07/22/10
www.irf.com 1
HEXFET® Power MOSFET
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
Description
lAdvanced Process Technology
lUltra Low On-Resistance
l175°C Operating Temperature
lFast Switching
lRepetitive Avalanche Allowed up to Tjmax
lLead-Free
Features
IRF2903ZPbF
VDSS = 30V
RDS(on) = 2.4m
ID = 75A
S
D
G
GDS
Gate Drain Source
TO-220AB
IRF2903ZPbF
D
S
D
G
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 10C Continuous Drain Current, VGS @ 10V (Silicon Limited) A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
c
PD @TC = 25°C Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS (Thermally limited) Single Pulse Avalanche Energy
d
mJ
EAS (Tested ) Single Pulse Avalanche Energy Tested Value
h
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Energy
g
mJ
TJ Operating Junction and
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
i
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
j
––– 0.51
RθCS Case-to-Sink, Flat, Greased Surface
i
0.50 ––– °C/W
RθJA Junction-to-Ambient
ij
––– 62
-55 to + 175
300 (1.6mm from case )
10 lbf
y
in (1.1N
y
m)
290
2.0
± 20
Max.
260
180
1020
75
820
290
See Fig.12a, 12b, 15, 16
PD -96097A
IRF2903ZPbF
2www.irf.com
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(
BR
)
DSS Drain-to-Source Breakdown Voltage 30 ––– ––– V
V
(
BR
)
DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C
RDS
(
on
)
Static Drain-to-Source On-Resistance ––– 1.9 2.4 m
VGS
(
th
)
Gate Threshold Voltage 2.0 ––– 4.0 V
gfs Forward Transconductance 120 ––– ––– S
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– –– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Q
g
Total Gate Charge ––– 160 240
Q
g
sGate-to-Source Charge ––– 51 ––– nC
Q
g
dGate-to-Drain ("Miller") Charge ––– 58 –––
td
(
on
)
Turn-On Delay Time ––– 24 –––
trRise Time ––– 100 –––
td
(
off
)
Turn-Off Delay Time ––– 48 ––– ns
tfFall Time –37–
LDInternal Drain Inductance ––– 4.5 –– Between lead,
nH 6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 –– from package
and center of die contact
Ciss Input Capacitance ––– 6320 ––
Coss Output Capacitance ––– 1980 ––
Crss Reverse Transfer Capacitance ––– 1100 –– pF
Coss Output Capacitance ––– 5930 ––
Coss Output Capacitance ––– 2010 ––
Coss eff. Effective Output Capacitance ––– 3050 ––
Source-Drain Ratin
g
s and Characteristics
Parameter Min. Typ. Max. Units
I
Continuous Source Current ––– ––– 75
(Body Diode) A
I
S
MPulsed Source Current ––– ––– 1020
(Body Diode)
c
V
S
DDiode Forward Voltage ––– –– 1.3 V
tr
r
Reverse Recovery Time ––– 34 51 ns
Qr
r
Reverse Recovery Charge ––– 29 44 nC
t
o
nForward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VDS = 10V, ID = 75A
ID = 75A
VDS = 24V
Conditions
VGS = 10V
e
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 2C, IS = 75A, VGS = 0V
e
TJ = 2C, IF = 75A, VDD = 15V
di/dt = 100A/µs
e
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 75A
e
VDS = VGS, ID = 150µA
VDS = 30V, VGS = 0V
VDS = 30V, VGS = 0V, TJ = 125°C
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 24V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 24V
f
VGS = 10V
e
VDD = 15V
ID = 75A
RG = 3.2
Repetitive rating; pulse width limited by max. junction
temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.10mH RG = 25,
IAS = 75A, VGS =10V. Part not recommended for use above
this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Notes:
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
repetitive avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is only applied to TO-220AB pakcage.
Rθ is measured at TJ approximately 90°C
IRF2903ZPbF
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
Vs. Drain Current
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
VGS, Gate-to-Source Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ID, Drain-to-Source Current
(Α)
VDS = 25V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
0 20 40 60 80 100 120 140 160 180
ID, Drain-to-Source Current (A)
0
40
80
120
160
200
240
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 10V
380µs PULSE WIDTH
IRF2903ZPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
10000
12000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0.0 0.4 0.8 1.2 1.6 2.0 2.4
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
0 40 80 120 160 200 240
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 75A
0.1 1.0 10.0 100.0
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
LIMITED BY PACKAGE
IRF2903ZPbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Normalized On-Resistance
Vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
50
100
150
200
250
300
ID , Drain Current (A)
LIMITED BY PACKAGE
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 75A
VGS = 10V
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.08133 0.000044
0.2408 0.000971
0.18658 0.008723
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRF2903ZPbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage Vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
200
400
600
800
1000
1200
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 26A
42A
BOTTOM 75A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th) Gate threshold Voltage (V)
ID = 1.0A
ID = 1.0mA
ID = 250µA
ID = 150µA
IRF2903ZPbF
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
IRF2903ZPbF
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRF2903ZPbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
TO-220AB package is not recommended for Surface Mount Application.
TO-220AB Part Marking Information
TO-220AB Package Outline(Dimensions are shown in millimeters (inches))
INT ERNAT IONAL PART NUMBER
RECTIFIER
LOT CODE
ASSEMBLY
LOGO
YE AR 0 = 2000
DAT E CODE
WEEK 19
LINE C
LOT CODE 1789
EXAMPLE: THIS IS AN IRF1010
Note: "P" in as sembly line pos ition
indi cates "L ead - F ree"
IN T HE ASSEMBLY LINE "C"
ASSEMBLED ON WW 19, 2000
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/