www.irf.com 1
01/17/01
IRFP460AS
SMPS MOSFET
HEXFET® Power MOSFET
VDSS Rds(on) max ID
500V 0.2720A
Typical SMPS Topologies:
l Full Bridge
l PFC Boost
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 20
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 13 A
IDM Pulsed Drain Current 80
PD @TC = 25°C Power Dissipation 280 W
Linear Derating Factor 2.2 W/ °C
VGS Gate-to-Source Voltage ± 30 V
dv/dt Peak Diode Recovery dv/dt 3.8 V/ns
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range °C
Mounting torqe, 6-32 or M3 screw 10 lbfin (1.1Nm)
Absolute Maximum Ratings
Notes through are on page 8
SMD-247
lDynamic dv/dt Rating
lRepetitive Avalanche Rated
lIsolated Central Mounting Hole
lFast Switching
lEase of Paralleling
lSimple Drive Requirements
lSolder plated and leadformed for surface mounting
Description
Third Generation HEXFET®s from International Rectifier provide the
designer with the best combination of fast switching, ruggedized
device design, low on-resistance and cost-effectiveness.
The TO-247 package is preferred for commercial-industrial
applications where higher power levels preclude the use of TO-220
devices. The TO-247 is similar but superior to the earlier TO-218
package because of its isolated mounting hole. It also provides
greater creepage distance between pins to meet the requirements of
most safety specifications.
This plated and leadformed version of the TO-247 package allows
the package to be surface mounted in an application.
Maximum Reflow Temperature 230 (Time above 183 °C
should not exceed 100s) °C
Benefits
Applications
lSMPS, UPS, Welding and High Speed
Power Switching
PD-94011A
IRFP460AS
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 11 ––– ––– SV
DS = 50V , ID = 12A
QgTotal Gate Charge ––– ––– 105 ID = 20A
Qgs Gate-to-Source Charge ––– ––– 26 nC VDS = 400V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 42 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 18 ––– VDD = 250V
trRise Time ––– 55 ––– ID = 20A
td(off) Turn-Off Delay Time ––– 45 ––– RG = 4.3
tfFall Time ––– 39 ––– RD = 13, See Fig. 10
Ciss Input Capacitance ––– 3100 ––– VGS = 0V
Coss Output Capacitance ––– 480 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 18 ––– pF ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 4430 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 130 ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 140 ––– VGS = 0V, VDS = 0V to 400V
Dynamic @ TJ = 25°C (unless otherwise specified)
ns
Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energy––– 960 mJ
IAR Avalanche Current––– 20 A
EAR Repetitive Avalanche Energy––– 28 mJ
Avalanche Characteristics
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.8 V TJ = 25°C, IS = 20A, VGS = 0V
trr Reverse Recovery Time ––– 480 710 ns TJ = 25°C, IF = 20A
Qrr Reverse RecoveryCharge ––– 5.0 7.5 µC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Diode Characteristics
20
80 A
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface 0.24 ––– °C/W
RθJA Junction-to-Ambient ––– 40
Thermal Resistance
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 500 ––– ––– VV
GS = 0V, I D = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.61 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.27 VGS = 10V, ID = 12A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
––– ––– 25 µA VDS = 500V, VGS = 0V
––– ––– 250 VDS = 400V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 30V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -30V
IGSS
IDSS Drain-to-Source Leakage Current
IRFP460AS
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
0.1 1 10 100
20
µ
s PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1 10 100
20
µ
s PULSE WIDTH
T = 150 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Volta
g
e (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
4.0 5.0 6.0 7.0 8.0 9.0
V = 50V
20
µ
s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 150 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
19A
20A
IRFP460AS
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
020 40 60 80 100
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
19A
V = 100V
DS
V = 250V
DS
V = 400V
DS
0.1
1
10
100
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
V ,Source-to-Drain Volta
g
e (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 150 C
J°
1
10
100
1000
10000
100000
1 10 100 1000
C, Capacitance (pF)
DS
V , Drain-to-Source Volta
g
e
(
V
)
V = 0V
,
f = 1 MH z
C = C + C
,
C SH OR TE D
C = C
C = C + C
GS
is s
g
s
g
d d s
rss
g
d
oss ds
g
d
C
iss
C
oss
C
rss
20A
1
10
100
1000
10 100 1000 10000
OPERATION IN THIS AREA LIMITED
BY RDS
(
on
)
Single Pulse
T
T = 150 C
= 25 C
°°
J
C
V , Drain-to-Source Volta
g
e (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
IRFP460AS
www.irf.com 5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width 1 µs
Duty Factor 0.1 %
RD
VGS
RGD.U.T.
10V
+
-
VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25 50 75 100 125 150
0
5
10
15
20
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRFP460AS
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
540
560
580
600
620
0 4 8 121620
DSav
av
I , A vala n c h e C u rr en t
(
A
)
V , A v alanc he V oltage (V )
25 50 75 100 125 150
0
400
800
1200
1600
2000
2400
Starting T , Junction Temperature( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
8.9A
13A
20A
IRFP460AS
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFETS
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRFP460AS
8www.irf.com
SMD-247 Part Marking Information
SMD-247 Package Outline
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD 20A, di/dt 125A/µs, VDD V(BR)DSS,
TJ 150°C
Notes:
Starting TJ = 25°C, L = 4.3mH
RG = 25, IAS = 20A. (See Figure 12)
Pulse width 300µs; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
2X R
Ø
A
0.25 [.010] D B
0.25 [.010] D C A
C
B
D
123
4
2.65 [.104]
2.15 [.085]
0.20 [.225] D
2X
0.25 [.010] DB
0.95 [.037]
0.35 [.014]
2X
1. DIMENSIONING & T OL ERANCI NG PE R ASME Y14.5 M-1994.
4. TO-247 SM D IS A MODIFIED TO-247AC.
3. DIMENS IONS ARE SHOWN IN MILL IMETERS [INCH ES].
2. CONTROLLING DIMENSION: MILLIMETE R.
NOTES:
3 - SOURCE
4 - DRAIN
MOSFET
1 - GATE
2 - DRAIN 3 - E MITT ER
4 - COL LECTOR
2 - COL LECTOR
1 - GATE
IGBT
LEAD ASSIGNMENTS
3.0 [.118]
MAX.
2.75 [.108]
2.25 [.089]
3.65 [.143]
3.55 [.140]
2X
5.45 [.215] 1. 40 [. 055]
1.00 [.040]
20.30 [.799]
19.70 [.776]
5.65 [.222]
4.65 [.183]
5.50 [.217]
0.80 [.031]
0.40 [.016]
4
2.50 [.099]
1.50 [.060]
5.30 [.208]
4.70 [.186] 13. 70 [.539]
13.50 [.532]
16.20 [.637]
16.00 [.630]
15.90 [.625]
15.30 [.603]
5.70 [.224]
5.30 [.209]
DATE CODE
(YYWW)
YY = YEAR
WW = WEE K
PART N UMBER
ASSEMBLY LOT CODE 3A1Q
THIS IS AN IRFP450S WITHEXAMPLE:
LOT CODE
ASSEMBLY 3A1Q 9906
INTERNATIONAL IRFP450S
RECTIFIER
LOGO
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IRs Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/00