330 Rev. 1.10 - 15 - OSC OSCILLOSCOPE ILLOSCOPE R1211X002B/R1211X002D *Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test 6V 3.3V VIN *Consumption Current Test EXT CE A VIN CE OSC OSCILLOSCOPE ILLOSCOPE V FB V FB GND DELAY GND DELAY *EXT "H" ON Resistance *EXT "L" ON Resistance 3.3V 3.3V VIN EXT VIN OSC OSCILLOSCOPE ILLOSCOPE CE 150 CE 150 V FB EXT V FB GND DELAY V GND DELAY *DELAY Pin Charge Current *DELAY PIn Discharge Current 2.5V 3.3V VIN VIN CE CE V FB V FB GND DELAY GND DELAY A A 0.1V Rev. 1.10 - 16 - *DELAY Pin Detector Threshold Voltage Test *Standby Current Test 3.3V 6V V IN EXT A VIN CE CE OSC OSCILLOSCOPE ILLOSCOPE V FB V FB GND DELAY GND DELAY *UVLO Detector Threshold/Hysteresis Range Test * CE "L" Input Current/"H" Input Current Test EXT VIN VIN CE OSC OSCILLOSCOPE ILLOSCOPE CE VFB A 0V/6V V FB GND DELAY GND DELAY *CE "L" Input Voltage/"H" Input Voltage Test VIN EXT CE OSC OSCILLOSCO ILLOSCOPE V FB GND DELAY *Soft-start Time Test VOUT Coil C5 C2 NMOS VIN C3 OSC OSCILLOSCO ILLOSCOPE EXT CE Rout C1 R1 0V/3.3V V FB R3 R2 GND DELAY Rev. 1.10 - 17 - Inductor (L) Diode (SD) Capacitors : 22H (TDK LDR655312T-220) : CRS02 (Toshiba) C1: 680pF(Ceramic), C2: 22F (Tantalum)+2.2F (Ceramic), C3: 68F (Tantalum)+2.2F (Ceramic), C5: 22F (Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90k, R2: 10k, R3: 30k TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current Output Voltage VOUT [V] L=10uH VOUT =5V R1211X002A 5 VIN=2.5V VIN=3.3V 4.9 10 100 Output Current IOUT [mA] VIN=2.5V VIN=3.3V VIN=5.0V 1000 L=10uH VOUT=15V 1 10 100 Output Current IOUT [mA] R1211X002B 15 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1000 L=10uH VOUT =5V 5.1 Output Voltage VOUT [V] R1211X002A 15.3 Output Voltage VOUT [V] 10 9.8 1 5 VIN=2.5V VIN=3.3V 4.9 10 100 Output Current IOUT [mA] R1211X002B 10.2 1000 1 10 100 Output Current IOUT [mA] R1211X002B L=10uH VOUT=10V 15.3 Output Voltage VOUT[V] 1 Output Voltage VOUT [V] L=10uH VOUT=10V 10.2 Output Voltage VOUT [V] R1211X002A 5.1 10 VIN=2.5V VIN=3.3V VIN=5.0V Rev. 1.10 10 100 Output Current IOUT [mA] 1000 V IN=2.5V V IN=3.3V V IN=5.0V 14.7 1 - 18 - L=10uH V OUT=15V 15 9.8 1 1000 10 100 Output Current IOUT [mA] 1000 Output Voltage VOUT [V] R1211X002C L=22uH VOUT=5V 10.2 Output Voltage VOUT [V] R1211X002C 5.1 5 VIN=2.5V VIN=3.3V 10 100 Output Current IOUT [mA] VIN=2.5V VIN=3.3V VIN=5.0V R1211X002C 15.3 1 1000 10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=15V 5.1 Output Voltage VOUT [V] 1 Output Voltage VOUT [V] 10 9.8 4.9 15 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1000 L=22uH VOUT=5V 5 VIN=2.5V VIN=3.3V 4.9 10 100 Output Current IOUT [mA] R1211X002D 10.2 1000 L=22uH VOUT=10V 1 10 100 Output Current IOUT [mA] R1211X002D 15.3 Output Voltage VOUT [V] 1 Output Voltage VOUT [V] L=22uH VOUT=10V 10 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1000 L=22uH VOUT=15V 15 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1 Rev. 1.10 10 100 Output Current IOUT [mA] 1000 1 - 19 - 10 100 Output Current IOUT [mA] 1000 2) Efficiency vs. Output Current R1211X002A 100 L=10uH VOUT=5V R1211X002A 100 80 Efficiency [%] Efficiency [%] 80 60 40 20 VIN=2.5V VIN=3.3V 40 VIN=2.5V VIN=3.3V VIN=5.0V 0 1 10 100 Output Current IOUT [mA] R1211X002A 1 1000 L=10uH VOUT=15V 100 10 100 Output Current IOUT [mA] R1211X002B 100 1000 L=10uH VOUT=5V 80 Efficiency [%] 80 Efficiency [%] 60 20 0 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 60 40 VIN=2.5V VIN=3.3V 20 0 0 1 10 100 Output Current IOUT [mA] R1211X002B 100 1 1000 L=10uH VOUT=10V 10 100 Output Current IOUT [mA] R1211X002B 100 1000 L=10uH VOUT=15V 80 Efficiency [%] 80 Efficiency [%] L=10uH VOUT=10V 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 0 0 1 Rev. 1.10 10 100 Output Current IOUT [mA] 1000 - 20 - 1 10 100 Output Current IOUT [mA] 1000 R1211X002C R1211X002C L=22uH VOUT=5V 100 60 VIN=2.5V 40 VIN=3.3V VIN=2.5V 0 0 10 100 Output Current IOUT [mA] R1211X002C VIN=3.3V 40 20 100 VIN=5.0V 1 1000 L=22uH VOUT=15V 10 100 Output Current IOUT [mA] R1211X002D 100 1000 L=22uH VOUT=5V 80 Efficiency [%] 80 Efficiency [%] 60 20 1 60 VIN=2.5V 40 VIN=3.3V VIN=5.0V 20 60 40 VIN=2.5V VIN=3.3V 20 0 0 1 10 100 Output Current IOUT [mA] R1211X002D 100 1000 L=22uH VOUT=10V 1 10 100 Output Current IOUT [mA] R1211X002D 100 1000 L=22uH VOUT=15V 80 Efficiency [%] 80 Efficiency [%] L=22uH VOUT=10V 80 80 Efficiency [%] Efficiency [%] 100 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 60 40 VIN=2.5V VIN=3.3V VIN=5.0V 20 0 0 1 Rev. 1.10 10 100 Output Current IOUT [mA] 1 1000 - 21 - 10 100 Output Current IOUT [mA] 1000 3) VFB Voltage vs. Input Voltage (Topt =25C) R1211X002X 1015 VFB Voltage [mV] 1010 1005 1000 995 990 985 2 3 4 5 Input Voltage VIN [V] 6 4) Oscillator Frequency vs. Input Voltage (Topt=25C) R1211X002A/B R1211X002C/D 400 Oscillator Frequency[kHz] Oscillator Frequency [kHz] 900 800 700 600 350 300 250 200 500 2 3 4 5 2 6 3 Input Voltage VIN [V] 4 5 Input Voltage VIN [V] 6 5) Supply Current vs. Input Voltage (Topt=25C) R1211X002B 600 500 500 Supply Current [uA] Supply Current [uA] R1211X002A 600 400 300 200 400 300 200 100 100 0 0 2 Rev. 1.10 3 4 5 Input Voltage VIN [V] 2 6 - 22 - 3 4 5 Input Voltage VIN [V] 6 R1211X002C R1211X002D 400 300 300 Supply Current [uA] Supply Current [uA] 400 200 200 100 100 0 0 2 3 4 5 Input Voltage VIN [V] 2 6 3 4 5 Input Voltage VIN [V] 6 6) Maximum Duty Cycle vs. Input Voltage (Topt=25C) R1211X002A/B R1211X002C/D 94 94 Maximum Duty Cycle [%] 96 Maximum Duty Cycle [%] 96 92 90 88 86 84 90 88 86 84 82 82 80 80 2 3 4 5 Input Voltage VIN [V] 2 6 7) VFB Voltage vs. Temperature R1211X002X VIN=3.3V 1015 1010 VFB Voltage [mV] 92 1005 1000 995 990 985 -50 Rev. 1.10 -25 0 25 50 75 Temperature Topt (C) 100 - 23 - 3 4 5 Input Voltage VIN [V] 6 8) Oscillator Frequency vs. Temperature R1211X002A/B VIN=3.3V R1211X002C/D VIN=3.3V 400 Oscillator Frequency [kHz] Oscillator Frequency[kHz] 900 800 700 600 500 350 300 250 200 -50 -25 0 25 50 Temperature Topt (C) 75 100 -50 -25 0 25 50 75 Temperature Topt (C) 100 9) Supply Current vs. Temperature R1211X002B 600 500 500 VIN=3.3V 400 400 300 300 200 200 100 100 0 0 -50 -25 0 25 50 75 Temperature Topt (C) R1211X002C -50 100 VIN=3.3V -25 0 25 50 Temperature Topt (C) R1211X002D 400 400 300 300 Supply Current [uA] Supply Current [uA] VIN=3.3V Supply Current [uA] Supply Current[uA] R1211X002A 600 200 100 75 100 75 100 VIN=3.3V 200 100 0 0 -50 Rev. 1.10 -25 0 25 50 75 Temperature Topt (C) 100 - 24 - -50 -25 0 25 50 Temperature Topt(C) 10) Maximum Duty Cycle vs. Temperature VIN=3.3V R1211X002C/D 96 94 94 Maximum Duty Cycle [%] Maximum Duty Cycle [%] R1211X002A/B 96 92 90 88 86 84 82 90 88 86 84 80 -50 -25 0 25 50 Temperature Topt (C) 75 100 -50 11) EXT"H" Output Current vs. Temperature R1211X002X VIN=3.3V 8 EXT"H"ON Resistance [ohm] 92 82 80 7 6 5 4 3 2 -50 -25 0 25 50 Temperature Topt (C) 75 100 12) EXT"L" Output Current vs. Temperature R1211X002X VIN=3.3V 5 EXT"L"ON Resistance [ohm] VIN=3.3V 4 3 2 1 -50 -25 0 25 50 75 100 Temperature Topt(C) Rev. 1.10 - 25 - -25 0 25 50 Temperature Topt(C) 75 100 13) Soft-start Time vs. Temperature VIN=3.3V R1211X002C/D 16 14 14 Soft-start Time [ms] Soft-start Time [ms] R1211X002A/B 16 12 10 8 12 10 8 6 6 -50 -25 0 25 50 Temperature Topt (C) 75 100 14) UVLO Detector Threshold vs. Temperature R1211X002X VIN=3.3V UVLO Detector Threshold [mV] 2300 2250 2200 2150 2100 -50 -25 0 25 50 Temperature Topt(C) 75 100 15) AMP "H" Output Current vs. Temperature R1211X002A/C VIN=3.3V 1600 AMP"H" Output Current [uA] VIN=3.3V 1400 1200 1000 800 600 400 -50 Rev. 1.10 -25 0 25 50 75 Temperature Topt (C) 100 - 26 - -50 -25 0 25 50 Temperature Topt(C) 75 100 16) AMP "L" Output Current vs. Temperature VIN=3.3V R1211X002C 80 70 70 AMP"L" Output Current [uA] AMP"L" Output Current [uA] R1211X002A 80 60 50 40 30 VIN=3.3V 60 50 40 30 20 20 -50 -50 -25 0 25 50 Temperature Topt (C) 75 -25 0 100 25 50 75 Temperature Topt (C) 100 17) DELAY Pin Charge Current vs. Temperature R1211X002A/B VIN=3.3V R1211X002C/D VIN=3.3V 7 DELAY Pin Charge Current [uA] DELAY Pin Charge Current [uA] 7 6 5 4 3 6 5 4 3 2 2 -50 -50 -25 0 25 50 Temperature Topt (C) 75 100 VIN=3.3V DELAY Pin Detector Threshold [mV] 1040 1020 1000 980 960 -50 Rev. 1.10 -25 0 25 50 75 Temperature Topt (C) 0 25 50 Temperature Topt (C) 18) DELAY Pin Detector Threshold vs. Temperature R1211X002X -25 100 - 27 - 75 100 19) DELAY Pin Discharge Current vs. Temperature DELAY Pin Discharge Current [uA] R1211X002X VIN=2.5V 10 8 6 4 2 0 -50 -25 0 25 50 Temperature Topt (C) 75 100 20) CE "L" Input Voltage vs. Temperature R1211X002B/D VIN=2.5V CE"L" Input Voltage [mV] 1200 1100 1000 900 800 700 600 -50 -25 0 25 50 75 Temperature Topt (C) 100 21) CE "H" Input Voltage vs. Temperature R1211X002B/D VIN=6.0V CE"H" Input Voltage [mV] 1200 1100 1000 900 800 700 600 -50 Rev. 1.10 -25 0 25 50 75 Temperature Topt (C) 100 - 28 - 22) Standby Current vs. Temperature R1211X002B/D VIN=6.0V 1 Standby Current [uA] 0.8 0.6 0.4 0.2 0 -0.2 -50 -25 0 25 50 Temperature Topt (C) 75 100 23) Load Transient Response L=10uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA 5.6 300 Output Current IOUT [mA] Output Voltage VOUT [V] R1211X002A 200 VOUT 5.0 100 IOUT 4.4 0 Output Voltage VOUT [V] R1211X002A L=10uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA 11.2 VOUT 300 200 10.0 100 IOUT 8.8 0 Output Current IOUT [mA] Time [5ms/div] Output Voltage VOUT [V] R1211X002A L=10uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA 16.8 VOUT 300 200 15.0 100 IOUT 13.2 0 Time [5ms/div] Rev. 1.10 - 29 - Output Current IOUT [mA] Time [5ms/div] Output Voltage VOUT [V] 5.6 200 VOUT 5.0 300 Output Current IOUT [mA] L=10uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA R1211X002B 100 IOUT 4.4 0 L=10uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA Output Voltage VOUT [V] R1211X002B 11.2 300 200 VOUT 10.0 100 8.8 IOUT 0 Output Current IOUT [mA] Time [5ms/div] L=10uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA Output Voltage VOUT [V] R1211X002B 16.8 200 VOUT 15.0 300 100 13.2 IOUT 0 Output Current IOUT [mA] Time [5ms/div] L=22uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA Output Voltage VOUT [V] R1211X002C 5.6 VOUT 300 200 5.0 100 IOUT 4.4 0 Time [5ms/div] Rev. 1.10 - 30 - Output Current IOUT [mA] Time [5ms/div] Output Voltage VOUT [V] 11.2 VOUT 300 200 10.0 100 IOUT 8.8 0 Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA R1211X002C L=22uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA Output Voltage VOUT [V] R1211X002C 16.8 300 200 VOUT 15.0 100 13.2 IOUT 0 Output Current IOUT [mA] Time [5ms/div] L=22uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA Output Voltage VOUT [V] R1211X002D 5.6 300 200 VOUT 5.0 100 IOUT 4.4 0 Output Current IOUT [mA] Time [5ms/div] L=22uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA Output Voltage VOUT [V] R1211X002D 11.2 VOUT 300 200 10.0 100 IOUT 8.8 0 Time [5ms/div] Rev. 1.10 - 31 - Output Current IOUT [mA] Time [5ms/div] Output Voltage VOUT [V] 16.8 300 VOUT 200 15.0 100 IOUT 13.2 0 Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA R1211X002D Time [5ms/div] 24) Power-on Response R1211X002A L=10uH VIN=3.3V , IOUT=10mA 16 12 10 (b)VOUT=10V 8 (a)VOUT=5V 6 4 2 (c)VOUT=15V 12 10 8 (b)VOUT=10V 6 (a)VOUT=5V 4 2 VIN 0 VIN 0 0 5 10 15 20 25 0 5 Time [5ms/div] R1211X002C 16 R1211X002D 16 15 20 25 Output Voltage [V] 12 10 8 (b)VOUT=10V 6 (a)VOUT=5V L=22uH VIN=3.3V , IOUT=10mA 14 (c)VOUT=15V 4 2 10 Time [5ms/div] L=22uH VIN=3.3V , IOUT=10mA 14 Output Voltage [V] L=10uH VIN=3.3V , IOUT=10mA 14 (c)VOUT=15V Output Voltage [V] Output Voltage [V] 14 R1211X002B 16 (c)VOUT=15V 12 10 (b)VOUT=10V 8 6 (a)VOUT=5V 4 2 VIN 0 VIN 0 0 5 10 15 Time [5ms/div] 20 25 0 5 10 15 Time [5ms/div] Rev. 1.10 - 32 - 20 25 25) Turn-on speed with CE pin R1211X002B L=10uH VIN=3.3V , IOUT=10mA 16 12 10 (b)VOUT=10V 8 6 (a)VOUT=5V 4 2 L=22uH VIN=3.3V , IOUT=10mA 14 (c)VOUT=15V Output Voltage [V] Output Voltage [V] 14 R1211X002D 16 (c)VOUT=15V 12 10 (b)VOUT=10V 8 6 (a)VOUT=5V 4 2 CE 0 CE 0 0 5 10 15 20 25 5 10 15 Time [5ms/div] Time [5ms/div] Rev. 1.10 0 - 33 - 20 25