Data Sheet 1 Rev. 4.1
www.infineon.com/transceivers 2017-03-15
TLE6250
High Speed CAN-Transceiver
1 Overview
Quality Requirement Category: Automotive
Features
CAN data transmission rate up to 1 Mbit/s
Receive-only mode and Stand-by mode
Suitable for 12 V and 24 V applications
Excellent EMC performance (very high immunity and very low emission)
Versions for 5 V and 3.3 V microcontrollers
Bus pins are short circuit proof to ground and battery voltage
Overtemperature protection
Very wide temperature range (-40°C up to 150°C)
Green Product (RoHS compliant)
AEC Qualified
Applications
Engine Control Unit (ECUs)
Transmission Control Units (TCUs)
Chassis Control Modules
Electric Power Steering
Description
The HS CAN-transceivers of the TLE6250 family are monolithic integrated circuits that are available as bare die
as well as in a PG-DSO-8 package with the same functionality. The transceivers are optimized for high speed
differential mode data transmission in automotive applications and industrial applications and they are
compatible to ISO 11898. The transceivers work as an interface between the CAN protocol controller and the
physical differential bus in both 12 V systems and 24 V systems.
The transceivers are based on the Smart Power Technology (SPT), which allows bipolar and CMOS control
circuitry in accordance with DMOS power devices to coexist in the monolithic circuit. The TLE6250 is designed
to withstand the severe conditions of automotive applications and provides excellent EMC performance.
Data Sheet 2 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Overview
TLE6250G
5 V logic I/O version: RxD, TxD, INH, RM. Two control pins (RM, INH) and three operation modes: Normal mode,
Stand-by mode and Receive-only mode.
The functions and parameters of the TLE6250G and TLE6250C are identical, except those related to the
package. In this document the content for TLE6250G also applies to TLE6250C, unless otherwise stated.
TLE6250GV33
3.3 V logic I/O version (logic I/O voltage adaptive to V33V pin in the range of 3.3 V to 5 V): RxD, TxD, INH. One
control pin (INH) and two operation modes: Normal mode and Standby mode.
The functions and parameters of theTLE6250GV33 and TLE6250CV33 are identical, except those related to the
package. In this document the content for TLE6250GV33 also applies to TLE6250CV33, unless otherwise
stated.
Type Package Marking
TLE6250G PG-DSO-8 TLE6250
TLE6250C (chip)
TLE6250GV33 PG-DSO-8 TLE6250V33
TLE6250CV33 (chip)
Data Sheet 3 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 General product characteristics and electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 General product characteristics TLE6250G (5 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Electrical characteristics TLE6250G (5 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 General product characteristics TLE6250GV33 (3.3 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Electrical characteristics TLE6250GV33 (3.3 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table of contents
Data Sheet 4 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Block diagram
2 Block diagram
Figure 1 Block diagram TLE6250G
Figure 2 Block diagram TLE6250GV33
TLE6250G
Receiver
AEA 03311.VSD
Output
Stage
Driver
Temp-
Protection
Mode Control
*
=
7
CANH
6
CANL
2
GND
TxD
1
3
V
CC
INH
8
RM
5
RxD
4
TLE6250GV33
Receiver
AEA 0 33 12. VSD
Output
Stage
Driver
Temp-
Protection
Mode Control
*
=
7
CANH
6
CANL
2
GND
TxD
1
3
V
CC
INH
8
RxD
4
5
V
33 V
Data Sheet 5 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Pin configuration
3 Pin configuration
Figure 3 Pin configuration TLE6250G (top view)
Figure 4 Pin configuration TLE6250GV33 (top view)
Table 1 Pin definitions and functions TLE6250G
Pin No. Symbol Function
1TxDCAN transmit data input; 20 k pull-up, “low” in dominant state
2GNDGround
3VCC 5 V supply input
4RxDCAN receive data output; “low” in dominant state, integrated pull-up
5RMReceive-only input; control input, 20 k pull-up, set to “low” for entering Receive-only
mode
6CANLLow line I/O; “low” in dominant state
7CANHHigh line I/O; “high” in dominant state
8INHInhibit input; control input, 20 k pull-up, set to “low” for entering normal mode
Table 2 Pin definitions andfFunctions TLE6250GV33
Pin No. Symbol Function
1TxDCAN transmit data input; 20 k pull-up, “low” in dominant state
2GNDGround
3VCC 5V supply input
4RxDCAN receive data output; “low” in dominant state, integrated pull-up
AEP03320.VSD
1TxD
2
GND
3
V
CC
4RxD
8
7
6
5
CANH
CANL
INH
RM
TLE6250G
AEP03321.VSD
1TxD
2
GND
3
V
CC
4RxD
8
7
6
5
CANH
CANL
V
33 V
INH
TLE6250GV 33
Data Sheet 6 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Pin configuration
5V33V Logic supply input; 3.3 V or 5 V; the microcontroller logic supply can be connected to
this pin. The TLE6250GV33 adapts the digital I/Os to the connected microcontroller
logic supply at V33V
6CANLLow line I/O; “low” in dominant state
7CANHHigh line I/O; “high” in dominant state
8INHInhibit input; control input, 20 k pull-up, set to “low” for entering normal mode
Table 2 Pin definitions andfFunctions TLE6250GV33 (cont’d)
Pin No. Symbol Function
Data Sheet 7 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
4 General product characteristics and electrical characteristics
4.1 General product characteristics TLE6250G (5 V version)
Notes
1. Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to
the integrated circuit.
Table 3 Absolute maximum ratings TLE6250G (5 V version)
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Voltages
Supply voltage VCC -0.3 6.5 V
CAN Input voltage (CANH, CANL) VCANH/L -40 40 V
Logic voltages at INH, RM, TxD, RxD VI-0.3 VCC V0V<VCC <5.5V
Electrostatic discharge voltage at CANH, CANL VESD -6 6 kV human body model (100 pF
via 1.5 k)
Electrostatic discharge voltage VESD -2 2 kV human body model (100 pF
via 1.5 k)
Temperatures
Junction temperature Tj-40 160 °C
Table 4 Operating range TLE6250G (5 V version)
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Voltages
Supply voltage VCC 4.5 5.5 V
Junction temperature Tj-40 150 °C
Thermal resistance
Junction ambient Rthj-a 185 K/W in PG-DSO-8 package
Thermal shutdown (junction temperature)
Thermal shutdown temperature TjsD 160 200 °C 1) 10°C hysteresis
1) Not subject to production test, specified by design.
Data Sheet 8 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
4.2 Electrical characteristics TLE6250G (5 V version)
Table 5 Electrical characteristics TLE6250G (5 V version)
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current
flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Current consumption
Current consumption ICC 6 10 mA recessive state;
VTxD =VCC
Current consumption ICC 45 70 mA dominant state;
VTxD =0V
Current consumption ICC 6 10 mA receive-only mode;
RM = “low”
Current consumption ICC,stb 1 10 µA stand-by mode;
TxD = RM = “high”
Receiver output RxD
“high” output current IRD,H –-4-2mAVRD = 0.VCC;
Vdiff <0.4V
1)
“low” output current IRD,L 24–mAVRD =0.VCC;
Vdiff >1V
1)
Transmission input TxD
“high” input voltage threshold VTD,H –0.5×VCC 0.7 × VCC V recessive state
“low” input voltage threshold VTD,L 0.3 × VCC 0.4 × VCC –Vdominant state
TxD pull-up resistance RTD 10 25 50 k
Inhibit input (INH pin)
“high” input voltage threshold VINH,H –0.5×VCC 0.7 × VCC Vstand-by mode
“low” input voltage threshold VINH,L 0.3 × VCC 0.4 × VCC –Vnormal mode
INH pull-up resistance RINH 10 25 50 k
Data Sheet 9 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
Receive only input (RM pin) (5 V version)
“high” input voltage threshold VRM,H –0.5×VCC 0.7 × VCC Vnormal mode;
“low” input voltage threshold VRM,L 0.3 × VCC 0.4 × VCC –Vreceive-only mode
RM pull-up resistance RRM 10 25 50 k
Bus receiver
Differential receiver threshold
voltage, recessive to dominant edge
Vdiff,d 0.75 0.90 V -
20 V < (VCANH,VCANL)<25V;
Vdiff =VCANH -VCANL
Differential receiver threshold
voltage dominant to recessive edge
Vdiff,r 0.50 0.60 V -
20 V < (VCANH,VCANL)<25V;
Vdiff =VCANH -VCANL
Common mode range CMR -20 25 V VCC =5V
Differential receiver hysteresis Vdiff,hys 150 mV
CANH, CANL input resistance Ri10 20 30 krecessive state
Differential input resistance Rdiff 20 40 60 krecessive state
Table 5 Electrical characteristics TLE6250G (5 V version) (cont’d)
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current
flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Data Sheet 10 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
Bus transmitter
CANL/CANH recessive output
voltage
VCANL/H 0.4 × VCC –0.6×VCC VVTxD =VCC
CANH, CANL recessive output
voltage difference Vdiff =VCANH -
VCANL, no load2)
Vdiff -1 0.05 V VTxD =VCC
CANL dominant output voltage VCANL ––2.0VVTxD =0V;
VCC =5V
CANH dominant output voltage VCANH 2.8 V VTxD =0V;
VCC =5V
CANH, CANL dominant output
voltage difference Vdiff =VCANH -VCANL
Vdiff 1.5 3.0 V VTxD =0V;
VCC =5V
CANL short circuit current ICANLsc 50 120 200 mA VCANLshort =18V
CANL short circuit current ICANLsc 150 mA VCANLshort =36V
CANH short circuit current ICANHsc -200 -120 -50 mA VCANHshort =0V
CANH short circuit current ICANHsc –-120–mAVCANHshort =-5V
Output current ICANH,lk -50 -300 -400 µA VCC =0V;
VCANH =VCANL =-7V
Output current ICANH,lk -50 -100 -150 µA VCC =0V;
VCANH =VCANL =-2V
Output current ICANH,lk 50 280 400 µA VCC =0V;
VCANH =VCANL =7V
Output current ICANH,lk 50 100 150 µA VCC =0V;
VCANH =VCANL =2V
Table 5 Electrical characteristics TLE6250G (5 V version) (cont’d)
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current
flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Data Sheet 11 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
Dynamic CAN-transceiver characteristics
Propagation delay TxD-to-RxD “low”
(recessive to dominant)
td(L),TR 150 255 ns 3) CL=47pF;
RL=60;
VCC =5V;
CRxD =20pF
Propagation delay TxD-to-RxD
“high” (dominant to recessive)
td(H),TR 150 255 ns 3) CL=47pF;
RL=60;
VCC =5V;
CRxD =20pF
Propagation delay TxD “low” to bus
dominant
td(L),T 100 140 ns CL=47pF;
RL=60;
VCC =5V
Propagation delay TxD “high” to bus
recessive
td(H),T 100 140 ns CL=47pF;
RL=60;
VCC =5V
Propagation delay bus dominant to
RxD “low”
td(L),R 50 140 ns CL=47pF;
RL=60;
VCC =5 V;
CRxD =20pF
Propagation delay bus recessive to
RxD “high”
td(H),R 50 140 ns CL=47pF;
RL=60;
VCC =5V;
CRxD =20pF
1) Vdiff = VCANH - VCANL
2) Deviation from ISO 11898
3) TLE6250C: Not subject to production test, specified by design.
Table 5 Electrical characteristics TLE6250G (5 V version) (cont’d)
4.5 V < VCC < 5.5 V; RL = 60 ; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current
flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Data Sheet 12 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
4.3 General product characteristics TLE6250GV33 (3.3 V version)
Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible
damage to the integrated circuit.
Table 6 Absolute maximum ratings TLE6250GV33 (3.3 V version)
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Voltages
Supply voltage VCC -0.3 6.5 V
3.3 V supply V33V -0.3 6.5 V
CAN input voltage (CANH, CANL) VCANH/L -40 40 V
Logic voltages at INH, RM, TxD, RxD VI-0.3 VCC V0V<VCC <5.5V
Electrostatic discharge voltage at CANH, CANL VESD -6 6 kV human body model
(100 pF via 1.5 k)
Electrostatic discharge voltage VESD -2 2 kV human body model
(100 pF via 1.5 k)
Temperatures
Junction temperature Tj-40 160 °C
Table 7 Operating range TLE6250GV33 (3.3 V version)
Parameter Symbol Values Unit Note or
Test Condition
Min. Typ. Max.
Supply voltage VCC 4.5 5.5 V
3.3 V supply voltage V33V 3.0 5.5 V
Junction temperature Tj-40 150 °C
Thermal resistance
Junction ambient Rthj-a 185 K/W in PG-DSO-8 package
Thermal shutdown (junction temperature)
Thermal shutdown temperature TjsD 160 200 °C 1)10°C hysteresis
1) Not subject to production test, specified by design.
Data Sheet 13 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
4.4 Electrical characteristics TLE6250GV33 (3.3 V version)
Table 8 Electrical characteristics TLE6250GV33 (3.3 V version)
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 5.5V for 3.3 V version); RL = 60 ; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages
with respect to ground; positive current flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Current consumption (3.3 V version)
Current consumption ICC+33V 6 10 mA recessive state;
VTxD =V33V
Current consumption ICC+33V 45 70 mA dominant state;
VTxD =0V
Current consumption I33V –– 2mA
Current consumption ICC+33V,stb 1 10 µA stand-by mode;
TxD = “high”
Receiver output RxD
“high” output current IRD,H –-2 -1mAVRD =0.V33V;
Vdiff <0.4V
1)
“low” output current IRD,L 12 –mAVRD =0.V33V;
Vdiff >1V
1)
Transmission input TxD
“high” input voltage threshold VTD,H –0.55×V33V 0.7 × V33V V recessive state
“low” input voltage threshold VTD,L 0.3 × V33V 0.45 × V33V –Vdominant state
TxD pull-up resistance RTD 10 25 50 k
Inhibit Input (pin INH)
“high” input voltage threshold VINH,H –0.55×V33V 0.7 × V33V Vstand-by mode
“low” input voltage threshold VINH,L 0.3 × V33V 0.45 × V33V –Vnormal mode
INH pull-up resistance RINH 10 25 50 k
Bus receiver
Differential receiver threshold
voltage, recessive to dominant
edge
Vdiff,d –0.750.90V-20V<(VCANH,VCANL)<25V;
Vdiff =VCANH -VCANL
Differential receiver threshold
voltage, dominant to recessive
edge
Vdiff,r 0.50 0.60 V -20 V < (VCANH,VCANL)<25V;
Vdiff =VCANH -VCANL
Common Mode Range CMR -20 25 V VCC =5V
Differential receiver hysteresis Vdiff,hys 150 mV
CANH, CANL input resistance Ri10 20 30 krecessive state
Differential input resistance Rdiff 20 40 60 krecessive state
Data Sheet 14 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
Bus transmitter
CANL/CANH recessive output
voltage
VCANL/H 0.4 × VCC –0.6×VCC VVTxD =V33V
CANH, CANL recessive output
voltage difference Vdiff =VCANH -
VCANL, no load2)
Vdiff -1 0.05 V VTxD =V33V
CANL dominant output voltage VCANL –– 2.0VVTxD =0V;
VCC =5V
CANH dominant output voltage VCANH 2.8 V VTxD =0;
VCC =5V
CANH, CANL dominant output
voltage difference Vdiff =VCANH -
VCANL
Vdiff 1.5 3.0 V VTxD =0V;
VCC =5V
CANL short circuit current ICANLsc 50 120 200 mA VCANLshort =18V
CANL short circuit current ICANLsc 150 mA VCANLshort =36V
CANH short circuit current ICANHsc -200 -120 -50 mA VCANHshort =0V
CANH short circuit current ICANHsc –-120–mAVCANHshort =-5V
Output current ICANH/L,lk -50 -300 -400 µA VCC =0V;
VCANH =VCANL =-7 V
Output current ICANH/L,lk -50 -100 -150 µA VCC =0V;
VCANH =VCANL =-2V
Output current ICANH/L,lk 50 280 400 µA VCC =0V;
VCANH =VCANL =7V
Output current ICANH/L,lk 50 100 150 µA VCC =0V;
VCANH =VCANL =2V
Table 8 Electrical characteristics TLE6250GV33 (3.3 V version) (cont’d)
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 5.5V for 3.3 V version); RL = 60 ; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages
with respect to ground; positive current flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Data Sheet 15 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
General product characteristics and electrical characteristics
Dynamic CAN-transceiver characteristics
Propagation delay TxD-to-RxD
“low” (recessive to dominant)
td(L),TR 150 255 ns 3) CL=47pF;
RL=60;
VCC =5V;
CRxD =20pF
Propagation delay TxD-to-RxD
“high” (dominant to recessive)
td(H),TR 150 255 ns 3) CL=47pF;
RL=60;
VCC =5;
CRxD =20pF
Propagation delay TxD “low” to
bus dominant
td(L),T 100 140 ns CL=47pF;
RL=60;
VCC =5V
Propagation delay TxD “high” to
bus recessive
td(H),T 100 140 ns CL=47pF;
RL=60;
VCC =5V
Propagation delay bus dominant
to RxD “low”
td(L),R 50 140 ns CL=47;
RL=60;
VCC =5V;
CRxD =20pF
Propagation delay bus recessive
to RxD “high”
td(H),R 50 140 ns CL=47pF;
RL=60;
VCC =5V;
CRxD =20pF
1) Vdiff = VCANH - VCANL
2) Deviation from ISO 11898
3) TLE6250CV33: Not subject to production test, specified by design.
Table 8 Electrical characteristics TLE6250GV33 (3.3 V version) (cont’d)
4.5 V < VCC < 5.5 V; (3.0 V < V33V < 5.5V for 3.3 V version); RL = 60 ; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages
with respect to ground; positive current flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Data Sheet 16 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Diagrams
5 Diagrams
Figure 5 Test circuit for dynamic characteristics (5 V version)
Figure 6 Test circuit for dynamic characteristics (3.3 V version)
AEA03328.VSD
3
GND VCC
2
4
INH 8
TxD 1
RM 5
100 nF
5 V
6CANL
7CANH
60 Ω
47 pF
RxD
20 pF
AEA03329.VSD
3
GND VCC
2
5
V33 V
INH 8
TxD 1
RxD 4
100 nF
5 V
3.3 V
100 nF
20 pF
6CANL
7CANH
60 Ω
47 pF
Data Sheet 17 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Diagrams
Figure 7 Timing diagram for dynamic characteristics
AET02926
TxD
V
V
CC(33V)
GND
V
DIFF d(L), T
t
d(H), T
t
V
DIFF(d)
DIFF(r)
V
t
t
GND
CC(33V)
V
V
RxD
t
d(L), R
t
d(H), R
t
CC(33V)
V
0.7
0.3
CC(33V)
V
d(L), TR
t
d(H), TR
t
Data Sheet 18 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Diagrams
Figure 8 Application circuit TLE6250G with TLE6250GV33
ECU 1
ECU X
µP
e. g. TLE 4270
e. g. TLE 4476
µP
120
Ω
AEA03308.VSD
RM 5
INH 8
RxD 4
TxD 1
V
CC
3
CANH
CANL
7
6
100
nF
100
nF
+
V
Q
5 V
GND
GND
GND
V
I
22 µF
100
nF
+22
µF
TLE6250G
INH 8
RxD 4
TxD 1
5
V
33 V
3
CANH
CANL
7
6
100
nF
GND
GND
V
I
TLE6250GV33
V
CC
GND
100
nF
100
nF
V
Q1
5 V
+
100
nF
+22
µF
+22 µF
V
Q2
3.3 V
22 µF
CAN
Bus
V
Bat
120
Ω
2
2
Data Sheet 19 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Package outlines
6 Package outlines
Figure 9 PG-DSO-8 (PG-DSO-8 Plastic Dual Small Outline)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
0.35 x 45
1)
-0.2
4
C
+0.06
0.19
0.64
!0.2
6
!0.25
0.2 8x
MC
1.27
+0.1
0.41 0.2 MA
-0.06 8x
SEATING PLANE
B
2)
Index Marking
41
85
5-0.21) A
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
1.75 MAX.
(1.45)
!0.07
0.175
B
0.1
8 MAX.
Data Sheet 20 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Application information
7 Application information
Figure 10 Mode state diagram TLE6250G
Figure 11 Mode state diagram TLE6250GV33
The TLE6250G offers three modes of operation (see Figure 10), controlled by the INH and RM pin. The
TLE6250GV33 offers two modes of operation (see Figure 11), controlled by the INH pin respectively.
In normal mode the transceiver can receive and transmit messages. In receive-only mode the transceiver does
not transmit signals at the TxD input to the CAN bus. Receive-only mode can be used for diagnostic purposes
(to check the bus connections between the nodes) as well as to prevent the bus being blocked by a faulty
permanent dominant TxD input signal. Stand-by mode is a low power mode that disables both the receiver
and the transmitter.
If the receive-only feature is not used, then the RM pin must be left open. If stand-by mode is not used, then
the INH pin must be connected to ground level in order to switch the TLE6250G to normal mode.
Application information for the 3.3 V versions
The TLE6250GV33 can be used for both 3.3 V and 5 V microcontroller logic supply, see Figure 12, Figure 13 and
Figure 14. Do not connect external resistors between the power supply and the V33V pin, because that may
lead to a voltage drop at this pin.
AED02924
Normal Mode
INH = 0 RM = 1
INH = 0
Receive-only Mode
RM = 0INH = 1
Stand-by Mode
RM = 0 / 1
INH = 0
and RM = 0
INH = 1
INH = 1
INH = 0
and RM = 1
RM = 0
RM = 1
AEA03327.VSD
Stand-by
Mode
INH = 0
Normal Mode
INH = 1
INH = 0INH = 1
Data Sheet 21 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Application information
Figure 12 Application circuit TLE6250GV33 used for 3.3 V logic
Figure 13 Application circuit TLE6250GV33 used for 5 V logic
AEA 03300.VSD
e. g. TLE 4476
INH 8
RxD 4
TxD 1
5
V
33 V
3
100
nF
GND
GND
V
I
TLE6250GV 33
V
CC
100
nF
V
Q1
5 V
+100
nF
+22
µF
+22 µF
V
Q2
3.3 V
3.3 V
2
µP
GND
100
nF
22 µF
7
6
CANH
CANL
AEA 03299.VSD
µP
e. g. TLE 4270
INH 8
4
1
5
V
CC
3
100
nF
100
nF
+
V
Q
5 V
GND
GND
GND
V
I
22 µF
100
nF
+22
µF
TLE6250GV33
RxD
TxD
V
33 V
5 V
2
CANH
CANL
7
6
Data Sheet 22 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Application information
Figure 14 Application circuit TLE6250GV33 used for 5 V logic
AEA 13299.VSD
µP
e. g. TLE 4270
INH 8
4
1
5
V
CC
3
100
nF
100
nF
+
V
Q
5 V
GND
GND
GND
V
I
22 µF
100
nF
+22
µF
TLE6250GV33
RxD
TxD
V
33 V
5 V
2
CANH
CANL
7
6
e. g. TLE 4270
V
Q
GND
V
I
100
nF
+22
µF
+
5 V
Data Sheet 23 Rev. 4.1
2017-03-15
TLE6250
High Speed CAN-Transceiver
Revision history
8 Revision history
Revision Date Changes
4.1 2017-03-15 New style template.
Editorial changes.
Chapter „Overview“:
Table of device types and packages: Marking added
Chapter „General product characteristics and electrical characteristics“:
Table 5: Propagation delay TxD-to-RxD “low” (recessive to dominant) Max.
value updated, footnote added
Table 5: Propagation delay TxD-to-RxD “high” (dominant to recessive) Max.
value updated, footnote added
Table 8: Propagation delay TxD-to-RxD “low” (recessive to dominant) Max.
value updated, footnote added
Table 8: Propagation delay TxD-to-RxD “high” (dominant to recessive) Max.
value updated, footnote added
4.0 2008-04-28 Changed symbol for the leakage current CANH/L:
From ICANH,lk to ICANH/L,lk
max. value for the parameter changed:
Output current, ICANH/L,lk, VCC = 0 V, VCANH = VCANL = 7 V:
From 300 µA to 400 µA
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2017-03-15
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2017 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.
Please read the Important Notice and Warnings at the end of this document