General Description
The MAX14830 is an advanced quad universal asynchro-
nous receiver-transmitter (UART), each UART having
128 words of receive and transmit first-in/first-out (FIFO)
and a high-speed serial peripheral interface (SPI) or I2C
controller interface. A PLL and fractional baud-rate
generators allow a high degree of flexibility in baud-rate
programming and reference clock selection.
Each of the four UARTs is selected by in-band SPI/I2C
addressing. Logic-level translation on the transceiver and
controller interfaces allows ease of interfacing to micro-
controllers, FPGAs, and transceivers that are powered by
differing supply voltages.
Extensive features simplify transceiver control in
half-duplex communication applications. The MAX14830
features the ability to synchronize the start of individual
UART’s transmission by SPI-based triggering. On-board
timers allow programming of delays between transmitters
as well as clock generation on GPIOs.
The 128-word FIFOs have advanced FIFO control
reducing host processor data flow management.
The MAX14830 is available in a 48-pin TQFN (7mm
x 7mm) package and is specified to operate. over the
extended -40°C to +85°C temperature range.
Applications
Industrial Control Systems
Programmable Logic Controllers (PLC)
IO-Link Master Controllers
Medical Systems
Point-of-Sales Systems
Airplane Communication Buses
Benets and Features
Bridges an SPI/MICROWIRE or I2C Microprocessor
Bus to an Asynchronous Interface like RS-485,
RS-232, or IrDASM
SIR- and MIR-Compliant IrDA Encoder/Decoder
Line Noise Indication Ensures Data Link Integrity
Deep, 128-Word Buffer and Automated Control
Features Help Offload Activity on the Microcontroller
128-Word Transmit and Receive FIFOs per UART
Transmitter Synchronization Through SPI Commands
Automatic Hardware Flow Control Using RTS_ and
CTS_ Outputs and Inputs
Automatic Software Flow Control (XON/XOFF)
Auto Transceiver Direction Control
Programmable Setup and Hold Times for Transceiver
Control
Auto Transmitter Disable
Half-Duplex Echo Suppression
9-Bit Multidrop-Mode Data Filtering
Special Character Detection
GPIO-Based Character Detection
Four Timers Routed to GPIOs
16 Flexible GPIOs with 20mA Drive Capability
Saves Board Space
TQFN (7mm x 7mm) Package
Fast Data Rates Allow Maximum System Flexibility
Across Interface Standards
6Mbaud (max) Data Rate in 16x Sampling Mode
12/24Mbaud (max) Data Rate in 2x/4x Rate Modes
High-Resolution Programmable Baud-Rate
SPI Up to 26MHz Clock Rate
Fast Mode Plus (Pm+) I2C Up to 1MHz
Integrated Internal Oscillator Eliminates the Need for
an External Oscillator and Reduces the BOM Cost
Fractional Baud-Rate Generators, Predivider, and
Phase-Locked Loop (PLL)
Logic-Level Translation Down to 1.61V on the Con-
troller and Transceiver Interfaces Ensures System
Compatibility
Register Compatible with MAX3107, MAX3108,
MAX3109
Typical Operating Circuit and Ordering Information appear
at end of data sheet.
19-5547; Rev 7; 2/16
IrDA is a registered service mark of Infrared Data Association
Corporation.
MAX14830 Quad Serial UART with 128-Word FIFOs
EVALUATION KIT AVAILABLE
General Description ............................................................................ 1
Applications .................................................................................. 1
Benefits and Features .......................................................................... 1
Functional Diagram ............................................................................ 7
Absolute Maximum Ratings ...................................................................... 8
Package Thermal Characteristics ................................................................. 8
DC Electrical Characteristics ..................................................................... 8
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Test Circuits/Timing Diagrams ................................................................... 13
Typical Operating Characteristics ................................................................ 14
Pin Configuration ............................................................................. 15
Pin Description ............................................................................... 15
Detailed Description........................................................................... 18
Receive and Transmit FIFOs ..................................................................18
Transmitter Operation ........................................................................18
Receiver Operation ..........................................................................19
Line Noise Indication.........................................................................20
Clocking and Baud-Rate Generation ............................................................20
Crystal Oscillator .........................................................................20
External Clock Source .....................................................................20
PLL and Predivider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Fractional Baud-Rate Generators...............................................................21
2x and 4x Rate Modes .......................................................................21
Low-Frequency Timer ........................................................................22
UART Clock to GPIO ........................................................................22
Multidrop Mode .............................................................................22
Auto Data Filtering in Multidrop Mode .........................................................22
Auto Transceiver Direction Control..............................................................22
Transmitter Triggering and Synchronization .......................................................23
Transmitter Synchronization ................................................................23
Intrachip and Interchip Synchronization .......................................................23
Delayed Triggering........................................................................23
Trigger Accuracy .........................................................................24
Synchronization Accuracy ..................................................................24
Auto Transmitter Disable......................................................................24
Echo Suppression ...........................................................................24
Auto Hardware Flow Control...................................................................26
AutoRTS Control .........................................................................26
TABLE OF CONTENTS
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
2
AutoCTS Control .........................................................................26
FIFO Interrupt Triggering .....................................................................26
Auto Software (XON/XOFF) Flow Control ........................................................26
Transmitter Flow Control ...................................................................27
Receiver Overflow Control..................................................................27
Power-Up and IRQ ..........................................................................27
Shutdown Mode ............................................................................27
Interrupt Structure ...........................................................................27
Interrupt Enabling.........................................................................28
Interrupt Clearing .........................................................................28
Register Map ................................................................................ 28
Detailed Register Descriptions .................................................................30
Serial Controller Interface ...................................................................... 58
SPI Interface ...............................................................................58
MISO Operation ..........................................................................58
SPI Burst Access .........................................................................58
Fast Read Cycle..........................................................................59
I2C Interface ...............................................................................59
START, STOP, and Repeated START Conditions................................................59
Slave Address ...........................................................................60
Bit Transfer..............................................................................61
Single-Byte Write .........................................................................61
Burst Write ..............................................................................61
Single-Byte Read.........................................................................62
Burst Read ..............................................................................62
Acknowledge Bits.........................................................................63
Applications Information........................................................................ 63
Startup and Initialization ......................................................................63
Low-Power Operation ........................................................................63
Interrupts and Polling ........................................................................63
Logic-Level Translation .......................................................................63
IO-Link Application ..........................................................................63
Typical Operating Circuit ....................................................................... 65
Chip Information .............................................................................. 67
Ordering Information .......................................................................... 67
Package Information .......................................................................... 67
Revision History .............................................................................. 68
TABLE OF CONTENTS (continued)
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
3
Figure 1. I2C Timing Diagram ................................................................... 13
Figure 2. SPI Timing Diagram ................................................................... 13
Figure 3. Transmit FIFO Signals ................................................................. 18
Figure 4. Receive Data Format .................................................................. 19
Figure 5. Receive FIFO ........................................................................ 19
Figure 6. Midbit Sampling ...................................................................... 19
Figure 7. Clock Selection Diagram................................................................ 20
Figure 8. 2x and 4x Baud Rates ................................................................. 21
Figure 9. GPIO_ Clock Pulse Generator ........................................................... 22
Figure 10. Auto Transceiver Direction Control....................................................... 23
Figure 11. Setup and Hold times in Auto Transceiver Direction Control ................................... 23
Figure 12. Single Transmitter Trigger Accuracy...................................................... 24
Figure 13. Multiple Transmitter Synchronization Accuracy ............................................. 25
Figure 14. Echo Suppression Timing .............................................................. 25
Figure 15. Half-Duplex with Echo Suppression ...................................................... 26
Figure 16. Simplified Interrupt Structure ........................................................... 27
Figure 17. PLL Signal Path...................................................................... 51
Figure 18. SPI Write Cycle...................................................................... 58
Figure 19. SPI Read Cycle...................................................................... 59
Figure 20. SPI Fast Read Cycle.................................................................. 59
Figure 21. I2C START, STOP, and Repeated START Conditions ........................................ 60
Figure 22. Write Byte Sequence ................................................................. 61
Figure 23. Burst Write Sequence................................................................. 61
Figure 24. Read Byte Sequence ................................................................. 62
Figure 25. Burst Read Sequence................................................................. 62
Figure 26. Acknowledge Bits .................................................................... 63
Figure 27. Startup and Initialization Flow Chart...................................................... 63
Figure 28. Logic-Level Translation................................................................ 64
Figure 29. Interchip Synchronization .............................................................. 64
LIST OF FIGURES
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
4
Table 1. UART GPIO Assignments for GPIO Interrupts ............................................... 38
Table 2. StopBits Truth Table.....................................................................41
Table 3. Length_ Truth Table .....................................................................41
Table 4. SwFlow_ Truth Table ................................................................... 46
Table 5. UART GPIO Assignments for GPIO Configuration ............................................ 49
Table 6. UART GPIO Assignments for GPIO Input/Output Data......................................... 50
Table 7. PLLFactor_ Selector Guide .............................................................. 51
Table 8. GloblComnd Command Descriptions....................................................... 54
Table 9. Extended Mode Addressing (SPI only) ..................................................... 54
Table 10. SPI Command Byte Configuration ........................................................ 58
Table 11. SPI U1, U0 UART Selection ............................................................. 58
Table 12. I2C Address Map ..................................................................... 60
LIST OF TABLES
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
5
LIST OF REGISTERS
RHR—Receive Hold Register ................................................................... 30
THRTransmit Hold Register ................................................................... 30
IRQEnIRQ Enable Register ................................................................... 31
ISRInterrupt Status Register .................................................................. 32
LSRIntEnLine Status Interrupt Enable Register.................................................... 33
LSR—Line Status Register ..................................................................... 34
SpclChrIntEn—Special Character Interrupt Enable Register ........................................... 35
SpclCharInt—Special Character Interrupt Register................................................... 36
STSIntEnSTS Interrupt Enable Register ......................................................... 37
STSIntStatus Interrupt Register ................................................................ 38
MODE1 Register ............................................................................. 39
MODE2 Register ............................................................................. 40
LCR—Line Control Register......................................................................41
RxTimeOut—Receiver Timeout Register........................................................... 42
HDplxDelay Register .......................................................................... 42
IrDA Register ................................................................................ 43
FlowLvlFlow Level Register ................................................................... 44
FIFOTrigLvl—FIFO Interrupt Trigger Level Register .................................................. 44
TxFIFOLvlTransmit FIFO Level Register.......................................................... 45
RxFIFOLvlReceive FIFO Level Register ......................................................... 45
FlowCtrlFlow Control Register ................................................................. 45
XON1 Register ............................................................................... 47
XON2 Register ............................................................................... 47
XOFF1 Register .............................................................................. 48
XOFF2 Register .............................................................................. 48
GPIOConfg—GPIO Configuration Register......................................................... 49
GPIODataGPIO Data Register................................................................. 50
PLLConfigPLL Configuration Register ........................................................... 51
BRGConfigBaud-Rate Generator Configuration Register ............................................ 52
DIVLSBBaud-Rate Generator LSB Divisor Register ................................................ 52
DIVMSBBaud-Rate Generator MSB Divisor Register ............................................... 52
CLKSourceClock Source Register.............................................................. 53
GlobalIRQGlobal IRQ Register ................................................................ 53
GloblComndGlobal Command Register.......................................................... 54
TxSynchTransmitter Synchronization Register..................................................... 55
SynchDelay1—Synchronization Delay Register 1.................................................... 56
SynchDelay2—Synchronization Delay Register 2.................................................... 56
TIMER1—Timer Register 1 ..................................................................... 56
TIMER2Timer Register 2 ..................................................................... 57
RevIDRevision Identification Register ........................................................... 57
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
6
Functional Diagram
REGISTERS
AND
CONTROL
TX0
RX0
GPIO0
GPIO3
UARTO
4
CTS0
RTS0
TX1
RX1
GPIO4
GPIO7
UART1
CTS1
RTS1
TX2
RX2
GPIO8
GPIO11
UART2
CTS2
RTS2
SPI AND
I2C
INTERFACE
LDO
PLLDIVIDER
VL
LOGIC-LEVEL
TRANSLATION
LDOEN
MOSI/A1
MISO/SDA
SCLK/SCL
TX3
RX3
GPIO12
GPIO15
UART3
CTS3
RTS3
VAVEXT
V18
TRANSMITTER
SYNC
LOGIC-LEVEL TRANSLATION
CRYSTAL
OSCILLATOR
4
FRACTIONAL
BAUD-RATE
GENERATOR
SPI/I2C
CS/A0
RST
IRQ
XIN
XOUT
DGNDAGND
MAX14830
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
7
(Voltages referenced to AGND.)
VL, VA, VEXT, XIN.................................................-0.3V to +4.0V
V18, XOUT.............-0.3V to the lesser of (VA + 0.3V) and +2.0V
RST, IRQ, MOSI/A1, CS/A0, SCLK/SCL,
MISO/SDA, LDOEN, SPI/I2C...................-0.3V to (VL + 0.3V)
TX0, RX0, CTS0, GPIO0, GPIO1,
GPIO2, GPIO3.....................................-0.3V to (VEXT + 0.3V)
TX1, RX1, CTS1, GPIO4, GPIO5,
GPIO6, GPIO7.....................................-0.3V to (VEXT + 0.3V)
TX2, RX2, CTS2, GPIO8, GPIO9,
GPIO10, GPIO11.................................-0.3V to (VEXT + 0.3V)
TX3, RX3, CTS3, GPIO12, GPIO13,
GPIO14, GPIO15.................................-0.3V to (VEXT + 0.3V)
DGND................................................................... -0.3V to +0.3V
Continuous Power Dissipation (TA = +70°C)
TQFN (derate 38.5mW/°C above +70°C)................3076.9mW
Operating Temperature Range............................-40°C to +85°C
Maximum Junction Temperature......................................+150°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10s)....................................300°C
Soldering Temperature (reflow) ......................................+260°C
TQFN
Junction-to-Ambient Thermal Resistance (θJA) ..........26°C/W
Junction-to-CaseThermal Resistance JC) ..................1°C/W
(Note 1)
(VA = +2.35V to +3.6V, VL = +1.71V to +3.6V, VEXT = +1.71V to +3.6V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at VA = +2.5V, VL = +1.8V, VEXT = +2.8V, TA = +25°C.) (Notes 2, 3)
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Package Thermal Characteristics
DC Electrical Characteristics
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Digital Interface Supply Voltage VL1.71 3.6 V
Analog Supply Voltage VA2.35 3.6 V
UART Interface Logic Supply
Voltage VEXT 1.71 3.6 V
Logic Supply Voltage V18 1.65 1.95 V
CURRENT CONSUMPTION
VA Supply Current I A
1.8MHz crystal oscillator active, PLL
disabled, SPI/I2C interface idle, UART
interfaces idle, VLDOEN = VL
400 µA
Baud rate = 1Mbps, 20MHz external clock,
SPI/I2C interface idle, PLL disabled, all
UARTs in loopback mode, VLDOEN = 0V
0.5 mA
VA Shutdown Supply Current IASHDN
Shutdown mode, VLDOEN = 0V, VRST = 0V,
all inputs and outputs are idle 35 µA
VL Shutdown or Sleep Supply
Current IL
Shutdown mode, VLDOEN = 0V, VRST = 0V,
all inputs and outputs are idle 12 µA
VEXT Shutdown Supply Current IEXT
Shutdown mode, VLDOEN = 0V, VRST = 0V,
all inputs and outputs are idle 8 µA
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
8
(VA = +2.35V to +3.6V, VL = +1.71V to +3.6V, VEXT = +1.71V to +3.6V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at VA = +2.5V, VL = +1.8V, VEXT = +2.8V, TA = +25°C.) (Notes 2, 3)
DC Electrical Characteristics (continued)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
V18 Input Power-Supply Current
in Shutdown Mode I18SHDN
Shutdown mode, VLDOEN = 0V, VRST = 0V,
all inputs and outputs are idle 200 µA
V18 Input Power-Supply Current I18
Baud rate = 1Mbps, 20MHz external clock,
PLL disabled, all UARTs in loopback mode,
VLDOEN = 0V (Note 4)
5 mA
SCLK/SCL, MISO/SDA
MISO/SDA Output Low Voltage in
I2C Mode VOL,I2C
ILOAD = -3mA, VL > 2V 0.4 V
ILOAD = -3mA, VL < 2V 0.2 x VL
MISO/SDA Output Low Voltage in
SPI Mode VOL,SPI ILOAD = -2mA 0.4 V
MISO/SDA Output High Voltage
in SPI Mode VOH,SPI ILOAD = 2mA VL - 0.4 V
Input Low Voltage VIL SPI and I2C mode 0.3 x VLV
Input High Voltage VIH SPI and I2C mode 0.7 x VLV
Input Hysteresis VHYST SPI and I2C mode 0.05 x VLV
Input Leakage Current IIL VIN = 0 to VL, SPI and I2C mode -1 +1 µA
Input Capacitance CIN SPI and I2C mode 5 pF
SPI/I2C, CS/A0, MOSI/A1 INPUTS
Input Low Voltage VIL SPI and I2C mode 0.3 x VLV
Input High Voltage VIH SPI and I2C mode 0.7 x VLV
Input Hysteresis VHYST SPI and I2C mode 50 mV
Input Leakage Current IIL VIN = 0 to VL, SPI and I2C mode -1 +1 µA
Input Capacitance CIN SPI and I2C mode 5 pF
IRQ OUTPUT (OPEN DRAIN)
Output Low Voltage VOL ILOAD = -2mA 0.4 V
Output Leakage Current ILK VIRQ = 0 to VL, IRQ is not asserted -1 +1 µA
LDOEN AND RST INPUTS
Input Low Voltage VIL 0.3 x VLV
Input High Voltage VIH 0.7 x VLV
Input Hysteresis VHYST 50 mV
Input Leakage Current IIN VIN = 0 to VL-1 +1 µA
UART INTERFACE
RTS0, RTS1, RTS2, RTS3, TX0, TX1, TX2, TX3 OUTPUTS
Output Low Voltage VOL ILOAD = -2mA 0.4 V
Output High Voltage VOH ILOAD = 2mA VEXT - 0.4 V
Input Leakage Current IIN Output is three-stated, VRTS_ = 0 to VEXT -1 +1 µA
Input Capacitance CIN High-Z mode 5 pF
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
9
(VA = +2.35V to +3.6V, VL = +1.71V to +3.6V, VEXT = +1.71V to +3.6V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at VA = +2.5V, VL = +1.8V, VEXT = +2.8V, TA = +25°C.) (Notes 2, 3)
(VA = +2.35V to +3.6V, VL = +1.71V to +3.6V, VEXT = +1.71V to +3.6V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at VA = +2.8V, VL = +1.8V, VEXT = +2.5V, TA = +25°C.) (Notes 2, 3)
DC Electrical Characteristics (continued)
AC Electrical Characteristics
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RX0, RX1, RX2, RX3, CTS0, CTS1, CTS2, CTS3 INPUTS
Input Low Voltage VIL 0.3 x VEXT V
Input High Voltage VIH 0.7 x VEXT V
Input Hysteresis VHYST 50 mV
CTS0, CTS1, CTS2, CTS3 Input
Leakage Current IIN_CTS VCTS_ = 0 to VEXT -1 +1 µA
RX0, RX1, RX2, RX3 Pullup
Current IIN_RX_ VRX_ = 0V, VEXT = 3.6V -7.5 -5.5 -3.5 µA
Input Capacitance CIN_UART 5 pF
GPIO0–GPIO15 INPUTS/OUTPUTS
Output Low Voltage VOL
ILOAD = -20mA, VEXT > 2.3V, push-pull
or open drain 0.45
V
ILOAD = -20mA, VEXT < 2.3V, push-pull
or open drain 0.55
Output High Voltage VOH ILOAD = 5mA, push-pull VEXT - 0.4 V
Input Low Voltage VIL GPIO_ is congured as an input 0.4 V
Input High Voltage VIH GPIO_ is congured as an input 2/3 x VEXT V
Pulldown Current IPD GPIO_ = VEXT = 3.6V 3.5 5.5 7.5 µA
XIN
Input Low Voltage VIL 0.2 V
Input High Voltage VIH 1.2 V
Input Capacitance CXIN 16 pF
XOUT
Input Capacitance CXOUT 16 pF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
INTERNAL OSCILLATOR
External Crystal Frequency fXOSC 1 4 MHz
External Clock Frequency fCLK 0.5 35 MHz
External Clock Duty Cycle (Note 5) 45 55 %
Baud-Rate Generator Clock Input fREF (Note 5) 96 MHz
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
10
(VA = +2.35V to +3.6V, VL = +1.71V to +3.6V, VEXT = +1.71V to +3.6V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at VA = +2.8V, VL = +1.8V, VEXT = +2.5V, TA = +25°C.) (Notes 2, 3)
AC Electrical Characteristics (continued)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
I2C BUS: TIMING CHARACTERISTICS (SEE FIGURE 1)
SCL Clock Frequency fSCL
Standard mode 100
kHzFast mode 400
Fast mode plus 1000
Bus Free Time Between a STOP
and START Condition tBUF
Standard mode 4.7
µsFast mode 1.3
Fast mode plus 0.5
Hold Time for START Condition
and Repeated START Condition tHD:STA
Standard mode 4.0
µsFast mode 0.6
Fast mode plus 0.26
Low Period of the SCL Clock tLOW
Standard mode 4.7
µsFast mode 1.3
Fast mode plus 0.5
High Period of the SCL Clock tHIGH
Standard mode 4.0
µsFast mode 0.6
Fast mode plus 0.26
Data Hold Time tHD:DAT
Standard mode 0 0.9
µsFast mode 0 0.9
Fast mode plus 0
Data Setup Time tSU:DAT
Standard mode 250
nsFast mode 100
Fast mode plus 50
Setup Time for Repeated START
Condition tSU:STA
Standard mode 4.7
µsFast mode 0.6
Fast mode plus 0.26
Rise Time of SDA and SCL
Signals Receiving tR
Standard mode (0.3 x VL to 0.7 x VL)
(Note 6)
20 +
0.1Cb
1000
ns
Fast mode (0.3 x VL to 0.7 x VL) (Note 6) 20 +
0.1Cb
300
Fast mode plus 120
Fall Time of SDA and SCL
Signals tF
Standard mode (0.7 x VL to 0.3 x VL)
(Note 6)
20 +
0.1Cb
300
ns
Fast mode (0.7 x VL to 0.3 x VL) (Note 6) 20 +
0.1Cb
300
Fast mode plus 120
Setup Time for STOP Condition tSU:STO
Standard mode 4.7
µsFast mode 0.6
Fast mode plus 0.26
Capacitive Load for SDA and SCL
(Note 4) Cb
Standard mode 400
pFFast mode 400
Fast mode plus 550
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
11
Note 2: All devices are production tested at TA = +25°C. Specifications over temperature are guaranteed by design.
Note 3: Currents entering the IC are negative, and currents exiting the IC are positive.
Note 4: When V18 is powered by an external voltage regulator, the external power supply must have current capability above or
equal to I18.
Note 5: Not production tested. Guaranteed by design.
Note 6: Cb is the total capacitance of either the clock or data line of the synchronous bus in pF.
(VA = +2.35V to +3.6V, VL = +1.71V to +3.6V, VEXT = +1.71V to +3.6V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at VA = +2.8V, VL = +1.8V, VEXT = +2.5V, TA = +25°C.) (Notes 2, 3)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SCL and SDA I/O Capacitance CI/O (Note 5) 10 pF
Pulse Width of Spike
Suppressed tSP 50 ns
SPI BUS: TIMING CHARACTERISTICS (SEE FIGURE 2)
SCLK Clock Period tCH+CL 38.4 ns
SCLK Pulse Width High tCH 16 ns
SCLK Pulse Width Low tCL 16 ns
CS Fall to SCLK Rise Time tCSS 0 ns
MOSI Hold Time tDH 3 ns
MOSI Setup Time tDS 5 ns
Output Data Propagation Delay tDO 20 ns
MISO Rise and Fall Times tFT 10 ns
CS Hold Time tCSH 30 ns
AC Electrical Characteristics (continued)
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
12
Figure 1. I2C Timing Diagram
Figure 2. SPI Timing Diagram
Test Circuits/Timing Diagrams
SDA
START CONDITION
(S)
START CONDITION
(S)
REPEATED START CONDITION
(Sr)
STOP CONDITION
(P)
SCL
tHD:STA
tSU:DAT tSU:STA
tHD:DAT tHD:STA tSU:STO
tRtF
tBUF
tHIGH tLOW
tRtF
CS
SCLK
MOSI
MISO
tCSS tCL
tDS
tDH
tCH
tDO
tCSH
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
13
(TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics
GPIO_ OUTPUT LOW VOLTAGE
vs. SINK CURRENT (PUSH-PULL)
MAX14830 toc02
VOL (V)
ISINK (mA)
321
20
40
60
80
100
120
140
160
0
0 4
VEXT = 3.3V
VEXT = 2.5V
VEXT = 1.8V
TRANSMITTER SYNCHRONIZATION
MAX14830 toc03
200µs/div
TX0
2V/div
138.46kbaud
TX1
2V/div
19.23kbaud
TX2
2V/div
9.615kbaud
TX3
2V/div
6.41kbaud
GPIO_ OUTPUT HIGH VOLTAGE
vs. SOURCE CURRENT (PUSH-PULL)
MAX14830 toc01
VOH (V)
ISOURCE (mA)
321
10
20
30
40
50
60
70
0
0 4
VEXT = 3.3V
VEXT = 2.5V
VEXT = 1.8V
MAX14830 Quad Serial UART with 128-Word FIFOs
Maxim Integrated
14
www.maximintegrated.com
Pin Description
Pin Conguration
TOP VIEW
MAX14830
TQFN
(7mm
×
7mm)
13
14
15
16
17
18
19
20
21
22
23
24
GPIO2
GPIO3
RX0
TX0
GPIO4
GPIO5
GPIO6
GPIO7
48
47 *EP
*CONNECT EP TO AGND.
46
45
44
43
42
41
40
39
38
37
123 4 5 6 7 8 9 10 11 12
V18
VA
AGND
XIN
XOUT
VEXT
TX3
RX3
CTS3
RTS3
GPIO15
GPIO14
GPIO1
GPIO0
DGND
VL
RST
MOSI/A1
SCLK/SCL
MISO/SDA
LDOEN
36 35 34 33 32 31 30 29 28 27 26 25
RX1
TX1
GPIO8
GPIO9
GPIO10
GPIO11
RX2
TX2
GPIO12
GPIO13
SPI/I2C
CS/A0
IRQ
RTS0
CTS0
RTS1
RTS2
CTS2
CTS1
+
PIN NAME FUNCTION
1 SPI/I2C SPI or Active-Low I2C Selector Input. Drive SPI/I2C high to enable SPI. Drive SPI/I2C low to enable I2C.
2 LDOEN LDO Enable Input. Drive LDOEN high to enable the internal 1.8V LDO. Drive LDOEN low to disable the
internal LDO. When LDOEN is low, V18 can be supplied by an external voltage source.
3 MISO/SDA Serial-Data Output. When SPI/I2C is high, MISO/SDA functions as the MISO, SPI serial-data output.
When SPI/I2C is low, MISO/SDA functions as the SDA, I2C serial-data input/output.
4 SCLK/SCL Serial-Clock Input. When SPI/I2C is high, SCLK/SCL functions as the SCLK, SPI serial-clock input (up to
26MHz). When SPI/I2C is low, SCLK/SCL functions as the SCL, I2C serial-clock input (up to 1MHz).
5CS/A0
Active-Low Chip-Select and Address 0 Input. When SPI/I2C is high, CS/A0 functions as the CS, SPI
active-low chip-select input. When SPI/I2C is low, CS/A0 functions as the A0, I2C device address
programming input. Connect CS/A0 to SDA, SCL, DGND, or VL when SPI/I2C is low.
6 MOSI/A1
Serial-Data and Address 1 Input. When SPI/I2C is high, MOSI/A1 functions as the MOSI, SPI serial-
data input. When SPI/I2C is low, MOSI/A1 functions as the A1, I2C device address programming input.
Connect MOSI/A1 to SDA, SCL, DGND, or VL when SPI/I2C is low.
7IRQ Active-Low Interrupt Open-Drain Output. IRQ is asserted when an interrupt is pending.
8RST Active-Low Reset Input. Drive RST low to force all of the UARTs into hardware reset mode. In hardware
reset mode, the oscillator and the internal PLL are shut down and there is no clock activity.
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
15
Pin Description (continued)
PIN NAME FUNCTION
9 VL
Digital Interface Logic-Level Supply. VL powers the internal logic-level translators for RST, IRQ, MOSI/
A1, CS/A0, SCLK/SCL, MISO/SDA, LDOEN, and SPI/I2C. Bypass VL with a 0.1µF ceramic capacitor to
DGND.
10 DGND Digital Ground
11 GPIO0
General-Purpose Input/Output 0. GPIO0 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO0 has a weak pulldown resistor to ground. GPIO0 is
the reference clock output when bit 7 of the TxSynch register is set to 1 (see the UART Clock to GPIO
section for more information).
12 GPIO1
General-Purpose Input/Output 1. GPIO1 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO1 has a weak pulldown resistor to ground. GPIO1 is the
TIMER output when bit 7 of the TIMER2 register is set to 1.
13 GPIO2 General-Purpose Input/Output 2. GPIO2 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO2 has a weak pulldown resistor to ground.
14 GPIO3 General-Purpose Input/Output 3. GPIO3 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO3 has a weak pulldown resistor to ground.
15 RTS0
Active-Low Request-to-Send Output for UART0. RTS0 can be set high or low by programming the LCR
register. RTS0 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set to 1.
16 CTS0 Active-Low Clear-to-Send Input for UART0. CTS0 is a ow control status input.
17 RX0 Serial Receiving Data Input for UART0. RX0 has a weak pullup to VEXT.
18 TX0 Serial Transmitting Data Output for UART0
19 GPIO4
General-Purpose Input/Output 4. GPIO4 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO4 has a weak pulldown resistor to ground. GPIO4 is
the reference clock output when bit 7 of the TxSynch register is set to 1 (see the UART Clock to GPIO
section for more information).
20 GPIO5
General-Purpose Input/Output 5. GPIO5 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO5 has a weak pulldown resistor to ground. GPIO5 is the
TIMER output when bit 7 of the TIMER2 register is set to 1.
21 GPIO6 General-Purpose Input/Output 6. GPIO6 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO6 has a weak pulldown resistor to ground.
22 GPIO7 General-Purpose Input/Output 7. GPIO7 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO7 has a weak pulldown resistor to ground.
23 RTS1
Active-Low Request-to-Send Output for UART1. RTS1 can be set high or low by programming the LCR
register. RTS1 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set to 1.
24 CTS1 Active-Low Clear-to-Send Input for UART1. CTS1 is a ow control status input.
25 RX1 Serial Receiving Data Input for UART1. RX1 has a weak pullup to VEXT.
26 TX1 Serial Transmitting Data Output for UART1
27 GPIO8
General-Purpose Input/Output 8. GPIO8 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO8 has a weak pulldown resistor to ground. GPIO8 is
the reference clock output when bit 7 of the TxSynch register is set to 1 (see the UART Clock to GPIO
section for more information).
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
16
Pin Description (continued)
PIN NAME FUNCTION
28 GPIO9
General-Purpose Input/Output 9. GPIO9 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO9 has a weak pulldown resistor to ground. GPIO9 is the
TIMER output when bit 7 of the TIMER2 register is set to 1.
29 GPIO10 General-Purpose Input/Output 10. GPIO10 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO10 has a weak pulldown resistor to ground.
30 GPIO11 General-Purpose Input/Output 11. GPIO11 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO11 has a weak pulldown resistor to ground.
31 RTS2
Active-Low Request-to-Send Output for UART2. RTS2 can be set high or low by programming the LCR
register. RTS2 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set to 1.
32 CTS2 Active-Low Clear-to-Send Input for UART2. CTS2 is a ow control status input.
33 RX2 Serial Receiving Data Input for UART2. RX2 has a weak pullup to VEXT.
34 TX2 Serial Transmitting Data Output for UART2
35 GPIO12
General-Purpose Input/Output 12. GPIO12 is user-programmable as an input or output (push-pull or
open drain) or external event interrupt source. GPIO12 has a weak pulldown resistor to ground. GPIO12
is the reference clock output when bit 7 of the TxSynch register is set to 1 (see the UART Clock to GPIO
section for more information).
36 GPIO13
General-Purpose Input/Output 13. GPIO13 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO13 has a weak pulldown resistor to ground. GPIO13 is the
TIMER output if bit 7 of the TIMER2 register is set to 1.
37 GPIO14 General-Purpose Input/Output 14. GPIO14 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO14 has a weak pulldown resistor to ground.
38 GPIO15 General-Purpose Input/Output 15. GPIO15 is user-programmable as an input or output (push-pull or open
drain) or external event interrupt source. GPIO15 has a weak pulldown resistor to ground.
39 RTS3
Active-Low Request-to-Send Output for UART3. RTS3 can be set high or low by programming the LCR
register. RTS3 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set to 1.
40 CTS3 Active-Low Clear-to-Send Input for UART3. CTS3 is a ow control status input.
41 RX3 Serial Receiving Data Input for UART3. RX3 has a weak pullup to VEXT.
42 TX3 Serial Transmitting Data Output for UART3
43 VEXT
Transceiver Interface Level Supply. VEXT powers the internal logic-level translators for RX_, TX_, RTS_,
CTS_, and GPIO_. Bypass VEXT with a 0.1µF ceramic capacitor to DGND.
44 XOUT Crystal Output. When using an external crystal, connect one end of the crystal to XOUT and the other to
XIN. When using an external clock source, leave XOUT unconnected.
45 XIN Crystal/Clock Input. When using an external crystal, connect one end of the crystal to XIN and the other
one to XOUT. When using an external clock source, drive XIN with the external clock.
46 AGND Analog Ground
47 VA
Analog Supply. VA powers the PLL, and the internal LDO. Bypass VA with a 0.1µF ceramic capacitor to
AGND.
48 V18
Internal 1.8V LDO Output and 1.8V Logic Supply Input. Bypass V18 with a 1µF ceramic capacitor to
DGND.
EP Exposed Paddle. Connect EP to AGND. Do not use EP as the main AGND connection.
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
17
Detailed Description
The MAX14830 quad UART bridges an SPI/MICROWIRE®
or I2C microprocessor bus to an asynchronous
interface like RS-485, RS-232, or IrDA. The MAX14830
contains advanced UARTs and baud-rate generators with a
synchronous serial-data interface and an interrupt
generator. The MAX14830 is configured by writing an
8-bit word to the configuration registers through either SPI
or I2C. These registers are organized by related function
as shown in the Register Map.
The host controller loads transmit data into the THR
register through SPI or I2C. This data is automatically
pushed into the Transmit FIFOs, formatted, and sent
out at TX_. The MAX14830 adds START and STOP and
parity bits to the data and sends the data out at the
selected baud rates. The clock configuration registers
determine the baud rates, clock source selection, clock
frequency prescaling, and fractional baud-rate generators.
The MAX14830 receiver detects a START bit as a high-to-
low RX_ transition. An internal clock samples this data at
16 times the data rate. The received data is automatically
placed in the Receive FIFOs and can then be read out of
the RxFIFOs through the RHRs.
The MAX14830 features four identical UARTS. Text in this
data sheet references individual UART operation, unless
otherwise noted.
Receive and Transmit FIFOs
The UART’s receiver and the transmitter each have a
128-word deep FIFO reducing the intervals that the host
processor needs to dedicate for high-speed, high-volume
data transfer. As the data rates of the asynchronous RX_
and TX_ interfaces increase and get closer to those of
the host controller’s SPI/I2C data rates, UART manage-
ment and flow control can make up a significant portion
of the host’s activity. By increasing FIFO size, the host is
interrupted less often and can utilize SPI and I2C burst
data block transfers to/from the FIFOs.
FIFO trigger levels can generate interrupts to the host
controller, signaling that programmed FIFO fill levels have
been reached. The transmitter and receiver trigger levels
are programmed through FIFOTrigLvl with a resolution
of eight FIFO locations. When a Receive FIFO trigger is
generated, the host knows that the Receive FIFO has a
defined number of words waiting to be read out or that
a known number of vacant FIFO locations are available,
ready to be filled. The Transmit FIFO trigger generates
an interrupt when the Transmit FIFO level is above the
programmed trigger level. The host then knows to throttle
data writing to the Transmit FIFO.
The host can read out the number of words present in
each of the FIFOs at any time through the TxFIFOLvl and
RxFIFOLvl registers.
Transmitter Operation
Figure 3 shows the structure of the transmitter with the
TxFIFO. The Transmit FIFO can hold up to 128 words that
are written to it through the Transmit Hold Register (THR).
The current number of words in the TxFIFO can be read
out through the TxFIFOLvl register The Transmit FIFO
can be programmed to generate an interrupt when a
programmed number of words are present in the TxFIFO
through the FIFOTrgLvl register. The TxFIFO interrupt
trigger level is selectable through FIFOTrgLvl[3:0]. When
the Transmit FIFO fill level reaches the programmed
trigger level, the ISR[4] interrupt is set.
The Transmit FIFO is empty when ISR[5]:TFifoEmptyInt
is set. ISR[5] turns high when the transmitter starts
transmitting the last word in the TxFIFO. Hence the
transmitter is completely empty after ISR[5] is set with an
additional delay equal to the length of a complete character
(including START, parity, and STOP bits).
MICROWIRE is a registered trademark of National
Semiconductor Corp.
Figure 3. Transmit FIFO Signals
DATA FROM SPI/I2C
INTERFACE
THR 128
TRIGGER
ISR[4]
TxFIFOLvL
FIFO TRGLVL[3:0]
CURRENT FILL LEVEL
TRANSMIT
FIFO
TRANSMIT
SHIFT-REGISTER TX_
3
2
1
LEVEL
EMPTY
ISR[5]
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
18
The contents of the TxFIFO and RxFIFOs are both
cleared through MODE2[1]: FIFORst. To halt transmis-
sion, set MODE1[1]: TxDisabl to 1. After MODE1[1] is
set, the transmitter completes transmission of the current
character and then ceases transmission.
The TX_ output logic can be inverted through IrDA[5]:
TxInv. If not stated otherwise, all transmitter logic
described in this data sheet assumes that IrDA[5] is 0.
Receiver Operation
The receiver expects the format of the data at RX_ to be
as shown in Figure 4. The quiescent logic state is high
and the first bit (the START bit) is logic-low. The receiver
samples the data near the midbit instant (Figure 4). The
received words and their associated errors are deposited
into the Receive FIFO. Errors and status information are
stored for every received word (Figure 5). The host reads
the data out of the Receive FIFO through the Receive
Hold Register (RHR), oldest data first. The status information
of the most recently read word in the RHR is located in
the Line Status Register (LSR). After a word is read out
of the RHR, the LSR contains the status information for
that word.
The following three error conditions are determined for
each received word: parity error, framing error, and noise
on the line. Line noise is detected by checking the consistency
of the logic of the three samples (Figure 6).
The receiver can be turned off through MODE1[0]:
RxDisabl. When this bit is set to 1, the MAX14830 turns
Figure 4. Receive Data Format
Figure 6. Midbit Sampling
Figure 5. Receive FIFO
RECEIVED DATA
LSB
START D0 D1 D2 D3 D4 D5 D6 D7 PARITY STOP STOP
MSB
MID BIT
SAMPLING
1
RX_
BAUD
BLOCK 2 3 4 5 6 7 8 9
ONE BIT PERIOD
10 11
MAJORITY
CENTER
SAMPLER
12 13 14 15 16
A
RECEIVE FIFO
FIFOTrgLvl[7:4]
TRIGGER
ISR[3]
WORD ERROR 128
RxFIFOLvl
4
3
2
1
TIMEOUT
EMPTY
ERRORS
OVERRUN
LSR[1]
RECEIVED
DATA
RHR
RECEIVER RX_
I2C/SPI INTERFACE
LSR[0]
ISR[6]
LSR[5:2]
CURRENT FILL LEVEL
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
19
the receiver off immediately following the current word
and does not receive any further data. The RX_ input
logic can be inverted through IrDA[4]: RxInv.
Line Noise Indication
When operating in standard or 2x (i.e., not 4x) rate mode,
the MAX14830 checks that the binary logic level of the
three samples per received bit are identical. If any of the
three samples have differing logic levels, then noise on
the transmission line has affected the received data and is
considered to be noisy. This noise indication is reflected
in the LSR[5]: RxNoise bit for each received byte. Parity
errors are another indication of noise, but are not as
sensitive.
Clocking and Baud-Rate Generation
The MAX14830 can be clocked by an external crystal,
or an external clock source. Figure 7 shows a simplified
diagram of the clocking circuitry. When the MAX14830 is
clocked by a crystal, the STSInt[5]: ClockReady indicates
when the clocks have settled and the baud-rate generator
is ready for stable operation.
Each UART baud rate can be individually programmed.
To achieve fast baud rate changes, first disable the
UART’s clock by setting CLKDisabl to 1. Then change
the baud rate divisor and subsequently enable the clock
via CLKDisabl.
To check that the UART’s clocking is programmed as
expected, route the baud rate clock to RTS using the
CLKtoRTS bit. The clock rate of this is 16x the baud rate
in standard operating mode and 8x the baud rate in 2x
rate mode. In 4x rate mode, the CLKOUT frequency is 4x
the programmed baud rate. If the fractional portion of the
baud-rate generator is used, the clock is not regular and
exhibits jitter.
Crystal Oscillator
Set BRGConfig[6]: CLKDisabl to 0 and CLKSource[1]:
CrystalEn to 1 to enable and select the crystal oscillator.
The on-chip crystal oscillator circuit has load capaci-
tances of 16pF (typ) integrated in both XIN and XOUT.
Connect an external crystal or ceramic oscillator between
XIN and XOUT.
External Clock Source
Connect an external clock source to XIN when not
using a crystal oscillator. Leave XOUT unconnected. Set
CLKSource[1]: CrystalEn to 0 to select external clocking.
PLL and Predivider
The internal predivider and PLL allow for a wide range of
external clock frequencies and baud rates. The PLL can
be configured to multiply the input clock rate by a factor
of 6, 48, 96, or 144 through the PLLConfig register. The
predivider, located between the input clock and the PLL,
allows division of the input clock by a factor between 1
and 63 by writing to PLLConfig[5:0]. See the PLLConfig
register description for more information.
Figure 7. Clock Selection Diagram
PLLBypassCrystalEn
XOUT CRYSTAL
OSCILLATOR
PLLEn ClkDisabl[0...3]
XIN
DIVIDER PLL FRACTIONAL
BAUD RATE
GENERATOR 1
FRACTIONAL
BAUD RATE
GENERATOR 2
FRACTIONAL
BAUD RATE
GENERATOR 3
FRACTIONAL
BAUD RATE
GENERATOR 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
20
Fractional Baud-Rate Generators
The internal fractional baud-rate generator provides a
high degree of flexibility and high resolution in baud-
rate programming. The baud-rate generator has a 16-bit
integer divisor and a 4-bit word for the fractional divisor.
The fractional baud-rate generator can be used with the
external crystal or clock source.
The integer and fractional divisors are calculated through
the divisor, D:
REF
f
D
16 BaudRate
=
×
where fREF is the reference frequency input to the baud-
rate generator and D is the ideal divisor. In 2x and 4x rate
modes, replace the divisor 16 by 8 or 4, respectively.
The integer divisor portion, DIV, of the divisor, D, is
obtained by truncating D:
DIV = TRUNC(D)
DIV can be a maximum of 16 bits wide and is programmed
into the 2-byte-wide registers DIVMSB and DIVLSB. The
minimum allowed value for DIVLSB is 1.
The fractional portion of the divisor, FRACT, is a 4-bit nib-
ble, which is programmed into BRGConfig[3:0]. The maxi-
mum value is 15, allowing the divisor to be programmed
with a resolution of 0.0625. FRACT is calculated as:
FRACT = ROUND(16 x (D-DIV)).
The following is an example of calculating the divisor. It is
based on a required baud rate of 190kbaud and a refer-
ence input frequency of 28.23MHz and default rate mode.
The ideal divisor is calculated as:
D = 28,230,000 / (16 x 190,000) = 9.286
hence DIV = 9.
FRACT = ROUND(4.579) = 0x05
so that DIVMSB = 0x00, DIVLSB = 0x09, and
BRGConfig[3:0] = 0x05.
The resulting actual baud rate can be calculated as:
REF
ACTUAL
ACTUAL
f
BR 16 D
=×
For this example: DACTUAL = 9 + 5/16 = 9.313,
where DACTUAL = DIV + (FRACT/16) and
BRACTUAL= 28,230,000/(16 x 9.3125) = 189,463.087
baud
Thus, the baud rate is within 0.28% of the ideal rate.
2x and 4x Rate Modes
To support higher baud rates than possible with standard
(16x sampling) operation, the MAX14830 offers 2x and
4x rate modes. In this case, the reference clock rate only
needs to be either 8x or 4x of the baud rate, respectively.
In 4x mode only, the bits are only sampled once, at the
midbit instant, instead of the usual three samples to
determine the logic value of the bits. This reduces the
tolerance to line noise on the received data. The 2x and
4x modes are selectable through BRGConfig[5:4]. Note
that IrDA encoding and decoding does not operate in 2x
and 4x modes.
When 2x rate mode is selected, the actual baud rate is
twice the rate programmed into the baud-rate generator. If
4x rate mode is enabled, the actual baud rate on the line
is quadruple that of the programmed baud rate (Figure 8).
Figure 8. 2x and 4x Baud Rates
FRACTIONAL
RATE
GENERATOR
DIVLSB
DIVMSB
FRACT
NOTE: IrDA DOES NOT WORK IN 2x AND 4x MODES.
fREF
BRGConfig[5:4]
RATE MODE
SELECTION
1 x BAUD RATE,
2 x BAUD RATE,
4 x BAUD RATE
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
21
Low-Frequency Timer
The general-purpose timer can be used to generate a
low-frequency clock at a GPIO output and can, for exam-
ple, be used to drive external LEDs. The low-frequency
clock is a divided replica of a given UART baud-rate clock.
The timer is internally routed to the GPIO_ outputs when
enabled in the TIMER2 register as follows:
UART0: GPIO1
UART1: GPIO5
UART2: GPIO9
UART3: GPIO13
The clock pulses at the GPIOs are generated at a rate
defined by the baud-rate generator and the timer divider
(Figure 9). The baud-rate generator clock is divided
by (1024 x TIMERx), where TIMERx is a 15-bit integer
programmed into the TIMER1 and TIMER2 registers. The
timer output is a 50% duty cycle clock.
UART Clock to GPIO
The MAX14830 reference clock can be routed to the
GPIO0, GPIO4, GPIO8, and/or GPIO12 outputs in case a
synchronous high-frequency clock is needed by another
device. Enable routing a UART clock to GPIO0, GPIO4,
GPIO8, and/or GPIO12 in the TxSynch register. This
output clock could, for example, be used to clock another
UART device (Figure 29).
Multidrop Mode
In Multidrop Mode, also known as 9-bit mode, the word
length is 8 bits and a 9th bit is used for distinguishing
between an address and a data word. Multidrop mode is
enabled through MODE2[6]: MultiDrop. Parity checking is
disabled and an SpclCharInt[5]: MultiDropInt interrupt is
generated when an address (9th bit set) is received.
It is up to the host processor to filter out the data intended
for its address. Alternatively the auto data filtering mode
can be used to automatically filter out the data intended
for the station’s specific 9-bit mode address.
Auto Data Filtering in Multidrop Mode
In multidrop mode, the MAX14830 can be configured
to automatically filter out data that is not meant for its
address. The address is user-definable either by pro-
gramming a register value or a combination of a register
value and GPIO hardware inputs. Use either XOFF2
or XOFF2[7:4] in combination with GPIO_ to define the
address.
Enable multidrop mode by setting MODE2[6]: MultiDrop
to 1 and enable auto data filtering by setting MODE2[4]:
SpecialChr to 1.
When using register bits in combination with GPIO_ to
define the address, the MSB of the address is written to
XOFF2[7:4] register bits, while the LSBs of the address
are defined through the GPIOs. To enable this mode,
set FlowCtrl[2]: GPIAddr, MODE2[4]: SpecialChr, and
MODE2[6]: MultiDrop to 1. GPIO_ are automatically read
when FlowCtrl[2]: GPIAddr is set to 1, and the address is
updated on logic changes at GPIO_.
In the auto data filtering mode, the MAX14830 automati-
cally accepts data that is meant for its address and places
this into the Receive FIFO, while it discards data that is
not meant for its address. The received address word is
not put into the FIFO.
Auto Transceiver Direction Control
In some half-duplex communication systems the trans-
ceiver’s transmitter must be turned off when data is being
received so as not to load the bus. This is the case in half-
duplex RS-485 communication. Similarly in full-duplex
multidrop communication, like RS-485 or RS-422/V.11,
only one transmitter can be enabled at any one time
and the others must be disabled. The MAX14830 can
automatically enable/disable a transceiver’s transmitter
and/or receiver. This relieves the host processor of this
time-critical task.
The RTS_ output is used to control the transceivers’
transmit enable input and is automatically set high when
the MAX14830’s transmitter starts transmission.
Figure 9. GPIO_ Clock Pulse Generator
UART_
FRACTIONAL
RATE
GENERATOR
fREF TIMERx
GPIO_ GPIO_
TmrtoGPIO
DIVIDE-BY-1024
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
22
This occurs as soon as data is present in the Transmit
FIFO. Auto transceiver direction control is enabled
through MODE1[4]: TrnscvCtrl. Figure 10 shows a typical
MAX14830 connection in a RS-485 application.
The RTS_ output can be set high in advance of TX_ trans-
mission by a programmable time period called the setup
time (Figure 11). The setup time is programmed through
HDplxDelay[7:4]. Similarly, the RTS_ signal can be held
high for a programmable period after the transmitter has
completed transmission. The hold time is programmed
through HDplxDelay[3:0].
Transmitter Triggering and Synchronization
The MAX14830 allows synchronization of transmitters so
that selected UARTs start transmitting data when a trig-
ger command is received. Optional delays can also be
programmed, which delay the start of transmission after a
trigger command is received. A UART’s transmitter can be
assigned one of 16 possible SPI/I2C trigger commands.
A trigger command is defined as any of 16 special values
written into the GloblComnd register (see the GloblComnd
section for more information). When a byte is written
into the GloblComnd register, UART select bits (U0 and
U1) are ignored by the MAX14830, and the GloblComnd
applies to all four UARTs. Transmission is initiated when
the MAX14830 receives the assigned SPI/I2C trigger
command if the selected transmitter is initially disabled
and data has been loaded into its TxFIFO.
Enable and configure transmitter synchronization in the
TxSynch register. Triggering and synchronization requires
that the TxFIFOs are disabled before the trigger is
received. This can be done by setting the MODE1[1] bit
to 1 or by utilizing the auto transmitter disable function
(TxSynch[4] is 1).
Transmitter Synchronization
Synchronize multiple UARTs so their transmitters start
transmission simultaneously by assigning a common trig-
ger command to the UARTs that should be synchronized.
Intrachip and Interchip Synchronization
Intrachip transmitter triggering occurs when any of the
four UARTs in a MAX14830 are triggered by one trigger
command. This type of synchronization is supported in
both SPI and I2C modes, as the trigger commands are
global commands that are received by all four UARTs
simultaneously.
Interchip transmitter triggering occurs when the UARTs in
different MAX14830 devices are synchronized. This type
of synchronization is achievable in SPI mode only. Pull
the CS of all the MAX14830 devices on the bus low during
the SPI master’s write trigger command so that the com-
mands are received by all UARTs on the shared SPI bus.
I2C protocol does not allow simultaneous addressing of
multiple devices.
Delayed Triggering
A delay can be programmed for delaying the start of trans-
mission after the reception of an assigned trigger com-
mand. Set the delay by programming the SynchDelay1
and SynchDelay2 registers.
Figure 10. Auto Transceiver Direction Control
Figure 11. Setup and Hold times in Auto Transceiver Direction Control
TX_ DI D
B
A
R
DE
RE
RO
RTS_
RX_
Tx FIFO
Rx FIFO
MAX14830
TRANSMITTER
AUTO
TRANSCEIVER
CONTROL
RECEIVER
MAX14840E
TX_
FIRST CHARACTER LAST CHARACTER
RTS_
SETUP
HOLD
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
23
Trigger Accuracy
The delay between the time when the MAX14830 receives
a trigger command and the time when the associated
transmitter starts transmission is made up of a fixed,
deterministic portion and a variable, random component.
Both portions of the delay are dependent on the UART’s
clock and baud rates. When the fractional divider is not
used, the intrinsic trigger delay, tTRIG, is bounded by the
following limits:
TRIG
5 BR 6 BR
t
16 16
××
≤≤
where BR is the fractional divider output clock period. This
equation is independent on the rate mode. The reference
point is the time when the trigger command is received by
the MAX14830. This occurs on the final (i.e., the 16th) SPI
clock’s low-to-high transition (Figure 12).
When the fractional baud-rate generator is used, the
random portion is larger than one UART clock period.
Synchronization Accuracy
When synchronizing multiple UART transmitters, the
accuracy of the TX_ transmitter outputs is based on the
triggering delays of each UART (Figure 13). This skew
has a baud-rate dependent component, similar to the
trigger accuracy equation for a single transmitter output.
Calculate the TX_ transmitter output skew using the
following equation:
( )
SF
TRIGSKEW
6 BR 5 BR
t max
16
× −×
where BRS is the fractional divider output clock of the
lower/slower baud-rate UART and BRF is the fractional
divider output clock of the higher/faster baud-rate UART.
Auto Transmitter Disable
The MAX14830 allows automatic disabling of the
transmitter. Enable auto transmitter disabling functional-
ity by setting TxSynch[4] to 1. When auto transmitter
disabling is activated, the MAX14830 disables the speci-
fied transmitter after it completes sending all the data in
its TxFIFO. New data can then be loaded into the TxFIFO.
A disabled transmitter does not send out data on the
TX_output when data is present in its TxFIFO.
To enable transmission, either clear the TxAutoDis bit
in the TxSynch register or toggle the TxDisabl bit in the
MODE1 register.
Echo Suppression
The MAX14830 can suppress echoed data, sometimes
found in half-duplex communication (e.g., RS-485 and
IrDA). If the transceiver’s receiver is not turned off
while the transceiver is transmitting, copies (echoes) are
received by the UART. The MAX14830’s receiver can
block the reception of this echoed data by enabling echo
suppression. Set MODE2[7]: EchoSuprs to 1 to enable
echo suppression.
The MAX14830 receiver can block echoes with a long
round trip delay. The transmitter can be configured
to remain enabled after the end of transmission for a
programmable period of time: the hold time delay
(Figure 14). The hold time delay is set by the
HDplxDelay[3:0] register. See the HDplxDelay Register
section for more information.
Figure 12. Single Transmitter Trigger Accuracy
UNCERTAINTY
INTERVAL
tTRIG_MIN
tTRIG_MAX
TX_
SCLK
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
24
Figure 13. Multiple Transmitter Synchronization Accuracy
Figure 14. Echo Suppression Timing
tTX1_MAX
tTRIGSKEW
tTX1_MIN
tTX0_MAX
tTX0_MIN
TX0
TX1
SCLK
TX_
RX_
DI TO RO PROPAGATION DELAY
HOLD DELAYSTOP
BIT
RTS_
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
25
Echo suppression can operate simultaneously with auto
transceiver direction control (Figure 15).
Auto Hardware Flow Control
The MAX14830 is capable of automatic hardware (RTS
and CTS) flow control without the need for host proces-
sor intervention. When AutoRTS control is enabled, the
MAX14830 automatically controls the RTS handshake
without the need for host processor intervention. AutoCTS
flow control separately turns the MAX14830’s transmit-
ter on and off based on the CTS_ input. AutoRTS and
AutoCTS flow control are independently enabled through
FlowCtrl[1:0].
AutoRTS Control
AutoRTS flow control ensures that the Receive FIFO does
not overflow by signaling to the far end UART to stop
data transmission. The MAX14830 does this automati-
cally by controlling RTS_. AutoRTS flow control is enabled
through FlowCtrl[0]: AutoRTS. The HALT and RESUME
levels determine the threshold levels at which RTS_ is
asserted and deasserted. HALT and RESUME are pro-
grammed in FlowLvl. With differing HALT and RESUME
levels, hysteresis can be defined for the RTS_ transitions.
When the RxFIFO fill level reaches the HALT level
(FlowLvl[3:0]), the MAX14830 deasserts RTS_. RTS_
remains deasserted until the RxFIFO is emptied and the
number of words falls to the RESUME level.
Interrupts are not generated when the HALT and
RESUME levels are reached. This allows the host
controller to be completely disengaged from RTS flow
control management.
AutoCTS Control
When AutoCTS flow control is enabled, the UART auto-
matically starts transmitting data when the CTS_ input is
logic-level low and stops transmitting when CTS_ is logic-
high. This frees the host processor from managing this
timing-critical flow control task. AutoCTS flow control is
enabled through FlowCtrl[1]: AutoCTS. During AutoCTS
flow control, the CTS interrupt works normally. Set the
IRQEn[7]: CTSIntEn to 0 to disable CTS interrupts then
ISR[7]: CTSInt is fixed to logic 0 and the host does not
receive interrupts from CTS_. If CTS_ is set high during
transmission the MAX14830 completes transmission of
the current word and halts transmission afterwards.
Turn the transmitter off by setting MODE1[1] to 1 before
enabling AutoCTS control.
FIFO Interrupt Triggering
Receive and Transmit FIFO fill-dependent interrupts are
generated if FIFO trigger levels are defined. When the
number of words in the FIFOs reach or exceed a trigger
level, as programmed in FIFOTrgLvl, an ISR[3] or ISR[4]
interrupt is generated. There is no relationship between
the trigger levels and the HALT or RESUME levels.
The FIFO trigger level can, for example, be used for a
block data transfer, since it gives the host an indication
when a given block size of data is available for reading in
the Receive FIFO or available for transfer to the Transmit
FIFO.
Auto Software (XON/XOFF) Flow Control
When auto software flow control is enabled, the MAX14830
recognizes and/or sends predefined XON/XOFF charac-
ters to control the flow of data across the asynchronous
serial link. Automatic flow works autonomously and does
not involve host intervention, similar to auto hardware
flow control. To reduce the chance of receiving corrupted
data that equals a single-byte XON or XOFF character,
the MAX14830 allows for double wide (16-bit) XON/XOFF
characters. XON and XOFF are programmed into the
XON1, XON2 and XOFF1, XOFF2 registers.
FlowCtrl[7:3] are used for enabling and configuring
auto software flow control. An ISR[1] interrupt is gener-
ated when XON or XOFF are received and details are
found in SpclCharInt. The IRQ can be masked by setting
IRQEn[1]: SpclChrIEn to 0.
Software flow control consists of transmitter control and
receiver overflow control, which can operate indepen-
dently of one another.
Figure 15. Half-Duplex with Echo Suppression
TX
L OGI C
TRANSMITTER TX_ DI D
B
A
R
DE
RE
RO
RTS_
RX_
ECHO
SUPPRESSION
RECEIVER
Rx FIFO
Tx FIFO
MAX14840E
MAX14830
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
26
Transmitter Flow Control
When auto transmitter control (FlowCtrl[5:4]) is enabled,
the receiver compares all received words with the XOFF
and XON characters. If an XOFF character is received,
the MAX14830 halts its transmitter from sending further
data. The receiver is not affected and continues reception.
Upon receiving XON, the transmitter then restarts sending
data. The received XON and XOFF characters are filtered
out and are not put into the Receive FIFO, as they do not
have significance to the higher layer protocol. An interrupt
is not generated.
Turn the transmitter off (MODE1[1] = 1) before enabling
transmitter control.
Receiver Overow Control
When auto receiver overflow control (FlowCtrl[7:6]) is
enabled, the MAX14830 automatically sends XOFF and
XON control characters to the far end UART to avoid
receiver overflow. XOFF1/XOFF2 is/are sent when the
Receive FIFO fill level reaches the HALT value set in the
FlowLvl register. When the host controller reads data from
the Receive FIFO to a level equal to the RESUME level
programmed into the FlowLvl register, XON1/XON2 is/
are automatically sent to the far end station to signal it to
resume data transmission.
XON1/XOFF1 is transmitted before XON2/XOFF2 when
dual character (XON1 and XON2/XOFF1 and XOFF2)
flow control is enabled.
Power-Up and IRQ
IRQ has two functions. During normal operation
(MODE1[7] = 1), IRQ operates as a hardware interrupt
output, whereby the IRQ is active when an interrupt is
pending. An IRQ interrupt can only be produced during
normal operation if at least one of the IRQEn interrupt
enable bits are enabled.
During power-up or following a reset, IRQ has a different
function. It is held low until the MAX14830 is ready for
programming following an initialization delay. Once IRQ
goes high, the MAX14830 is ready to be programmed.
The MODE1[7]: IRQSel bit should then be set to enable
normal IRQ interrupt operation.
In polled mode, the DIVLSB register can be polled to
check whether the MAX14830 is ready for operation. If
the controller gets a valid response from DIVLSB, then
the MAX14830 is ready for operation.
Shutdown Mode
Pull RST to DGND to enter shutdown mode. Shutdown
mode is the lowest power consumption mode. In shut-
down mode, all of the MAX14830 circuitry is off. This
includes the SPI/I2C interface, the registers, the FIFOs,
and clocking circuitry. The LDO is on in shutdown mode.
When the RST input is high, the MAX14830 exits shut-
down mode. The chip initialization is completed when the
MAX14830 sets IRQ to logic-high.
The MAX14830 needs to be reprogrammed following a
shutdown.
Interrupt Structure
The structure of the interrupt is shown in Figure 16.
There are four interrupt source registers for each UART:
ISR, LSR, STSInt, and SpclCharInt. Read the GlobalIRQ
Figure 16. Simplified Interrupt Structure
7 6 5 4 3
LSR
2 1 0
7 6 5 4 3
STSInt
2 1 0
0 0 0 0
GlobalIRQ
7 6 5 4 3
ISR
2 1 07 6 5 4 3
ISR
LOW-LEVEL INTERRUPTS
TOP-LEVEL
INTERRUPTS
2 1 07 6 5 4 3
ISR
2 1 07 6 5 4 3
ISR
2 1 0
7 6 5 4 3
SpclCharInt
2 1 0
IRQ3
IRQ
MODE1[7]:IRQSEL
IRQ1 IRQ0IRQ2
888
8
8
8
8
4
[4]
POWER-UP
COMPLETED
[0]
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
27
regis
ter to determine which UART is the source of the
interrupt. The interrupt sources are divided into top-level
and low-level interrupts. The top-level interrupts typically
occur more often and can be read out directly through the
ISR. The low-level interrupts typically occur less often and
their specific source can be read out through the LSR,
STSInt, or SpclChar registers. The three LSBs of the ISR
point to the low-level interrupt registers that contain the
detail of the interrupt source.
Interrupt Enabling
Every interrupt bit of the four interrupt registers can
be enabled or masked through an associated interrupt
enable register bit. These are the IRQEn, LSRIntEn,
SpclChrIntEn, and STSIntEn registers.
Interrupt Clearing
When an ISR interrupt is pending (i.e. any bit in ISR is
set) and the ISR is subsequently read, the ISR bits and
IRQ are cleared. Both the SpclCharInt and the STSInt
registers are also clear on read (COR). The LSR bits are
only cleared when the source of the interrupt is removed,
not when LSR is read.
Reading the GlobalIRQ register does not clear the IRQ
interrupt.
(All default reset values are 0x00, unless otherwise noted. All registers are R/W, unless otherwise noted.)
Register Map
REGISTER ADDR BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
FIFO DATA
RHR0x00 RData7 RData6 RData5 RData4 RData3 RData2 RData1 RData0
THR0x00 TData7 TData6 TData5 TData4 TData3 TData2 TData1 TData0
INTERRUPTS
IRQEn 0x01 CTSIEn RFifoEmtyIEn TFifoEmtyIEn TFifoTrgIEn RFifoTrgIEn STSIEn SpclChrIEn LSRErrIEn
ISR*0x02 CTSInt RFifoEmptyInt TFifoEmptyInt TFifoTrigInt RFifoTrigInt STSInt SpCharInt LSRErrInt
LSRIntEn 0x03 RxNoiseIntEn RBreakIEn FrameErrIEn ParityIEn ROverrIEn RTimoutIEn
LSR*0x04 CTSbit RxNoise RxBreak FrameErr RxParityErr RxOverrun RTimeout
SpclChrIntEn 0x05 MltDrpIntEn BREAKIntEn XOFF2IntEn XOFF1IntEn XON2IntEn XON1IntEn
SpclCharInt0x06 MultiDropInt BREAKInt XOFF2Int XOFF1Int XON2Int XON1Int
STSIntEn¥0x07 ClockRdyIntEn GPI3IntEn GPI2IntEn GPI1IntEn GPI0IntEn
STSInt†¥ 0x08 ClockReady GPI3Int GPI2Int GPI1Int GPI0Int
UART MODES
MODE1 0x09 IRQSel TrnscvCtrl RTSHiZ TXHiZ TxDisabl RxDisabl
MODE2 0x0A EchoSuprs MultiDrop LoopBack SpecialChr RxEmtyInv RxTrgInv FIFORst RST
LCR* 0x0B RTSbit TxBreak ForceParity EvenParity ParityEn StopBits Length1 Length0
RxTimeOut 0x0C TimOut7 TimOut6 TimOut5 TimOut4 TimOut3 TimOut2 TimOut1 TimOut0
HDplxDelay 0x0D Setup3 Setup2 Setup1 Setup0 Hold3 Hold2 Hold1 Hold0
IrDA 0x0E TxInv RxInv MIR RTSInvert SIR IrDAEn
FIFOs CONTROL
FlowLvl 0x0F Resume3 Resume2 Resume1 Resume0 Halt3 Halt2 Halt1 Halt0
FIFOTrgLvl* 0x10 RxTrig3 RxTrig2 RxTrig1 RxTrig0 TxTrig3 TxTrig2 TxTrig1 TxTrig0
TxFIFOLvl0x11 TxFL7 TxFL6 TxFL5 TxFL4 TxFL3 TxFL2 TxFL1 TxFL0
RxFIFOLvl0x12 RxFL7 RxFL6 RxFL5 RxFL4 RxFL3 RxFL2 RxFL1 RxFL0
FLOW CONTROL
FlowCtrl 0x13 SwFlow3 SwFlow2 SwFlow1 SwFlow0 SwFlowEn GPIAddr AutoCTS AutoRTS
XON1 0x14 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XON2 0x15 Bit7 Bi6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XOFF1 0x16 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XOFF2 0x17 Bit7 Bi6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
28
*Denotes nonzero default reset value: ISR = 0x60, LCR = 0x05, FIFOTrgLvl = 0xFF, PLLConfig = 0x01, DIVLSB = 0x01,
CLKSource = 0x08, REVID = 0xB4.
†Denotes nonread/write value: RHR = R, THR = W, ISR = COR, SpclCharInt = COR, STSInt = R/COR,
LSR = R, TxFIFOLvl = R, RxFIFOLvl = R, REVID = R.
¥Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7, UART2:
GPIO8–GPIO11, UART3: GPIO12–GPIO15.
‡This register can only be programmed by accessing UART0.
#This register can only be directly addressed in I2C mode. Use extended addressing when operating in SPI mode.
Register Map (continued)
REGISTER ADDR BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
GPIOs
GPIOConfg¥0x18 GP3OD GP2OD GP1OD GP0OD GP3Out GP2Out GP1Out GP0Out
GPIOData¥0x19 GPI3Dat GPI2Dat GPI1Dat GPI0Dat GPO3Dat GPO2Dat GPO1Dat GPO0Dat
CLOCK CONFIGURATION
PLLCong*0x1A PLLFactor1 PLLFactor0 PreDiv5 PreDiv4 PreDiv3 PreDiv2 PreDiv1 PreDiv0
BRGCong 0x1B CLKDisabl 4xMode 2xMode FRACT3 FRACT2 FRACT1 FRACT0
DIVLSB 0x1C Div7 Div6 Div5 Div4 Div3 Div2 Div1 Div0
DIVMSB 0x1D Div15 Div14 Div13 Div12 Div11 Div10 Div9 Div8
CLKSource*0x1E CLKtoRTS PLLBypass PLLEn CystalEn
GLOBAL REGISTERS
GlobalRQ 0x1F 0 0 0 0 IRQ3 IRQ2 IRQ1 IRQ0
GloblComnd 0x1F GlbCom7 GlbCom6 GlbCom5 GlbCom4 GlbCom3 GlbCom2 GlbCom1 GlbCom0
SYNCHRONIZATION REGISTERS
TxSynch#0x20 CLKtoGPIO TxAutoDis TrigDelay SynchEn TrigSel3 TrigSel2 TrigSel1 TrigSel0
SynchDelay1#0x21 SDelay7 SDelay6 SDelay5 SDelay4 SDelay3 SDelay2 SDelay1 SDelay0
SynchDelay2#0x22 SDelay15 SDelay14 SDelay13 SDelay12 SDelay11 SDelay10 SDelay9 SDelay8
TIMER REGISTERS
TIMER1#0x23 Timer7 Timer6 Timer5 Timer4 Timer3 Timer2 Timer1 Timer0
TIMER2#0x24 TmrToGPIO Timer14 Timer13 Timer12 Timer11 Timer10 Timer9 Timer8
REVISION
REVID*†# 0x2510110100
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
29
Detailed Register Descriptions
The MAX14830 has registers that are 8 bits wide.
Bits 7–0: RData[n]
The RHR is the bottom of the Receive FIFO and is the register used for reading data out of the Receive FIFO. It contains
the oldest (first received) character in the Receive FIFO. RHR[0] is the first data bit of the serial-data word received by
the receiver at the RX pin.
RHR—Receive Hold Register
THR—Transmit Hold Register
Bits 7–0: TData[n]
The THR is the register that the host controller writes data to for subsequent UART transmission. This data is deposited
in the Transmit FIFO. THR[0] is the LSB. It is the first data bit of the serial-data word that the transmitter sends out, right
after the START bit.
ADDRESS: 0x00
MODE: R
BIT 7 6 543210
NAME RData7 RData6 RData5 RData4 RData3 RData2 RData1 RData0
RESET XXXXXXXX
ADDRESS: 0x00
MODE: W
BIT 7 6 5432 1 0
NAME TData7 TData6 TData5 TData4 TData3 TData 2 TData1 TData0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
30
IRQEn—IRQ Enable Register
The IRQEn register is used to enable the IRQ physical interrupt. Any of the eight ISR interrupt sources can be enabled
to generate an IRQ. The IRQEn bits only influence the IRQ output and do not have any effect on the ISR contents or
behavior. Every one of the IRQEn bits operates on an ISR bit.
Note that an error can occur in the TxFIFO when a character is written into THR at the same time as the transmitter is
transmitting out data via TX. In the event of this error condition, the result is that a character will not be transmitted.
In order to avoid this, stop the transmitter when writing data to the THR. This can be done via the TxDisable bit in the
MODE1 register.
Bit 7: CTSIEn
The CTSIEn bit enables IRQ interrupt generation when the CTSInt interrupt bit is set in the ISR. Set the CTSIEn bit low
to disable IRQ generation from CTSInt.
Bit 6: RFifoEmtyIEn
The RFifoEmtyIEn bit enables IRQ interrupt generation when the RFifoEmptyInt interrupt bit is set in the ISR. Set the
RFifoEmtyIEn bit low to disable IRQ generation from RFifoEmptyInt.
Bit 5: TFifoEmtyIEn
The TFifoEmtyIEn bit enables IRQ interrupt generation when the TFifoEmptyInt interrupt bit is set in the ISR. Set the
TFifoEmtyIEn bit low to disable IRQ generation from TFifoEmptyInt.
Bit 4: TFifoTrgIEn
The TFifoTrgIEn bit enables IRQ interrupt generation when the TFifoTrigInt interrupt bit is set in the ISR. Set TFifoTrgIEn
bit low to disable IRQ generation from TFifoTrigInt.
Bit 3: RFifoTrgIEn
The RFifoTrgIEn bit enables IRQ interrupt generation when the RFifoTrigInt interrupt bit is set in the ISR. Set the
RFifoTrgIEn bit low to disable IRQ generation from RFifoTrigInt.
Bit 2: STSIEn
The STSIEn bit enables IRQ interrupt generation when the STSInt interrupt bit is set in the ISR. Set the STSIEn bit low
to disable IRQ generation from STSInt.
Bit 1: SpclChrIEn
The SpclChrIEn bit enables IRQ interrupt generation when the SpCharInt interrupt bit is set in the ISR. Set the SpclChrIEn
bit low to disable IRQ generation from SpCharInt.
Bit 0: LSRErrIEn
The LSRErrIEn bit enables IRQ interrupt generation when the LSRErrInt interrupt bit is set in the ISR[0]. Set the
LSRErrIEn low to disable IRQ generation from LSRErrInt.
ADDRESS: 0x01
MODE: R/W
BIT 7 6 5432 1 0
NAME CTSIEn RFifoEmtyIEn TFifoEmtyIEn TFifoTrgIEn RFifoTrgIEn STSIEn SpclChrIEn LSRErrIEn
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
31
ISR—Interrupt Status Register
The Interrupt Status Register provides an overview of all interrupts generated in the MAX14830. These interrupts are
cleared upon reading the ISR. When the MAX14830 is operated in polled mode, the ISR can be polled to establish
the UART’s status. In interrupt-driven mode, IRQ interrupts are enabled through the appropriate IRQEn bits. The ISR
contents give direct information on the cause for the interrupt or point to other registers that contain more detailed
information.
Bit 7: CTSInt
The CTSInt is set when a logic state transition occurs at the CTS_ input. This bit is cleared after ISR is read. The current
logic state of the CTS_ input can be read out through LSR[7]: CTS bit.
Bit 6: RFifoEmptyInt
The RFifoEmptyInt is set when the Receive FIFO is empty. This bit is cleared after ISR is read. Its meaning can be
inverted by setting the MODE2[3]: RxEmtyInt bit.
Bit 5: TFifoEmptyInt
The TFifoEmptyInt bit is set when the Transmit FIFO is empty. This bit is cleared once ISR is read.
Bit 4: TFifoTrigInt
The TFifoTrigInt bit is set when the number of characters in the Transmit FIFO is equal to or greater than the Transmit
FIFO trigger level defined in FIFOTrigLvl[3:0]. TFifoTrigInt is cleared when the Transmit FIFO level falls below the trigger
level or after the ISR is read. It can be used as a warning that the Transmit FIFO is nearing overflow.
Bit 3: RFifoTrigInt
The RFifoTrigInt bit is set when the Receive FIFO fill level reaches the Receive FIFO trigger level, as defined in
FIFOTrigLvl[7:4]. This can be used as an indication that the Receive FIFO is nearing overrun. It can also be used to
report that a known number of words are available that can be read out in one block. The meaning of RFifoTrigInt can
be inverted through MODE2[2]. RFifoTrigInt is cleared when ISR is read.
Bit 2: STSInt
The STSInt bit is set high when any bit in the STSInt register that is enabled through a STSIntEn bit is high. The STSInt
bit is cleared upon reading ISR.
Bit 1: SpCharInt
The SpCharInt bit is set high when a special character is received, a line BREAK is detected or an address character is
received in multidrop mode. The cause for the SpCharInt interrupt can be read from the SpclCharInt register, if enabled
through the SpclChrIntEn bits. The SpCharInt interrupt is cleared when the ISR is read.
Bit 0: LSRErrInt
The LSRErrInt bit is set high when any LSR bits, which are enabled through the LSRIntEn, are set. This bit is cleared
after the ISR is read.
ADDRESS: 0x02
MODE: COR
BIT 7 6 5432 1 0
NAME CTSInt RFifoEmptyInt TFifoEmptyInt TFifoTrigInt RFifoTrigInt STSInt SpCharInt LSRErrInt
RESET 0 1 1 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
32
LSRIntEn—Line Status Interrupt Enable Register
The LSR Interrupt Enable register allows routing of LSR interrupt bits to the ISR[0].
Bits 7, 6: No Function
Bit 5: NoiseIntEn
Set the NoiseIntEn bit high to enable routing the RxNoise interrupt to LSR[0]. If NoiseIntEn is set low, RxNoise is not
routed to LSR[0].
Bit 4: RBreakIEn
Set the RBreakIEn bit high to enable routing the RxBreak interrupt to LSR[0]. If RBreakIEn is set low, RxBreak is not
routed to LSR[0].
Bit 3: FrameErrIEn
Set the FrameErrIEn bit high to enable routing the FrameErr interrupt to LSR[0]. If FrameErrIEn is set low, FrameErr is
not routed to LSR[0].
Bit 2: ParityIEn
Set the ParityIEn bit high to enable routing the RxParityErr interrupt to LSR[0]. If ParityIEn is set low, RxParityErr is not
routed to the LSR[0].
Bit 1: ROverrIEn
Set the ROverrIEn bit high to enable routing the RxOverrun interrupt to LSR[0]. If ROverrIEn is set low, RxOverrun is not
routed to LSR[0].
Bit 0: RTimoutIEn
Set the RTimoutIEn bit high to enable routing the RTimeout interrupt to LSR[0]. If RTimoutIEn is set low, the RTimeout
is not routed to LSR[0].
ADDRESS: 0x03
MODE: R/W
BIT 7 6 5432 1 0
NAME NoiseIntEn RBreakIEn FrameErrIEn ParityIEn ROverrIEn RTimoutIEn
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
33
LSR—Line Status Register
The Line Status Register shows all errors related to the word in the RxFIFO most recently read out of the RHR. The LSR
bits are not cleared upon a read; these bits stay set until the next character without errors is read out of the RHR. The
LSR also reflects the current state of the CTS_ input.
Bit 7: CTSbit
The CTSbit reflects the current logic state of the CTS_ input. This bit is cleared when the CTS_ input is low. Following a
power-up or reset, the logic state of CTSbit depends on the input of the CTS_ input.
Bit 6: No Function
Bit 5: RxNoise
If noise is detected on the RX_ input during reception of a character, the RxNoise bit is set for that character. The RxNoise
bit indicates that there was noise on the line while the most recently read character residing in the RHR was being
received. The RxNoise flag can generate an ISR[0] interrupt, if enabled through LSRIntEn[5].
Bit 4: RxBreak
If a line BREAK (RX_ input low for a period longer than the programmed character duration) is detected, a BREAK
character is put in the RxFIFO and the RxBreak bit is set for this character. A BREAK character is represented by
an all-zeros data character. The RxBreak bit distinguishes a regular character with all zeros from a BREAK charac-
ter. LSR[4] corresponds to the character most recently read out of the RHR. RxBreak is cleared after the character
following the BREAK character is read out of the RHR. The RxBreak flag can generate an ISR[0] interrupt if enabled
through LSRIntEn[4].
Bit 3: FrameErr
The FrameErr bit is set high when the received data frame does not match the expected frame format in length. LSR[3]
corresponds to the frame error of the character most recently read out of the RHR. A frame error is related to errors in
expected STOP bits. The FrameErr flag can generate an ISR[0] interrupt, if enabled, through LSRIntEn[3].
Bit 2: RxParityErr
If the parity computed on the character being received does not match the received character’s parity bit, the RxParityErr
bit is set for that character. LSR[2] indicates a parity error for the character most recently read out of the RHR. In 9-bit
multidrop mode (MODE2[6] = 1) the receiver does not check parity and the LSR[2] represents the 9th (i.e. address or
data) bit.
The RxParityErr flag can generate an ISR[0] interrupt, if enabled through LSRIntEn[2].
Bit 1: RxOverrun
If the Receive FIFO is full and additional data is received that does not fit into the Receive FIFO, the LSR[1] bit is set. The
Receive FIFO retains the data in it and discards all new data that does not fit into it. The RxOverrun flag can generate
an ISR[0] interrupt, if enabled through LSRIntEn[1].
ADDRESS: 0x04
MODE: R
BIT 7 6 5432 1 0
NAME CTSbit RxNoise RxBreak FrameErr RxParityErr RxOverrun RTimeout
RESET X 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
34
Bit 0: RTimeout
The RTimeout bit indicates that stale data is present in the Receive FIFO. RTimeout is set when the youngest character
resides in the RxFIFO for a period longer than the time programmed into the RxTimeOut register. The timeout counter
restarts when at least one character is read out of the RxFIFO or a new character is received by the RxFIFO. If the value
in RxTimeOut is zero, LSR[0]: RTimeout is disabled. The RTimeout flag can generate an ISR[0] interrupt, if enabled
through LSRIntEn[0].
SpclChrIntEn—Special Character Interrupt Enable Register
Bits 7, 6: No Function
Bit 5: MltDrpIntEn
The MltDrpIntEn bit enables routing the SpclCharInt[5]: MultiDropInt interrupt to ISR[1]. If MltDrpIntEn is set low (default),
the MultiDropInt is not routed to the ISR[1].
Bit 4: BREAKIntEn
The BREAKIntEn bit enables routing the SpclCharInt[4]: BREAKInt interrupt to ISR[1]. If BREAKIntEn is set low (default),
the BREAKInt is not routed to the ISR[1].
Bit 3: XOFF2IntEn
The XOFF2IntEn bit enables routing the SpclCharInt[3]: XOFF2Int interrupt to ISR[1]. If XOFF2IntEn is set low (default),
the XOFF2Int is not routed to the ISR[1].
Bit 2: XOFF1IntEn
The XOFF1IntEn bit enables routing the SpclCharInt[2]: XOFF1Int interrupt to ISR[1]. If XOFF1IntEn is set low (default),
the XOFF1Int is not routed to the ISR[1].
Bit 1: XON2IntEn
The XON2IntEn bit enables routing the SpclCharInt[1]: XON2Int interrupt to ISR[1]. If XON2IntEn is set low (default), the
XON2Int is not routed to the ISR[1].
Bit 0: XON1IntEn
The XON1IntEn bit enables routing the SpclCharInt[0]: XON1Int interrupt to ISR[1]. If XON1IntEn is set low (default), the
XON1Int is not routed to the ISR[1].
ADDRESS: 0x05
MODE: R/W
BIT 7 6 543210
NAME MltDrpIntEn BREAKIntEn XOFF2IntEn XOFF1IntEn XON2IntEn XON1IntEn
RESET 00000000
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
35
SpclCharInt—Special Character Interrupt Register
Bits 7, 6: No Function
Bit 5: MultiDropInt
The MultiDropInt interrupt is set when the MAX14830 receives an address character in 9-bit multidrop mode (MODE2[6] =
1). This bit is cleared when SpclCharInt is read. The MultiDropInt bit can be routed to ISR[1] by enabling SpclChrIntEn[5].
Bit 4: BREAKInt
The BreakInt interrupt is set when a line BREAK (RX_ low for longer than one character length) is detected by the receiver.
This bit is cleared after SpclCharInt is read. The BREAKInt interrupt can be routed to ISR[1] by enabling SpclChrIntEn[4].
Bit 3: XOFF2Int
The XOFF2Int interrupt bit is set when an XOFF2 special character is received and special character detection is enabled
through MODE2[4]. This interrupt is cleared upon reading SpclCharInt. The XOFF2Int interrupt can be routed to the
ISR[1] interrupt bit, if enabled through SpclChrIntEn[3].
Bit 2: XOFF1Int
The XOFF1Int interrupt bit is set when an XOFF1 special character is received and special character detection is enabled
through MODE2[4]. This interrupt is cleared upon reading SpclCharInt. The XOFF1Int interrupt can be routed to the
ISR[1] interrupt bit, if enabled through SpclChrIntEn[2].
Bit 1: XON2Int
The XON2Int interrupt bit is set when an XON2 special character is received and special character detection is enabled
through MODE2[4]. This interrupt is cleared upon reading SpclCharInt. The XON2Int interrupt can be routed to the ISR[1]
interrupt bit, if enabled through SpclChrIntEn[1].
Bit 0: XON1Int
The XON1Int interrupt bit is set when an XON1 special character is received and special character detection is enabled
through MODE2[4]. This interrupt is cleared upon reading SpclCharInt. The XON1Int interrupt can be routed to the ISR[1]
interrupt bit, if enabled through SpclChrIntEn[0].
ADDRESS: 0x06
MODE: COR
BIT 7 6 5432 1 0
NAME MultiDropInt BREAKInt XOFF2Int XOFF1Int XON2Int XON1Int
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
36
STSIntEn—STS Interrupt Enable Register
Bits 7, 6: No Function
Bit 5: ClkRdyIntEn
Set the ClkRdyIntEn bit high to route the ClockReady status bit to the ISR[2]: STSInt bit. If set low, the STSIntEn[5] masks
the ISR[2] bit from the ClockReady status.
Bit 4: No Function
Bits 3–0: GPI[n]IntEn
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7,
UART2: GPIO8–GPIO11, UART3: GPIO12–GPIO15. For example, for UART0: Bit 0 is GPI0IntEn, Bit 1 is GPI1IntEn, Bit
2 is GPI2IntEn, and Bit 3 is GPI3IntEn. See Table 1.
The GPI[n]IntEn bits that are set high route the associated STSInt[3:0]: GPI[n]Int bits to the ISR[2] interrupt. Set the
GPI[n]IntEn bits to 0 to disable the associated GPI[n]Int bits.
ADDRESS: 0x07
MODE: R/W
BIT 7 6 5432 1 0
NAME ClockRdyIntEn GPI3IntEn GPI2IntEn GPI1IntEn GPI0IntEn
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
37
STSInt—Status Interrupt Register
Bits 7, 6: No Function
Bit 5: ClockReady
The ClockReady bit is set high when the clock, the divider, and PLL have settled and the MAX14830 is ready for data
communication. The ClockReady bit only works with the crystal oscillator. It does not work with external clocking through
XIN.
The ClockReady status bit is cleared when the clock is disabled and is not cleared upon read. This bit can generate an
ISR[2]: STSInt interrupt, if enabled through STSIntEn[5].
Bit 4: No Function
Bits 3–0: GPI[n]Int
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7,
UART2: GPIO8–GPIO11, UART3: GPIO12–GPIO15. For example, for UART0: Bit 0 is GPI0Int, Bit 1 is GPI1Int, Bit 2 is
GPI2Int, and Bit 3 is GPI3Int. See Table 1.
The GPI[n]Int interrupts are set high when a change of logic state occurs on the associated GPIO_ input, unless
disabled by the GPI[n]IntEn bits. GPI[n]Int is cleared upon reading. These interrupts can be selectively routed to the ISR[2]
interrupt bit through the STSIntEn[3:0]
Table 1. UART GPIO Assignments for GPIO Interrupts
ADDRESS: 0x08
MODE: R/COR
BIT 7 6 543210
NAME ClockReady GPI3Int GPI2Int GPI1Int GPI0Int
RESET 0 0 0 0 0 0 0 0
UART GPI3Int/GPI3IntEn GPI2Int/GPI2IntEn GPI1Int/GPI1IntEn GPI0Int/GPI0IntEn
UART0 GPIO3 GPIO2 GPIO1 GPIO0
UART1 GPIO7 GPIO6 GPIO5 GPIO4
UART2 GPIO11 GPIO10 GPIO9 GPIO8
UART3 GPIO15 GPIO14 GPIO13 GPIO12
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
38
MODE1 Register
Bit 7: IRQSel
Depending on the logic level of the IRQSel bit, IRQ has different meanings. After a hardware or software (MODE2[0])
reset, the IRQSel bit is set low and, after a short delay, the IRQ output signals the end of the power-up sequence. The
IRQ is low during power-up and transitions to high when the MAX14830 is ready to be programmed.
IRQSel can then be set high. In this case, IRQ becomes a regular interrupt output that signals pending interrupts, as
indicated in the ISR. Details of the IRQSel are described in the Power-Up and IRQ section.
Bits 6, 5: No Function
Bit 4: TrnscvCtrl
This bit enables the automatic transceiver direction control. Set TrnscvCtrl high so that RTS_ automatically controls the
transceiver’s transmit/receive enable/disable inputs. Setting TrnscvCtrl high sets RTS_ low so that the transceiver is
in receive mode. When the TxFIFO contains data available for transmission, the auto direction control sets RTS_ high
before the transmitter sends out the data. When the transmitter is empty, RTS_ is automatically forced low again.
Setup and hold times of RTS_ with respect to the TX_ output can be defined through the HDplxDelay register. A transmitter
empty interrupt ISR[5] is generated when the transmitter is empty.
Bit 3: RTSHiZ
Set the RTSHiZ bit high to three-state RTS_.
Bit 2: TxHiZ
Set the TxHiZ bit high to three-state the TX_ output.
Bit 1: TxDisabl
Set the TxDisabl bit high to disable transmission. If the TxDisabl bit is set high during transmission, the transmitter
completes sending out the current character and then ceases transmission. Data still present in the Transmit FIFO
remains in the TxFIFO. The TX_ output is set to logic-high after transmission.
In auto transmitter disable mode, TxDisabl is high when the transmitter is completely empty.
Bit 0: RxDisabl
Set the RxDisabl bit high to disable the receiver of the selected UART so that the receiver stops receiving data. All data
present in the Receive FIFO remains in the RxFIFO.
ADDRESS: 0x09
MODE: R/W
BIT 7 6 543210
NAME IRQSel TrnscvCtrl RTSHiZ TxHiZ TxDisabl RxDisabl
RESET 00000000
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
39
MODE2 Register
Bit 7: EchoSuprs
Set the EchoSuprs bit high so that the receiver (RX_) gates any data it receives when its transmitter is busy transmitting. In
half-duplex communication (like IrDA and RS-485) this allows blocking of the locally echoed data. The receiver can block
data for an extended time after the transmitter ceases transmission by programming a hold time in HDplxDelay[3:0] bits.
Bit 6: MultiDrop
Set the MultiDrop bit high to enable the 9-bit multidrop mode. If this bit is set, parity checking is not performed by the
receiver and parity generation is not done by the transmitter. The parity error bit, LSR[2], has a different meaning in this
case. The parity error bit represents the 9th bit (address/data indication) that is received with each 9-bit character.
Bit 5: Loopback
Set the Loopback bit high to enable internal local loopback mode. This internally connects TX_ to RX_ and also RTS_
to CTS_. In local loopback mode, the TX_ output and the RX_ input are disconnected from the internal transmitter and
receiver. The TX_ output is in three-state. The RTS_ output remains connected to the internal logic and reflects the logic
state programmed in LCR[7]. The CTS_ input is disconnected from RTS_ and the internal logic. CTS_ thus remains in
a high-impedance state.
Bit 4: SpecialChr
The SpecialChr bit enables special character detection. The receiver can detect up to four special characters, as selected
in FlowCtrl[5:4] and defined in the XON1, XON2, XOFF1 and/or XOFF2 registers, possibly in combination with GPIO_
inputs, enabled through FlowCtrl[2]: GPIAddr. When a special character is received it is put into the RxFIFO and a special
character detect interrupt ISR[1] is generated.
Special character detection can be used in addition to auto XON/XOFF flow control, if enabled through FlowCtrl[3]. In
this case XON/XOFF flow control is then limited to single character XON and XOFF and only two special characters can
then be defined (in XON2 and XOFF2).
Bit 3: RxEmtyInv
The RxEmtyInv bit inverts the meaning of the receiver empty interrupt: ISR[6]: RFifoEmptyInt. If RxEmtyInv is set low
(default state), the ISR[6] interrupt is generated when the last character residing in the Receive FIFO is read out of the
RHR, and the Receive FIFO becomes empty. If the RxEmtyInv is set high, the ISR[6] interrupt is generated when the
Receive FIFO is empty, and the UART receives at least one character.
Bit 2: RxTrigInv
The RxTrigInv bit inverts the meaning of the RxFIFO triggering. When set, an ISR[3]: RFifoTrigInt is generated when
the RxFIFO is emptied to the trigger level: FIFOTrgLvl[7:4]. If the RxTrgInv bit is low (default state), the ISR[3] interrupt
is generated when the RxFIFO fill level, which starts from a level below FIFOTrgLvl[7:4], is filled up to the trigger level
programmed into FIFOTrgLvl[7:4].
Bit 1: FIFORst
Set the FIFORst bit high to clear both the Receive and Transmit FIFOs of all data contents. After the FIFO reset, the
FIFORst bit must then be set back to 0 to continue normal operation.
ADDRESS: 0x0A
MODE: R/W
BIT 7 6 5432 1 0
NAME EchoSuprs MultiDrop Loopback SpecialChr RxEmtyInv RxTrigInv FIFORst RST
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
40
Bit 0: RST
Set the RST bit high to reset the selected UART in the MAX14830. The SPI/I2C bus stays active during this reset and
communication with the MAX14830 is possible. All register bits in the selected UART are reset to their reset state and
the FIFOs are cleared during a reset.
The global registers are not reset when the RST bit for a given UART is set. Once set high, the RST bit must be cleared
by writing a 0 to RST.
LCR—Line Control Register
Bit 7: RTSbit
The RTSbit provides direct control of the RTS_ output logic. If RTSbit is set to 1, then RTS_ is set to logic-high. The
RTSbit only works when CLKSource[7]: CLKtoRTS is set to 0.
Bit 6: TxBreak
Set TxBreak to 1 to generate a line break whereby the TX_ output is held low. TX_ output remains low until TxBreak is
set to 0.
Bit 5: ForceParity
The ForceParity bit enables forced parity, as used in 9-bit multidrop communication. Set both LCR[3]: ParityEn and
ForceParity to 1 to use forced parity. The parity bit is forced high by the transmitter if LCR[4]: EvenParity is low. The parity
bit is forced low if the EvenParity bit is high.
Bit 4: EvenParity
Set the EvenParity bit to 1 to generate even parity by the transmitter and parity is checked by the receiver. Odd parity
generation and checking are used if EvenParity is set low.
Bit 3: ParityEn
The ParityEn bit enables the use of a parity bit on the TX_ and RX_ interfaces. Set the ParityEn bit to 0 to disable parity
usage.
When the ParityEn bit is 1, the transmitter generates the parity bit as defined in LCR[4], and the receiver checks the
parity bit.
Bit 2: StopBits
This defines the number of STOP bits and depends on the length of the word programmed in LCR[1:0] (Table 2). When
LCR[2] is high and the word length is 5, the transmitter generates a word with a STOP bit length equal to 1.5. Under
these conditions, the receiver recognizes a STOP bit length greater than a 1-bit duration.
Bits 1, 0: Length[n]
The Length[n] bits configure the length of the words that the transmitter generates and the receiver checks for at the
asynchronous TX_ and RX_ interfaces (Table 3).
Table 2. StopBits Truth Table Table 3. Length_ Truth Table
ADDRESS: 0x0B
MODE: R/W
BIT 7 6 5432 1 0
NAME RTSbit TxBreak ForceParity EvenParity ParityEn StopBits Length1 Length0
RESET 0 0 0 0 0 1 0 1
StopBits
BIT WORD LENGTH STOP BIT LENGTH
0 5, 6, 7, 8 1
1 5 1–1.5
1 6, 7, 8 2
Length1 Length0 WORD LENGTH
0 0 5
0 1 6
1 0 7
1 1 8
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
41
RxTimeOut—Receiver Timeout Register
HDplxDelay Register
Bits 7–0: TimOut[n]
The receive data timeout bits allow programming a time delay after the last (newest) character in the Receive FIFO was
received until a receive data timeout LSR[0] interrupt is generated. The duration is measured in character intervals and
is dependent on the character length, parity, and STOP bit setting and is inversely proportional to the baud rate. If the
RxTimeOut value equals zero, a timeout interrupt is not generated.
The HDplxDelay register allows programming setup and hold times between RTS_ and the TX_ output in automatic
transceiver direction control mode (MODE1[4] = 1). The Hold[3:0] time can also be used for echo suppression in halfdu-
plex communication. HDplxDelay also functions in the 2x and 4x rate modes.
Bits 7–4: Setup[n]
The Setup[n] bits define a setup time for RTS_ to transition high before the transmitter starts transmission of its first char-
acter in auto transceiver direction control mode: MODE1[4]. This allows the MAX14830 to account for skew differences
of the external transmitter’s enable delay and propagation delays. Setup[n] bits can also be used to fix a stable state on
the transmission line prior to start of transmission.
The unit of the HDplxDelay setup time delay is one bit interval, making this delay baud-rate dependent. The maximum
delay is 15-bit intervals.
Bits 3–0: Hold[n]
The Hold[n] bits define a hold time for RTS_ to be held stable (high) after the transmitter ends transmission of its last
character in auto transceiver direction control mode: MODE1[4]. RTS_ turns low after the last STOP bit was sent with a
Hold[n] delay. This keeps the external transmitter enabled during the Hold duration.
The second factor that the Hold[n] bits define is a delay in echo suppression mode, MODE2[7]. See the Echo Suppression
section for more information.
The unit of the HDplxDelay hold time delay is one bit interval, making the delay baud-rate dependent. The maximum
delay is 15-bit intervals.
ADDRESS: 0x0C
MODE: R/W
BIT 7 6 5432 1 0
NAME TimOut7 TimOut6 TimOut5 TimOut4 TimOut3 TimOut2 TimOut1 TimOut0
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x0D
MODE: R/W
BIT 7 6 5432 1 0
NAME Setup3 Setup2 Setup1 Setup0 Hold3 Hold2 Hold1 Hold0
RESET 00000000
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
42
IrDA Register
The IrDA register allows selection of IrDA SIR- and MIR-compliant pulse shaping at the TX_ and RX_ interfaces. It also
allows inversion of the TX_ and RX_ logic, independently of whether IrDA is enabled or not.
Bits 7, 6: No Function
Bit 5: TxInv
Set the TxInv bit high to invert the logic at the TX_ output. This is independent of IrDA operation.
Bit 4: RxInv
Set the RxInv bit high to invert the logic state at the RX_ input. This is independent of IrDA operation.
Bit 3: MIR
Set the MIR and IrDAEn bits high to select IrDA 1.1 (MIR) with 1/4 period pulse widths.
Bit 2: RTSInvert
Set the RTSInvert bit high to invert the RTS output.
Bit 1: SIR
Set the SIR bit and the IrDAEn bits high to select IrDA 1.0 pulses (SIR) with 3/16th period pulses.
Bit 0: IrDAEn
Set the IrDAEn bit high so that IrDA compliant pulses are produced at the TX_ output and the MAX14830 receiver
expects such pulses at its Rx input. If IrDA[0] is set to low (default), normal (non-IrDA) pulses are generated and expected
at the receiver. IrDAEn must be used in conjunction with the SIR, ShortIR, or MIR select bits.
ADDRESS: 0x0E
MODE: R/W
BIT 7 6 543210
NAME TxInv RxInv MIR RTSInvert SIR IrDAEn
RESET 00000000
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
43
FlowLvl—Flow Level Register
FIFOTrigLvl—FIFO Interrupt Trigger Level Register
FlowLvl is used for selecting the RxFIFO threshold levels used for software (XON/XOFF) and hardware (RTS/CTS) flow
control.
Bits 7–4: Resume[n]
Resume[n] bits set the Transmit FIFO threshold at which an XON is automatically sent or RTS_ is automatically set low.
This signals the far end station to start transmission. The actual threshold level is calculated as 8 x Resume[n]. The
resulting level is in the range of 0 to 120.
Bits 3–0: Halt[n]
Halt[n] bits set a Receive FIFO threshold level at which an XOFF is automatically sent or RTS_ is automatically set high,
depending on whether automatic software or hardware flow control is enabled. This signals the far end station to halt
transmission. The actual threshold level is calculated as 8 x Halt[n]. Hence the selectable threshold granularity is eight.
The resulting level is in the range of 0 to 120.
Bits 7–4: RxTrig[n]
The RxTrig[n] bits allow definition of the Receive FIFO threshold level at which an ISR[3] interrupt is generated. This can
be used to signal that the Receive FIFO is nearing overflow or that a predefined number of FIFO locations are available
for being read out in one block.
The actual FIFO trigger level is 8 x RxTrig[n], hence the selectable threshold granularity is eight.
Bits 3–0: TxTrig[n]
The TxTrig[n] bits allow definition of the Transmit FIFO threshold level at which the MAX14830 generates an ISR[4]
interrupt. This can be used to manage data flow to the Transmit FIFO. For example, if the trigger level is defined near
the bottom of the TxFIFO, the host knows that a predefined number of FIFO locations are available to be written to in
one block. Alternatively, if the trigger level is set near the top of the FIFO, the host is warned when the Transmit FIFO is
nearing overflow, if written to on a word-by-word basis.
The actual FIFO trigger level is 8 x TxTrig[n], hence the selectable threshold granularity is eight.
ADDRESS: 0x0F
MODE: R/W
BIT 7 6 5432 1 0
NAME Resume3 Resume2 Resume1 Resume0 Halt3 Halt2 Halt1 Halt0
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x10
MODE: R/W
BIT 7 6 543210
NAME RxTrig3 RxTrig2 RxTrig1 RxTrig0 TxTrig3 TxTrig2 TxTrig1 TxTrig0
RESET 1 1 1 1 1 1 1 1
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
44
TxFIFOLvl—Transmit FIFO Level Register
RxFIFOLvl—Receive FIFO Level Register
FlowCtrl—Flow Control Register
Bits 7–0: TxFL[n]
The TxFIFOLvl register represents the current number of words in the transmit FIFO.
Bits 7–0: RxFL[n]
The RxFIFOLvl register represents the current number of words in the receive FIFO.
Bits 7–4: SwFlow[n]
The SwFlow[n] bits configure auto software flow control and/or special character detection in combination with the characters
defined in the XON1, XON2, XOFF1, and/or XOFF2 registers. See Table 4.
FlowCtrl[n] selects which of the XON1, XON2, XOFF1, or/and XOFF2 characters are used for special character detection
and/or auto flow control. If auto receiver flow control is enabled through SwFlowEn and FlowCtrl[n], the XON and XOFF
characters that the MAX14830 receives are filtered out and are not put into the RxFIFO. Set the SwFlowEn bit to 0 and
set MODE2[4] to 1 to enable special character detection. Under these conditions, auto flow transmit flow control is not
used.
If both special character detection (MODE2[4]) and automatic software flow control (FlowCtrl[3]) are to be enabled,
XON1 and XOFF1 define the auto flow control characters while XON2 and XOFF2 define the special character detection
characters.
ADDRESS: 0x11
MODE: R
BIT 7 6 543210
NAME TxFL7 TxFL6 TxFL5 TxFL4 TxFL3 TxFL2 TxFL1 TxFL0
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x12
MODE: R
BIT 7 6 543210
NAME RxFL7 RxFL6 RxFL5 RxFL4 RxFL3 RxFL2 RxFL1 RxFL0
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x13
MODE: R/W
BIT 7 6 5432 1 0
NAME SwFlow3 SwFlow2 SwFlow1 SwFlow0 SwFlowEn GPIAddr AutoCTS AutoRTS
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
45
Bit 3: SwFlowEn
The SwFlowEn bit enables automatic software flow control. The characters used for automatic software flow control
are selected in FlowCtrl[n]. If special character detection (MODE2[4] = 1) is used in addition to automatic software flow
control, XON1 and XOFF1 are used for flow control, while XON2 and XOFF2 define the special characters.
Bit 2: GPIAddr
The GPIAddr bit, when set, enables that the four GPIO_ inputs are used in conjunction with XOFF2 for the definition
of a special character. This can be used, for example, for defining the address of a RS-485 slave device through hard-
ware. The GPIO_ input logic levels define the four LSBs of the special character, while the four MSBs are defined by the
XOFF2[7:4] bits. If GPIAddr is set, the contents of the XOFF2[3:0] bits are neglected. In this case, the XOFF2[3:0] bits,
when read, also do not reflect the logic on GPIO_.
Bit 1: AutoCTS
The AutoCTS bit enables automatic CTS flow control by which the transmitter stops and starts sending data depend-
ing on the logic state at the CTS_ input. See the Auto Hardware Flow Control section for a description of AutoCTS flow
control. Logic changes at the CTS_ input result in an ISR[7]: CTSInt interrupt. The transmitter must be turned off,
(MODE1[1] = 1), before AutoCTS is enabled.
Bit 0: AutoRTS
The AutoRTS bit enables automatic RTS flow control by which the MAX14830 sets its RTS_ output dependent on the
Receive FIFO fill level. The FIFO thresholds at which RTS_ changes state are set in FlowLvl. See the Auto Hardware
Flow Control section for more information.
The XON1 and XON2 register contents define the XON characters used for automatic XON/XOFF flow control and/or the
special characters used for special character detection. See details in the FlowCtrl register description.
X = Don’t care.
Table 4. SwFlow_ Truth Table
SwFlow3 SwFlow2 SwFlow1 SwFlow0
DESCRIPTION
RECEIVER FLOW
CONTROL
TRANSMITTER FLOW
CONTROL/SPECIAL
CHARACTER
DETECTION
0000No ow control. No character detection.
0 0 X X No receiver ow control.
1 0 X X Transmitter generates XON1, XOFF1.
0 1 X X Transmitter generates XON2, XOFF2.
1 1 X X Transmitter generates XON1, XON2, XOFF1, and XOFF2.
X X 0 0 No transmitter ow control.
X X 1 0 Receiver compares XON1 and XOFF1 and controls the transmitter
accordingly. XON1 and XOFF1 special character detection.
X X 0 1 Receiver compares XON2 and XOFF2 and controls the transmitter
accordingly. XON2 and XOFF2 special character detection.
X X 1 1
Receiver compares XON1, XON2, XOFF1, and XOFF2 and controls the
transmitter accordingly. XON1, XON2, XOFF1, XOFF2 special character
detection.
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
46
XON1 Register
XON2 Register
Bits 7–0: Bit[n]
These bits define the XON1 character if single character XON auto software flow control is enabled in FlowCntrl[7:4]. If
double character flow control is selected in FlowCntrl[7:4], these bits constitute the LSB of the XON character. If special
character detection is enabled in MODE2[4] and auto flow control is not enabled, these bits define a special character.
If special character detection and auto software flow control are enabled, XON1 defines the XON flow control character.
The XON1 and XON2 register contents define the XON characters for automatic XON/XOFF flow control and/or the
special characters used in special character detection. See details in the FlowCtrl register description.
Bits 7–0: Bit[n]
These bits define the XON2 character if single character auto software flow control is enabled in FlowCntrl[7:4]. If double
character flow control is selected in FlowCntrl[7:4], these bits constitute the MSB of the XON character. If special character
detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits define a special character.
If both special character detection and auto flow control are enabled (MODE2[4] and FlowCntrl[3]), these bits define a
special character.
The XOFF1 and XOFF2 register contents define the XOFF characters for automatic XON/XOFF flow control and/or the
special characters used in special character detection. See details in the FlowCtrl register description.
ADDRESS: 0x14
MODE: R/W
BIT 7 6 5432 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 00000000
ADDRESS: 0x15
MODE: R/W
BIT 7 6 5432 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
47
XOFF1 Register
XOFF2 Register
Bits 7–0: Bit[n]
These bits define the XOFF1 character if single character XOFF auto software flow control is enabled in FlowCntrl[7:4]. If
double character flow control is selected in FlowCntrl[7:4], these bits constitute the LSB of the XOFF character. If special
character detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits define a special
character.
If special character detection and software flow control area both enabled, XOFF1 defines the XOFF flow control character.
The XOFF1 and XOFF2 register contents define the XOFF characters for automatic XON/XOFF flow control and/or spe-
cial characters used for special character detection. See details in the FlowCtrl register description.
Bits 7–0: Bit[n]
These bits define the XOFF2 character if auto software flow control is enabled in FlowCntrl[7:4]. If double character flow
control is selected in FlowCntrl[7:4], these bits constitute the MSB of the XOFF character. If special character detection is
enabled in MODE2[4] and auto flow control is not enabled, these bits define a special character. If both special character
detection and auto flow control are enabled (MODE2[4] and FlowCntrl[3]), these bits define a special character.
Each UART has four GPIOs that can be configured as inputs or outputs and can be operated in push-pull or open-drain
mode. The reference clock must be active for the GPIOs to work.
ADDRESS: 0x16
MODE: R/W
BIT 7 6 543210
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x17
MODE: R/W
BIT 7 6 543210
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 00000000
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
48
GPIOConfg—GPIO Configuration Register
Bits 7–4: GP[n]OD
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7,
UART2: GPIO8–GPIO11, UART3: GPIO12–GPIO15. For example, for UART0: Bit 4 is GP0OD, Bit 5 is GP1OD, Bit 6 is
GP2OD, and Bit 7 is GP3OD (see Table 5).
Set GP[n]OD bits to 0 to configure the GPIO_s as push-pull outputs, if configured as outputs in GPIOConfg[3:0].
Set the GP[n]OD bits to 1 to configure to open-drain output operation.
When configured as inputs in GPIOConfg[3:0], the GPIO_s are high-impedance inputs with weak pulldowns.
Bits 3–0: GP[n]Out
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7,
UART2: GPIO8–GPIO11, UART3: GPIO12–GPIO15. For example, for UART0: Bit 0 is GP0Out, Bit 1 is GP1Out, Bit 2 is
GP2Out, and Bit 3 is GP3Out (see Table 5).
The GP[n]Out bits configure the GPIO_ to be inputs or outputs. Set the GP[n]Out bits to 1 to configure the associated
GPIO_s as outputs. Set the GP[n]Out bits to 0 to configure the associated GPIOs as inputs.
Bits 7–4: GPI[n]Dat
Table 5. UART GPIO Assignments for GPIO Configuration
ADDRESS: 0x18
MODE: R/W
BIT 7 6 543210
NAME GP3OD GP2OD GP1OD GP0OD GP3Out GP2Out GP1Out GP0Out
RESET 00000000
UART GP3OD/GP3Out GP2OD/GP2Out GP1OD/GP1Out GP0OD/GP0Out
UART0 GPIO3 GPIO2 GPIO1 GPIO0
UART1 GPIO7 GPIO6 GPIO5 GPIO4
UART2 GPIO11 GPIO10 GPIO9 GPIO8
UART3 GPIO15 GPIO14 GPIO13 GPIO12
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
49
GPIOData—GPIO Data Register
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7,
UART2: GPIO8–GPIO11, UART3: GPIO12–GPIO15. For example, for UART0: Bit 4 is GPI0Dat, Bit 5 is GPI1Dat, Bit 6
is GPI2Dat, and Bit 7 is GPI3Dat (see Table 6).
The GPI[n]Dat bits reflect the logic on the GPIO_s.
Bits 3–0: GPO[n]Dat
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7,
UART2: GPIO8–GPIO11, UART3: GPIO12–GPIO15. For example, for UART0: Bit 0 is GPO0Dat, Bit 1 is GPO1Dat, Bit
2 is GPO2Dat, and Bit 3 is GPO3Dat (see Table 6).
The GPO[n]Dat bits allow programming the logic state of the GPIO_, when configured as outputs in GPIOConfg[3:0]. For
open-drain operation, pullup resistors are needed on GPIO_.
Bits 7, 6: PLLFactor[n]
Table 6. UART GPIO Assignments for GPIO Input/Output Data
ADDRESS: 0x19
MODE: R/W
BIT 7 6 5432 1 0
NAME GPI3Dat GPI2Dat GPI1Dat GPI0Dat GPO3Dat GPO2Dat GPO1Dat GPO0Dat
RESET 0 0 0 0 0 0 0 0
UART GPI3Dat/GPO3Dat GPI2Dat/GPO2Dat GPI1Dat/GPO1Dat GPI0Dat/GPO0Dat
UART0 GPIO3 GPIO2 GPIO1 GPIO0
UART1 GPIO7 GPIO6 GPIO5 GPIO4
UART2 GPIO11 GPIO10 GPIO9 GPIO8
UART3 GPIO15 GPIO14 GPIO13 GPIO12
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
50
PLLConfig—PLL Configuration Register
The PLLFactor[n] bits allow programming the PLL multiplication factors. The input and output frequencies of the PLL have
to be limited to the ranges shown in Table 7. Enable the PLL through CLKSource[2].
Bits 5–0: PreDiv[n]
The PreDiv[n] bits allow programming the divisor of the PLL’s predivider. The divisor must be chosen so that the output
frequency of the predivider, which equals the PLL’s input frequency, is limited to the ranges shown in Table 4. The input
frequency of XIN, is fCLK:
fPLLIN = fCLK/PreDiv
See Figure 17. PreDiv is an integer that must be in the range of 1 to 63.
Bit 7: No Function
Figure 17. PLL Signal Path
Table 7. PLLFactor_ Selector Guide
ADDRESS: 0x1A
MODE: R/W
BIT 7 6 5432 1 0
NAME PLLFactor1 PLLFactor0 PreDiv5 PreDiv4 PreDiv3 PreDiv2 PreDiv1 PreDiv0
RESET 0 0 0 0 0 0 0 1
PLLFactor1 PLLFactor0 MULTIPLICATION FACTOR fPLLIN fREF
MIN MAX MIN MAX
0 0 6 500kHz 800kHz 3MHz 4.8MHz
0 1 48 850kHz 1.2MHz 40.8MHz 56MHz
1 0 96 425kHz 1MHz 40.8MHz 96MHz
1 1 144 390kHz 667kHz 56MHz 96MHz
fCLK fPLL IN
PLL
PRE-DIVIDER
fREF FRACTIONAL
BAUD-RATE
GENERATORS
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
51
BRGConfig—Baud-Rate Generator Configuration Register
DIVLSB—Baud-Rate Generator LSB Divisor Register
DIVMSB—Baud-Rate Generator MSB Divisor Register
Bit 6: CLKDisabl
Set the CLKDisabl bit high to disable internal clocking of the UART. This is useful to achieve fast baud rate reprogramming
or to reduce power dissipation when a specific UART channel is not used. Set CLKDisabl low for normal UART operation.
Bit 5: 4xMode
When the 4xMode bit is set high, the MAX14830 baud rate is quadruple the regular (16x sampling) baud rate. The
2xMode bit should be set low if 4xMode is enabled. See the 2x and 4x Rate Modes section for more information.
Bit 4: 2xMode
When the 2xMode bit is set high, the MAX14830 baud rate is double the regular (16x sampling) baud rate. See the 2x
and 4x Rate Modes section for a detailed description.
Bits 3–0: FRACT[n]
This is the fractional portion of the baud-rate generator divisor. Set FRACT[n] to zero if not used. See the Fractional
Baud-Rate Generators section for calculations.
DIVLSB and DIVMSB define the baud-rate generator integer divisors. The minimum value is 1. See the Fractional Baud-
Rate Generators section for more information.
Bits 7–0: Div[n]
The DIVLSB register is the LSBs of the integer divisor portion (DIV) of the baud-rate generator.
Bits 7–0: Div[n]
The DIVMSB register is the MSB portion of the integer divisor (DIV).
Bit 7: CLKtoRTS
ADDRESS: 0x1B
MODE: R/W
BIT 7 6 543210
NAME CLKDisabl 4xMode 2xMode FRACT3 FRACT2 FRACT1 FRACT0
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x1C
MODE: R/W
BIT 7 6 5432 1 0
NAME Div7 Div6 Div5 Div4 Div3 Div2 Div1 Div0
RESET 0 0 0 0 0 0 0 1
ADDRESS: 0x1D
MODE: R/W
BIT 7 6 5432 1 0
NAME Div15 Div14 Div13 Div12 Div11 Div10 Div9 Div8
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
52
CLKSource—Clock Source Register
GlobalIRQ—Global IRQ Register
Set the CLKtoRTS bit to 1 to route the baud-rate generator (16x baud rate) output clock to RTS_. The clock frequency
is a factor of 16x, 8x, or 4x of the baud rate, depending on the BRGConfig[5:4] settings.
Bits 6, 5: No Function
Bit 4:
Bi 4 can be programmed to logic 0 or logic 1.
Bit 3: PLLBypass
Set the PLLBypass bit to 1 to enable bypassing the internal PLL and predivider.
Bit 2: PLLEn
Set the PLLEn bit to 1 to enable the internal PLL. Set PLLEn to 0 to disable the internal PLL.
Bit 1: CrystalEn
Set the CrystalEn bit to 1 to enable the crystal oscillator. When using an external clock source at XIN, set CrystalEn to 0.
Bit 0:
Always keep Bit 0 at logic 0.
Bits 7–4: No Function
Bits 3–0: IRQ[n]
The MAX14830 has a single IRQ output. The GlobalIRQ register bits report which of the UARTs have an interrupt pend-
ing, as enabled in the ISRIntEn registers.
The GlobalIRQ register can be read in two ways: either by reading register 0x1F of any of the four UARTs or by sampling
the 4 bits sent to the master on MISO during the command byte of a read cycle (full-duplex SPI) (see the Fast Read
Cycle section for more information).
IRQ[n] is set to 0 when the associated UART’s internal IRQ is generated.
IRQ_ bits are cleared when the associated UART interrupt is cleared. UART interrupts are cleared by reading the UART
ISR register.
Bits 7–0: GlbCom[n]
ADDRESS: 0x1E
MODE: R/W
BIT 7 6 543210
NAME CLKtoRTS PLLBypass PLLEn CrystalEn
RESET 0 0 0 0 1 0 0 0
ADDRESS: 0x1F
MODE: R
BIT 7 6 543210
NAME IRQ3 IRQ2 IRQ1 IRQ0
RESET 0 0 0 0 1 1 1 1
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
53
GloblComnd—Global Command Register
The GloblComnd register is the only global write register in the MAX14830. Every byte written to GloblComnd is sent
simultaneously to all four UARTs. Every byte sent by the SPI/I2C master to location 0x1F is interpreted as a global
command by all the four internal UARTs.
The MAX14830 logic supports the following commands (Table 8):
Global Tx Synchronization
Extended Addressing Space Enable (to get access to registers beyond address 0x1F)
Extended Addressing Space Disable (to disable access to registers beyond address 0x1F)
The last two commands (0xCE/0xCD) enable/disable the access to registers in the extended space of the register map
when MAX14830 operates in SPI mode. The SPI command byte has only 5 bits to address a given register so that the
registers beyond 0x1F could not be addressed using the standard access method.
In I2C mode, there is no need to explicitly enable and disable the extended register map access as I2C allows up to 7
bits for register addressing.
To extend the addressing capability of the SPI command byte, send a 0xCE to location 0x1F. The internal SPI address
is generated as 0010 A3A2A1A0, where A3A2A1A0 is the least significant nibble of the command byte. Bit A4 of the
command byte is disregarded when the extended space of the register map is enabled and only the least significant
nibble is used for addressing purposes (Table 9).
Bits U1 and U0 of the command byte maintain their meaning in the extended mode. See the SPI Interface section for
more information.
To return to standard addressing mode, the SPI master has to send the 0xCD command. In this case, the internal SPI
address is generated as follows (default): 000A4 A3A2A1A0
Table 9. Extended Mode Addressing
(SPI only)
Table 8. GloblComnd Command Descriptions
ADDRESS: 0x1F
MODE: W
BIT 7 6 543210
NAME GlbCom7 GlbCom6 GlbCom5 GlbCom4 GlbCom3 GlbCom2 GlbCom1 GlbCom0
GloblComnd[7:0] COMMAND DESCRIPTION
0xE0 Tx Command 0
0xE1 Tx Command 1
0xE2 Tx Command 2
0xE3 Tx Command 3
0xE4 Tx Command 4
0xE5 Tx Command 5
0xE6 Tx Command 6
0xE7 Tx Command 7
0xE8 Tx Command 8
0xE9 Tx Command 9
0xEA Tx Command 10
0xEB Tx Command 11
0xEC Tx Command 12
0xED Tx Command 13
0xEE Tx Command 14
GloblComnd[7:0] COMMAND DESCRIPTION
0xEF Tx Command 15
0xCE Enable extended register map access
0xCD Disable extended register map access
REGISTER SPI MODE
ADDRESS
I2C MODE
ADDRESS
TxSynch 0x00 0x20
SynchDelay1 0x01 0x21
SynchDelay2 0x02 0x22
TIMER1 0x03 0x23
TIMER2 0x04 0x24
RevID 0x05 0x25
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
54
TxSynch—Transmitter Synchronization Register
The TxSynch register is used to configure transmitter synchronization with a global SPI or I2C command. One of 16
trigger commands (Table 5) can be selected to be the synchronization trigger source for every UART. This allows
simultaneous start of transmission of multiple UARTs that are associated with the same global trigger command. The
synchronized UARTs can be on a single MAX14830 or on multiple devices if they are controlled by a common SPI
interface.
UARTs start transmission when a global trigger command is received. Start of transmission is considered to be the
falling edge of the START bit at the TX_ output. A delay can optionally be programmed through the SynchDelay1 and
SynchDelay2 registers.
Tx synchronization is managed through software by transmitting the broadcast trigger Tx command (Table 5) to the
MAX14830 through the SPI or I2C interface. To selectively synchronize ports that are on the same MAX14830 (Intrachip
Synchronization) or on different MAX14830 (Interchip Synchronization) devices, up to 16 trigger Tx commands have
been defined (see the GloblComnd section for more information).
Bit 7: CLKtoGPIO
The CLKtoGPIO bit is used to provide a buffered replica of the UARTs system clock (i.e. the fractional divider input) to
a GPIO. The assignment is as follows: UART0’s clock is routed to GPIO0, UART1’s clock is routed to GPIO4, UART2’s
clock is routed to GPIO8, and UART3’s clock is routed to GPIO12.
Bit 6: TxAutoDis
Set the TxAutoDis bit to 1 to enable automatic transmitter disabling. When TxAutoDis is 1, the transmitter is automatically
disabled when all data in the TxFIFO has been transmitted. After the transmitter is disabled, the TxFIFO can then be filled
with data that is transmitted when its assigned trigger command, defined by the TrigSelx bits, is received.
Bit 5: TrigDelay
Set TrigDelay to 1 to enable delayed start of transmission. The UART starts transmitting data following a delay
programmed in SynchDelay1 and SynchDelay2 after receiving the assigned trigger command.
Bit 4: SynchEn
Set SynchEn to 1 to enable the software Tx synchronization. When SynchEn is high, the UART starts transmitting data
after receiving the expected trigger command, if the TxFIFO contains data. Setting SynchEn high forces the TxDisabl bit
(MODE1[1]) high and thereby disables the UART’s transmitter. This prevents the transmitter from sending data as soon
as the TxFIFO contains some. Once the TxFIFO has been loaded, the UART starts transmitting data only upon receiving
the assigned trigger command.
Set SynchEn to 0 to disable transmitter synchronization for that UART. When SynchEn is 0, that UART’s transmitter does
not start transmission through any trigger command.
Bits 3–0: TrigSel[n]
The TrigSel[n] bits select the trigger command for that UART’s transmitter synchronization when SynchEn is 1. For
example, set TxSynch[3:0] to 0x08 for the UART to be triggered by TX command 8 (0xE8, Table 5).
ADDRESS: 0x20
MODE: R/W
BIT 7 6 543210
NAME CLKtoGPIO TxAutoDis TrigDelay SynchEn TrigSel3 TrigSel2 TrigSel1 TrigSel0
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
55
SynchDelay1—Synchronization Delay Register 1
SynchDelay2—Synchronization Delay Register 2
TIMER1—Timer Register 1
The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an
assigned transmitter trigger command and when the UART begins transmission.
Bits 7–0: SDelay[n]
SDelay[7:0] are the 8 LSBs of the delay between when the UART receives an assigned transmitter trigger command
and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate). The
maximum delay is 65,535-bit intervals.
For example, given a baud rate of 230.4kbps and a bit time of 4.34μs, the maximum delay is 284ms.
The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an
assigned transmitter trigger command and when the UART begins transmission.
Bits 7–0: SDelay[n]
SDelay[15:8] are the 8 MSBs of the delay between when the UART receives an assigned transmitter trigger command
and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate). The
maximum delay is 65,535-bit intervals.
For example, given a baud rate of 230.4kbps and a bit time of 4.34µs, the maximum delay is 284ms.
The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output.
The low-frequency clock is a divided replica of the fractional divider output.
Bits 7–0: Timer[n]
Timer[7:0] are the 8 LSBs of the 15-bit timer divisor. See the TIMER2 register description.
If TIMER1 and TIMER2 are both 0x00, the low-frequency clock is off.
ADDRESS: 0x21
MODE: R/W
BIT 7 6 543210
NAME SDelay7 SDelay6 SDelay5 SDelay4 SDelay3 SDelay2 SDelay1 SDelay0
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x22
MODE: R/W
BIT 7 6 543210
NAME SDelay15 SDelay14 SDelay13 SDelay12 SDelay11 SDelay10 SDelay9 SDelay8
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x23
MODE: R/W
BIT 7 6 543210
NAME Timer7 Timer6 Timer5 Timer4 Timer3 Timer2 Timer1 Timer0
RESET 0 0 0 0 0 0 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
56
TIMER2—Timer Register 2
RevID—Revision Identification Register
The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output.
The low-frequency clock is a divided replica of the fractional divider output.
Bit 7: TmrToGPIO
Set TmrToGPIO to 1 to enable clock generation at a GPIO output. The clock signal is routed to a GPIO output as
follows: UART0 clock signal to GPIO1, UART1 clock signal to GPIO5, UART2 clock signal to GPIO9, UART3 clock signal
to GPIO13. The output clock has a 50% duty cycle.
Bits 6–0: Timer[n]
Timer[14:8] are the 7 MSBs of the 15-bit timer divisor. The clock frequency is calculated using the following formula:
fTIMER_CLK = UARTClk/(1024 x Timerx)
where UARTClk is the fractional baud-rate generator output (i.e. 16 x BaudRate). When using 2x or 4x rate modes,
UARTClk is 8 x BaudRate or 4 x BaudRate, respectively.
If TIMER1 and TIMER2 are both 0x00, the low-frequency clock is off.
Bits 7–0: Bit[n]
The RevID register indicates the revision number of the MAX14830 silicon—starting with 0xB1. This can be used during
software development as a known reference.
ADDRESS: 0x24
MODE: R/W
BIT 7 6 543210
NAME TmrToGPIO Timer14 Timer13 Timer12 Timer11 Timer10 Timer9 Timer8
RESET 0 0 0 0 0 0 0 0
ADDRESS: 0x25
MODE: R
BIT 7 6 5432 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 1 0 1 1 0 1 0 0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
57
Serial Controller Interface
The MAX14830 can be controlled through SPI or I2C as
defined by the logic on SPI/I2C. See the Pin Configuration
section for further details.
SPI Interface
The SPI interface supports both single cycle and burst
read/write access. The SPI master must generate clock
and data signals in SPI MODE0 (i.e., with clock polarity
CPOL = 0 and clock phase CPHA = 0).
Each of the four UARTs is addressed using 2 bits (U1 and
U0) in the command byte (see Table 10 and Table 11).
MISO Operation
Before a specific UART has been addressed, all four
UARTs can attempt to drive MISO. To avoid this conten-
tion, the MISO line is held in high impedance during a
write cycle (Figure 18).
During a read cycle, MISO is high impedance for the
first 4 clock cycles of the command byte. Once the SPI
address (U1 and U0) has been properly decoded, the
addressed SPI drives the MISO line (Figure 19).
SPI Burst Access
Burst access allows writing and reading in one block, by
only defining the initial register address in the SPI com-
mand byte. Multiple characters can be loaded into the
TxFIFO by using the THR (0x00) as the initial burst write
address. Similarly, multiple characters can be read out of
the RxFIFO by using the RHR (0x00) as the SPI’s burst
read address. If the SPI burst address is different to 0x00,
the MAX14830 automatically increments the register
address after each SPI data byte. Efficient programming
of multiple consecutive registers is thus possible. Chip
select, CS/A0, must be kept low during the whole cycle.
The SCLK/SCL clock continues clocking throughout the
burst access cycle. The burst cycle ends when the SPI
master pulls CS/A0 high.
For example, writing 128 bytes into a TxFIFO can be
achieved by a burst write access through the following
sequence:
1) Pull CS/A0 low.
2) Send SPI write command.
3) Send 128 bytes.
4) Release CS/A0.
This takes a total of (1 + 128) x 8 clock cycles.
Table 10. SPI Command Byte Configuration
Table 11. SPI U1, U0 UART Selection
Figure 18. SPI Write Cycle
A[4:0] = Register Address
SPI COMMAND BYTE
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
W/RU1 U0 A4 A3 A2 A1 A0
U1 U0 UART SELECTED
0 0 UART0
0 1 UART1
1 0 UART2
1 1 UART3
SCLK
MOSI
MISO
X X
CS
AX = REGISTER ADDRESS
UX = UART ADDRESS
DX = EIGHT-BIT REGISTER CONTENTS
= INSTANT AT WHICH MAX14830 SAMPLES MOSI DATA
W U1 U0 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
HiZ
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
58
Fast Read Cycle
On the MAX14830 the four UART interrupts share the
single IRQ output. When operating in interrupt-based
mode, the microcontroller needs to locate the source of
the interrupt (i.e. which of the four UARTs generated the
interrupt) and clear the interrupt.
To locate the source of an interrupt more quickly, the
MAX14830 implements the SPI fast read cycle. This
means that the microcontroller can determine which
UART is the source of the interrupt (UART0, UART1,
UART2, or UART3) using only 8 clock cycles (Figure 20).
U1 and U0 bits are ignored during the fast read cycle.
I2C Interface
The MAX14830 contains an I2C-compatible interface
for data communication with a host processor (SCL and
SDA). The interface supports a clock frequency up to
1MHz. SCL and SDA require pullup resistors that are con-
nected to a positive supply.
START, STOP, and Repeated START Conditions
When writing to the MAX14830 using I2C, the master
sends a START condition (S) followed by the MAX14830
I2C address. After the address, the master sends the
register address of the register that is to be programmed.
The master then ends communication by issuing a STOP
Figure 19. SPI Read Cycle
Figure 20. SPI Fast Read Cycle
R XU1 U0 A4 A3 A2 A1 A0
HiZ IRQ3 IRQ2 IRQ1 IRQ0 D7 D6 D5 D4 D3 D2 D1 D0
SCLK
MOSI
MISO
CS
UX = UART ADDRESS
AX = REGISTER ADDRESS
DX = EIGHT-BIT REGISTER CONTENTS
= INSTANT AT WHICH MAX14830 SAMPLES MOSI DATA
= INSTANT AT WHICH MAX14830 WRITES MISO DATA
R U1
HiZ
SCLK
MOSI
MISO
CS
UX = UART ADDRESS
AX = REGISTER ADDRESS
= INSTANT AT WHICH MAX14830 SAMPLES MOSI DATA
= INSTANT AT WHICH MAX14830 WRITES MISO DATA
U0 A4 A3 A2 A1 A0
IRQ3 IRQ2 IRQ1 IRQ0
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
59
condition (P), to relinquish control of the bus, or a
Repeated START condition (Sr) to communicate to anoth-
er I2C slave. See Figure 21.
Slave Address
The MAX14830 includes a 7-bit I2C slave address, allowing
up to 16 MAX14830 devices to share the same I2C bus.
The address is defined by connecting the MOSI/A1 and CS/
A0 inputs to ground, VL, SDA or to SCL (Table 12). Set the
read/write bit to 1 to configure the MAX14830 to read mode.
Set the read/write bit to 0 to configure the MAX14830 to
write mode. The address is the first byte of information sent
to the MAX14830 after the START condition.
Figure 21. I2C START, STOP, and Repeated START Conditions
Table 12. I2C Address Map
MOSI/A1 CS/A0 UART0 UART1 UART2 UART3
WRITE READ WRITE READ WRITE READ WRITE READ
DGND DGND 0xD8 0xD9 0xB8 0xB9 0x58 0x59 0x38 0x39
DGND VL0xC2 0xC3 0xA2 0xA3 0x42 0x43 0x22 0x23
DGND SCL 0xC4 0xC5 0xA4 0xA5 0x44 0x45 0x24 0x25
DGND SDA 0xC6 0xC7 0xA6 0xA7 0x46 0x47 0x26 0x27
VLDGND 0xC8 0xC9 0xA8 0xA9 0x48 0x49 0x28 0x29
VLVL0xCA 0xCB 0xAA 0xAB 0x4A 0x4B 0x2A 0x2B
VLSCL 0xCC 0xCD 0xAC 0xAD 0x4C 0x4D 0x2C 0x2D
VLSDA 0xCE 0xCF 0xAE 0xAF 0x4E 0x4F 0x2E 0x2F
SCL DGND 0xD0 0xD1 0xB0 0xB1 0x50 0x51 0x30 0x31
SCL VL0xD2 0xD3 0xB2 0xB3 0x52 0x53 0x32 0x33
SCL SCL 0xD4 0xD5 0xB4 0xB5 0x54 0x55 0x34 0x35
SCL SDA 0xD6 0xD7 0xB6 0xB7 0x56 0x57 0x36 0x37
SDA DGND 0xC0 0xC1 0xA0 0xA1 0x40 0x41 0x20 0x21
SDA VL0xDA 0xDB 0xBA 0xBB 0x5A 0x5B 0x3A 0x3B
SDA SCL 0xDC 0xDD 0xBC 0xBD 0x5C 0x5D 0x3C 0x3D
SDA SDA 0xDE 0xDF 0xBE 0xBF 0x5E 0x5F 0x3E 0x3F
SCL
SDA
S Sr P
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
60
Bit Transfer
One data bit is transferred during each SCL clock cycle.
The data on SDA must remain stable during the high
period of the SCL clock pulse. Changes in SDA while
SCL is high and stable are considered control signals
(see the START, STOP, and Repeated START Conditions
section). Both SDA and SCL remain high when the bus is
not active.
Single-Byte Write
With this operation the master sends an address and one
or two data bytes to the slave device (Figure 22). The
write byte procedure is the following:
1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write bit
(low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.
5) The active slave asserts an ACK on the data line only
if the address is valid (NAK if not).
6) The master sends an 8-bit data byte.
7) The slave asserts an ACK on the data line.
8) The master generates a STOP condition.
Burst Write
With this operation the master sends an address and mul-
tiple data bytes to the slave device (Figure 23). The burst
write procedure is as follows:
1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write bit
(low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.
5) The slave asserts an ACK on the data line only if the
address is valid (NAK if not).
6) The master sends 8 bits of data.
7) The slave asserts an ACK on the data line.
8) Repeat steps 6 and 7 as needed.
9) The master generates a STOP condition.
Figure 22. Write Byte Sequence
Figure 23. Burst Write Sequence
S
P
DEVICE SLAVE ADDRESS - W A
8 DATA BITS
FROM MASTER TO STAVE
WRITE SINGLE BYTE
FROM SLAVE TO MASTER
A
REGISTER ADDRESS A
S DEVICE SLAVE ADDRESS - W A
8 DATA BITS - 1
BURST WRITE
A
REGISTER ADDRESS A
8 DATA BITS - N A
8 DATA BITS - 2 A
FROM MASTER TO STAVE FROM SLAVE TO MASTER
P
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
61
Single-Byte Read
With this operation the master sends an address and
receives 1 or 2 data bytes from the slave device
(Figure 24). The read byte procedure is as follows:
1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write bit
(low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address
5) The active slave asserts an ACK on the data line only
if the address is valid (NAK if not).
6) The master sends a repeated START (Sr).
7) The master sends the 7-bit slave ID plus a read bit
(high).
8) The addressed slave asserts an ACK on the data line.
9) The slave sends 8 data bits.
10) The master asserts a NACK on the data line.
11) The master generates a STOP condition.
Burst Read
With this operation the master sends an address and
receives multiple data bytes from the slave device
(Figure 25). The burst read procedure is as follows:
1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write bit
(low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.
5) The slave asserts an ACK on the data line only if the
address is valid (NAK if not).
6) The master sends a repeated START condition.
7) The master sends the 7-bit slave ID plus a read bit
(high).
8) The slave asserts an ACK on the data line.
9) The slave sends 8 bits of data.
10) The master asserts an ACK on the data line.
11) Repeat 9 and 10 (N-2) times.
12) The slave sends the last 8 data bits.
13) The master asserts a NACK on the data line.
14) The master generates a STOP condition.
Figure 24. Read Byte Sequence
Figure 25. Burst Read Sequence
S
Sr
DEVICE SLAVE ADDRESS - W A
DEVICE SLAVE ADDRESS - R
READ SINGLE BYTE
A
REGISTER ADDRESS A
8 DATA BITS NA
FROM MASTER TO STAVE FROM SLAVE TO MASTER
P
S
Sr
DEVICE SLAVE ADDRESS - W A
DEVICE SLAVE ADDRESS - R
BURST READ
A
REGISTER ADDRESS A
8 DATA BITS - 1 A
A 8 DATA BITS - 38 DATA BITS - 2 A
8 DATA BITS - N NA
FROM MASTER TO STAVE FROM SLAVE TO MASTER
P
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
62
Acknowledge Bits
Data transfers are acknowledged with an acknowledge bit
(ACK) or a not-acknowledge bit (NACK). Both the master
and the MAX14830 generate ACK bits. To generate an
ACK, pull SDA low before the rising edge of the ninth
clock pulse and keep it low during the high period of the
ninth clock pulse (Figure 26). To generate a NACK, leave
SDA high before the rising edge of the ninth clock pulse
and keep it high for the duration of the ninth clock pulse.
Monitoring for NACK bits allows for detection of unsuc-
cessful data transfers.
Applications Information
Startup and Initialization
The MAX14830 is initialized following power-up or a
hardware or software reset (Figure 27). Check that the
MAX14830 is ready for operation after a power-up or
reset by monitoring the IRQ output, if interrupt driven
operation is employed.
In polled mode, repeatedly read a known register until the
expected contents are returned.
Low-Power Operation
To reduce the power consumption during normal opera-
tion, the following techniques can be adopted:
Do not use the internal PLL. This saves the most
power of the options listed here. Disable and bypass
the PLL.
When any of the four UARTs are not being used, sop
clicking via CLKDisabl.
Use an external 1.8V supply at V18. This saves the
power dissipated in the internal 1.8V linear regulator
for the 1.8V core supply. Disable the internal regulator
by connecting LDOEN to DGND.
Keep internal clock rates as low as possible.
Use a low voltage on the VA supply.
Interrupts and Polling
Monitor the MAX14830 by polling the ISR register or by
monitoring the IRQ output. In polled mode, the IRQ physi-
cal interrupt output is not used and the host controller
polls the ISR register at frequent intervals to establish the
state of the MAX14830.
Alternatively, the physical interrupt, IRQ, of the MAX14830
can be used to interrupt the host controller at specified
events, making polling unnecessary. The IRQ output is
an open-drain output that requires a pullup resistor to VL.
Logic-Level Translation
The MAX14830 can be directly connected to transceivers
and controllers that have different supply voltages. The
VL input defines the logic voltage levels of the controller
interface while the VEXT voltage defines the logic of the
transceiver interface. This ensures flexibility when select-
ing a controller and transceiver. Figure 28 is an example
of a setup when the controller, transceiver, and the
MAX14830 are powered by three different supplies.
IO-Link Application
The Typical Operating Circuit shows a four-part IO-link
master circuit with SPI control on the MAX14830 and the
IO-link transceivers.
Figure 26. Acknowledge Bits
Figure 27. Startup and Initialization Flow Chart
NOT ACKNOWLEDGE
ACKNOWLEDGE
1 2 8 9
SDA
SCL
S
POWER-UP/RST
INPUT PULLED HIGH
CONFIGURE
CLOCKING
YES
NO
CONFIGURE
FIFO CONTROL
CONFIGURE
FLOW CONTROL
CONFIGURE
GPIOs
START
COMMUNICATION
CONFIGURE
MODES
IRQ IS HIGH?
OR
DIVLSB READ
SUCCESSFULLY?
ENABLE
INTERRUPTS
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
63
Figure 28. Logic-Level Translation
Figure 29. Interchip Synchronization
2.5V
3.3V1.8V
TX_ DI
RO
DE
VLVAVCC
VDD VEXT
RX_
DGNDAGND
IRQ
RST
RTS_
SPI/I2C
MICROCONTROLLER
TRANSCEIVER
MAX14830
MAX3078
GPIO
ClkToGPIO
GPIO_
CRYSTAL
OSCILLATOR
XOUT
XIN
CrystalEn
PLLEn
FRACTIONAL
BAUD-RATE
GENERATOR _
DIVIDER PLL
MAX14830
CRYSTAL
OSCILLATOR
XOUT
XIN
FRACTIONAL
BAUD-RATE
GENERATOR _
CrystalEn
PLLEn
DIVIDER PLL
CRYSTAL
OSCILLATOR
XOUT
XIN
CrystalEn
FRACTIONAL
BAUD-RATE
GENERATOR _
PHY8
PHY9
PHY10
PHY11
PHY4
PHY5
PHY6
PHY7
PHY0
PHY1
PHY2
PHY3
DIVIDER
PLLEn
PLL
MAX14830
MAX14830
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
64
PORT1
ADDR1
MAX14824
PORT2
ADDR2
RX
TXC
MAX14824
TXEN
PORT3
ADDR3
RX
TXC
MAX14824
TXEN
PORT4
ADDR4
RX
TXC
MAX14824
TXEN
RX
TXC
TXEN
VEXT
TX0
RX0
RTSO
MOSI
CONTROLLER
MISO
SCLK
RST
CS2
CS1
RST CS SCLK
XIN XOUT
MOSI MISO
TX1
RX1
RTS1
GPIO1
TX2
RX2
RTS2
TX3
RX3
RTS3
MAX14830
GPIO5
GPIO9
GPIO13
IO-LINK QUAD MASTER APPLICATION
Typical Operating Circuit
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
65
Typical Operating Circuit (continued)
A0
DI
TX0LDOEN
1µF
0.1µF
3.3V
VAVEXT VL
MOSI
MISO
SCLK
RX0 RO
DE
B0
RE
MAX14840
A1
DI
RO
DE
B1
RE
MAX14840
A2
DI
RO
DE
B2
RE
MAX14840
A3
DI
RO
DE
B3
RE
MAX14840
RTS0
MICROCONTROLLER
TX0
MOSI
SCLK
IRQ
SS
TX1
RX1
RTS1
TX2
RX2
RTS2
TX3
RX3
RTS3
DGNDAGND
SPI/I2C
V18
0.1µF 0.1µF
IRQ
CS
QUAD RS-485 INTERFACE CONTROLLED THROUGH SPI
MAX14830
XIN
XOUT
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
66
+Denotes lead(Pb)-free/RoHS-compliant package.
*EP = Exposed paddle.
Ordering Information
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages. Note
that a “+”, “#”, or “-” in the package code indicates RoHS status
only. Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
Chip Information
PROCESS: BiCMOS
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
48 TQFN T4877+3 21-0144 90-0129
PART TEMP RANGE PIN-PACKAGE
MAX14830ETM+ -40°C to +85°C 48 TQFN-EP*
MAX14830 Quad Serial UART with 128-Word FIFOs
www.maximintegrated.com Maxim Integrated
67
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
0 9/10 Initial release
1 12/10 Corrected specications in the Absolute Maximum Ratings and DC Electrical
Characteristics, updated the Register Map, corrected Table 12
8, 9, 29, 34, 37,
38, 40, 57, 60
2 9/11
Removed internal oscillator description throughout data sheet; deleted TOCs 1 and 2;
corrected Figure 7; changed V18 capacitor to 1µF; corrected I2C burst read sequence;
corrected ISR description; added RTSInvert bit; added CLKDisabl bit
1, 2, 7, 8,10,
14,17,19, 20,
21, 27, 28, 29,
30, 34, 35, 40,
43, 52, 53, 57,
62, 63, 66
3 1/13 Updated DC Electrical Characteristics table; corrected Typical Operating Circuit 10, 53, 66
4 11/14 Removed automotive reference in Applications section 1
5 2/15
Added to the Receive and Transmit FIFOs section a note about how the TxFIFOLvl
and RxFIFOLvl values can be in error; added a note to the Transmitter Operation and
Receiver Operation sections about how errors can occur; updated the RHR, THR,
TxFIFOLvl, and RxFIFOLvl register bit descriptions
18, 19, 30, 45
6 5/15 Revised Benets and Features section 1
7 2/16 Updated TxFIFO and RxFIFO errata, REVID was changed from 0XB3 to 0XB4, and
updated read/write while receiving/transmitting errata
19, 20, 29, 30,
31, 46, 58
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
MAX14830 Quad Serial UART with 128-Word FIFOs
© 2016 Maxim Integrated Products, Inc.
68
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
MAX14830ETM+G3U MAX14830ETM+TG3U