Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
LMx58-N Low-Power, Dual-Operational Amplifiers
1 Features 3 Description
The LM158 series consists of two independent, high
1 Available in 8-Bump DSBGA Chip-Sized Package, gain, internally frequency compensated operational
(See AN-1112, SNVA009)amplifiers which were designed specifically to operate
Internally Frequency Compensated for Unity Gain from a single power supply over a wide range of
Large DC Voltage Gain: 100 dB voltages. Operation from split power supplies is also
possible and the low power supply current drain is
Wide Bandwidth (Unity Gain): 1 MHz independent of the magnitude of the power supply
(Temperature Compensated) voltage.
Wide Power Supply Range: Application areas include transducer amplifiers, dc
Single Supply: 3V to 32V gain blocks and all the conventional op-amp circuits
Or Dual Supplies: ±1.5V to ±16V which now can be more easily implemented in single
Very Low Supply Current Drain (500 power supply systems. For example, the LM158
series can be directly operated off of the standard
μA)—Essentially Independent of Supply Voltage 3.3-V power supply voltage which is used in digital
Low Input Offset Voltage: 2 mV systems and will easily provide the required interface
Input Common-Mode Voltage Range Includes electronics without requiring the additional ±15V
Ground power supplies.
Differential Input Voltage Range Equal to the The LM358 and LM2904 are available in a chip sized
Power Supply Voltage package (8-Bump DSBGA) using TI's DSBGA
Large Output Voltage Swing package technology.
Unique Characteristics: Device Information(1)
In the Linear Mode the Input Common-Mode PART NUMBER PACKAGE BODY SIZE (NOM)
Voltage Range Includes Ground and the TO-CAN (8) 9.08 mm x 9.09 mm
Output Voltage Can Also Swing to Ground, LM158-N CDIP (8) 10.16 mm x 6.502 mm
even though Operated from Only a Single LM258-N TO-CAN (8) 9.08 mm x 9.09 mm
Power Supply Voltage. DSBGA (8) 1.31 mm x 1.31 mm
The Unity Gain Cross Frequency is LM2904-N SOIC (8) 4.90 mm x 3.91 mm
Temperature Compensated. PDIP (8) 9.81 mm x 6.35 mm
The Input Bias Current is also Temperature TO-CAN (8) 9.08 mm x 9.09 mm
Compensated. DSBGA (8) 1.31 mm x 1.31 mm
Advantages: LM358-N SOIC (8) 4.90 mm x 3.91 mm
Two Internally Compensated Op Amps PDIP (8) 9.81 mm x 6.35 mm
Eliminates Need for Dual Supplies (1) For all available packages, see the orderable addendum at
Allows Direct Sensing Near GND and VOUT the end of the datasheet.
Also Goes to GND
Compatible with All Forms of Logic Voltage Controlled Oscillator (VCO)
Power Drain Suitable for Battery Operation
2 Applications
Active Filters
General Signal Conditioning and Amplification
4- to 20-mA Current Loop Transmitters
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Table of Contents
7.3 Feature Description................................................. 12
1 Features.................................................................. 17.4 Device Functional Modes........................................ 13
2 Applications ........................................................... 18 Application and Implementation ........................ 14
3 Description............................................................. 18.1 Application Information............................................ 14
4 Revision History..................................................... 28.2 Typical Applications ................................................ 14
5 Pin Configuration and Functions......................... 39 Power Supply Recommendations...................... 24
6 Specifications......................................................... 410 Layout................................................................... 24
6.1 Absolute Maximum Ratings ...................................... 410.1 Layout Guidelines ................................................. 24
6.2 ESD Ratings ............................................................ 410.2 Layout Example .................................................... 24
6.3 Recommended Operating Conditions....................... 511 Device and Documentation Support................. 25
6.4 Thermal Information.................................................. 511.1 Related Links ........................................................ 25
6.5 Electrical Characteristics: LM158A, LM358A, LM158,
LM258........................................................................ 511.2 Trademarks........................................................... 25
6.6 Electrical Characteristics: LM358, LM2904............... 711.3 Electrostatic Discharge Caution............................ 25
6.7 Typical Characteristics.............................................. 911.4 Glossary................................................................ 25
7 Detailed Description............................................ 12 12 Mechanical, Packaging, and Orderable
Information........................................................... 25
7.1 Overview................................................................. 12
7.2 Functional Block Diagram....................................... 12
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision H (March 2013) to Revision I Page
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes,Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1
Changes from Revision G (March 2013) to Revision H Page
Changed layout of National Data Sheet to TI format ........................................................................................................... 25
2Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
5 Pin Configuration and Functions
D, P, and NAB Package
8-Pin SOIC, PDIP, and CDIP
Top View
LMC Package
8-Pin TO-99
Top View
YPB Package
8-Pin DSBGA
Top View
Pin Functions
PIN TYPE DESCRIPTION
D/P/LMC DSBGA NO. NAME
NO.
1 A1 OUTA O Output , Channel A
2 B1 -INA I Inverting Input, Channel A
3 C1 +INA I Non-Inverting Input, Channel A
Ground for Single supply configurations. negative supply for dual supply
4 C2 GND / V- P configurations
5 C3 +INB I Output, Channel B
6 B3 -INB I Inverting Input, Channel B
7 A3 OUTB O Non-Inverting Input, Channel B
8 A2 V+ P Positive Supply
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
See (1)(2)(3).LM158, LM258,
LM358, LM158A, LM2904 UNIT
LM258A, LM358A
MIN MAX MIN MAX
Supply Voltage, V+32 26 V
Differential Input Voltage 32 26 V
Input Voltage 0.3 32 0.3 26 V
Power Dissipation(4) PDIP (P) 830 830 mW
TO-99 (LMC) 550 mW
SOIC (D) 530 530 mW
DSBGA (YPB) 435 mW
Output Short-Circuit to V+15 V and TA= 25°C Continuous Continuou
GND (One s
Amplifier)(5)
Input Current (VIN <0.3V)(6) 50 50 mA
Temperature 55 125 °C
PDIP Package (P): Soldering (10 seconds) 260 260 °C
SOIC Package (D) Vapor Phase (60 215 215 °C
seconds)
Infrared (15 seconds) 220 220 °C
Lead Temperature PDIP (P): (Soldering, 10 seconds) 260 260 °C
TO-99 (LMC): (Soldering, 10 seconds) 300 300 °C
Storage temperature, Tstg 65 150 65 150 °C
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate
conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the
test conditions, see the Electrical Characteristics.
(2) Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.
(3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
(4) For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a 125°C maximum junction temperature
and a thermal resistance of 120°C/W for PDIP, 182°C/W for TO-99, 189°C/W for SOIC package, and 230°C/W for DSBGA, which
applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM258/LM258A and LM158/LM158A can be
derated based on a +150°C maximum junction temperature. The dissipation is the total of both amplifiers—use external resistors, where
possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
(5) Short circuits from the output to V+can cause excessive heating and eventual destruction. When considering short circuits to ground,
the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15
V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result
from simultaneous shorts on all amplifiers.
(6) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of
the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is
also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to
the V+voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and
normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than 0.3 V (at 25°C).
6.2 ESD Ratings VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±250 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
4Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT
Supply Voltage (V+ - V-):LM158. LM258, LM358 3 (±1.5) 32 (±16) V
Supply Voltage (V+ - V-):LM2904 3 (±1.5) 26 (±13) V
Operating Temperature: LM158 -55 125 °C
Operating Temperature: LM258 -25 85 °C
Operating Temperature: LM358 0 70 °C
Operating Temperature: LM2904 -40 85 °C
6.4 Thermal Information LM158-N, LM158-N LM2904-N, LM358-N
LM258-N,
LM358-N
THERMAL METRIC(1) UNIT
LMC NAB YPB D P
8 PINS
RθJA Junction-to-ambient thermal resistance 155 132 230 189 120 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics: LM158A, LM358A, LM158, LM258
V+= +5.0 V, See(1), unless otherwise stated LM158A LM358A LM158, LM258
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
Input Offset Voltage See(2), TA= 25°C 1 2 2 3 2 5 mV
Input Bias Current IIN(+) or IIN(), TA= 25°C, 20 50 45 100 45 150 nA
VCM = 0 V,(3)
Input Offset Current IIN(+) IIN(), VCM = 0V, TA= 2 10 5 30 3 30 nA
25°C
Input Common-Mode V+= 30 V,(4) V+1.
0 0 V+1.5 0 V+1.5 V
Voltage Range (LM2904, V+= 26V), TA=5
25°C
Supply Current Over Full Temperature
Range
RL=on All Op Amps
V+= 30V (LM2904 V+= 26V) 1 2 1 2 1 2 mA
V+= 5V 0.5 1.2 0.5 1.2 0.5 1.2 mA
Large Signal Voltage Gain V+= 15 V, TA= 25°C,
RL2 kΩ, (For VO= 1 V to 50 100 25 100 50 100 V/mV
11 V)
Common-Mode TA= 25°C, 70 85 65 85 70 85 dB
Rejection Ratio VCM = 0 V to V+1.5 V
Power Supply V+= 5 V to 30 V 65 100 65 100 65 100 dB
Rejection Ratio (LM2904, V+= 5 V to 26 V),
TA= 25°C
(1) These specifications are limited to –55°C TA+125°C for the LM158/LM158A. With the LM258/LM258A, all temperature specifications
are limited to 25°C TA85°C, the LM358/LM358A temperature specifications are limited to 0°C TA70°C, and the LM2904
specifications are limited to –40°C TA85°C.
(2) VO1.4 V, RS= 0 Ωwith V+from 5 V to 30 V; and over the full input common-mode range (0 V to V+1.5 V) at 25°C. For LM2904, V+
from 5 V to 26 V.
(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the
state of the output so no loading change exists on the input lines.
(4) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at 25°C). The
upper end of the common-mode voltage range is V+1.5 V (at 25°C), but either or both inputs can go to 32 V without damage (26 V for
LM2904), independent of the magnitude of V+.
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Electrical Characteristics: LM158A, LM358A, LM158, LM258 (continued)
V+= +5.0 V, See(1), unless otherwise stated LM158A LM358A LM158, LM258
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
Power Supply V+= 5 V to 30 V 65 100 65 100 65 100 dB
Rejection Ratio (LM2904, V+= 5 V to 26 V),
TA= 25°C
Amplifier-to-Amplifier f = 1 kHz to 20 kHz, TA=120 120 120 dB
Coupling 25°C (Input Referred), See(5)
Output Current Source VIN+= 1 V,
VIN= 0 V, 20 40 20 40 20 40 mA
V+= 15 V,
VO= 2 V, TA= 25°C
Sink VIN= 1 V, VIN+= 0 V
V+= 15 V, TA= 25°C, 10 20 10 20 10 20 mA
VO= 2 V
VIN= 1 V,
VIN+= 0 V 12 50 12 50 12 50 μA
TA= 25°C, VO= 200 mV,
V+= 15 V
Short Circuit to Ground TA= 25°C, See(6), V+= 15 V 40 60 40 60 40 60 mA
Input Offset Voltage See(2) 4 5 7 mV
Input Offset Voltage Drift RS= 0Ω7 15 7 20 7 μV/°C
Input Offset Current IIN(+) IIN()30 75 100 nA
Input Offset Current Drift RS= 0Ω10 200 10 300 10 pA/°C
Input Bias Current IIN(+) or IIN()40 100 40 200 40 300 nA
Input Common-Mode V+= 30 V, See(4) (LM2904, 0 V+2 0 V+2 0 V+2 V
Voltage Range V+= 26 V)
Large Signal Voltage Gain V+= +15 V
(VO= 1 V to 11 V) 25 15 25 V/mV
RL2 kΩ
Output VOH V+= +30 V RL= 2 26 26 26 V
kΩ
Voltage RL= 27 28 27 28 27 28 V
(LM2904, V+= 26 V) 10 kΩ
Swing VOL V+= 5V, RL= 10 kΩ5 20 5 20 5 20 mV
Output Current Source VIN+= +1 V, VIN= 0 V, 10 20 10 20 10 20 mA
V+= 15 V, VO= 2 V
Sink VIN= +1 V, VIN+= 0 V, 10 15 5 8 5 8 mA
V+= 15 V, VO= 2 V
(5) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This
typically can be detected as this type of capacitance increases at higher frequencies.
(6) Short circuits from the output to V+can cause excessive heating and eventual destruction. When considering short circuits to ground,
the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15
V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result
from simultaneous shorts on all amplifiers.
6Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
6.6 Electrical Characteristics: LM358, LM2904
V+= +5.0 V, See(1), unless otherwise stated LM358 LM2904
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX
Input Offset Voltage See(2) , TA= 25°C 2 7 2 7 mV
Input Bias Current IIN(+) or IIN(), TA= 25°C, 45 250 45 250 nA
VCM = 0 V, See(3)
Input Offset Current IIN(+) IIN(), VCM = 0 V, TA= 25°C 5 50 5 50 nA
Input Common-Mode V+= 30 V, See(4) V+1.
0 0 V+1.5 V
Voltage Range (LM2904, V+= 26 V), TA= 25°C 5
Supply Current Over Full Temperature Range
RL=on All Op Amps
V+= 30 V (LM2904 V+= 26 V) 1 2 1 2 mA
V+= 5 V 0.5 1.2 0.5 1.2 mA
Large Signal Voltage V+= 15V, TA= 25°C,
Gain RL2 kΩ, (For VO= 1 V to 11 V) 25 100 25 100 V/mV
Common-Mode TA= 25°C, 65 85 50 70 dB
Rejection Ratio VCM = 0 V to V+1.5 V
Power Supply V+= 5 V to 30 V 65 100 50 100 dB
Rejection Ratio (LM2904, V+= 5 V to 26 V), TA= 25°C
Amplifier-to-Amplifier Coupling f = 1 kHz to 20 kHz, TA= 25°C 120 120 dB
(Input Referred), See(5)
Output Current Source VIN+= 1 V,
VIN= 0 V, 20 40 20 40 mA
V+= 15 V,
VO= 2 V, TA= 25°C
Sink VIN= 1 V, VIN+= 0 V
V+= 15V, TA= 25°C, 10 20 10 20 mA
VO= 2 V
VIN= 1 V,
VIN+= 0 V 12 50 12 50 μA
TA= 25°C, VO= 200 mV,
V+= 15 V
Short Circuit to Ground TA= 25°C, See(6), V+= 15 V 40 60 40 60 mA
Input Offset Voltage See(2) 9 10 mV
Input Offset Voltage Drift RS= 0 Ω7 7 μV/°C
Input Offset Current IIN(+) IIN()150 45 200 nA
Input Offset Current Drift RS= 0 Ω10 10 pA/°C
Input Bias Current IIN(+) or IIN()40 500 40 500 nA
(1) These specifications are limited to –55°C TA+125°C for the LM158/LM158A. With the LM258/LM258A, all temperature specifications
are limited to 25°C TA85°C, the LM358/LM358A temperature specifications are limited to 0°C TA70°C, and the LM2904
specifications are limited to –40°C TA85°C.
(2) VO1.4 V, RS= 0 Ωwith V+from 5 V to 30 V; and over the full input common-mode range (0 V to V+1.5 V) at 25°C. For LM2904, V+
from 5 V to 26 V.
(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the
state of the output so no loading change exists on the input lines.
(4) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at 25°C). The
upper end of the common-mode voltage range is V+1.5 V (at 25°C), but either or both inputs can go to 32 V without damage (26 V for
LM2904), independent of the magnitude of V+.
(5) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This
typically can be detected as this type of capacitance increases at higher frequencies.
(6) Short circuits from the output to V+can cause excessive heating and eventual destruction. When considering short circuits to ground,
the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15
V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result
from simultaneous shorts on all amplifiers.
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Electrical Characteristics: LM358, LM2904 (continued)
V+= +5.0 V, See(1), unless otherwise stated LM358 LM2904
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX
Input Common-Mode V+= 30 V, See(4) (LM2904, V+= 26 V) 0 V+2 0 V+2 V
Voltage Range
Large Signal Voltage Gain V+= +15 V
(VO= 1 V to 11 V) 15 15 V/mV
RL2 kΩ
Output VOH V+= 30 V RL= 2 kΩ26 22 V
Voltage (LM2904, V+= 26 V) RL= 10 kΩ27 28 23 24 V
Swing VOL V+= 5 V, RL= 10 kΩ5 20 5 100 mV
Output Current Source VIN+= 1 V, VIN= 0 V, 10 20 10 20 mA
V+= 15 V, VO= 2 V
Sink VIN= 1 V, VIN+= 0 V, 5 8 5 8 mA
V+= 15 V, VO= 2 V
8Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
6.7 Typical Characteristics
Figure 1. Input Voltage Range Figure 2. Input Current
Figure 3. Supply Current Figure 4. Voltage Gain
Figure 6. Common-Mode Rejection Ratio
Figure 5. Open Loop Frequency Response
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Characteristics (continued)
Figure 8. Voltage Follower Pulse Response (Small Signal)
Figure 7. Voltage Follower Pulse Response
Figure 9. Large Signal Frequency Response Figure 10. Output Characteristics Current Sourcing
Figure 11. Output Characteristics Current Sinking Figure 12. Current Limiting
10 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Characteristics (continued)
Figure 13. Input Current (LM2902 Only) Figure 14. Voltage Gain (LM2902 Only)
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
7 Detailed Description
7.1 Overview
The LM158 series are operational amplifiers which can operate with only a single power supply voltage, have
true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 VDC. These
amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At
25°C amplifier operation is possible down to a minimum supply voltage of 2.3 VDC.
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes
are not needed, no large input currents result from large differential input voltages. The differential input voltage
may be larger than V+without damaging the device. Protection should be provided to prevent the input voltages
from going negative more than 0.3 VDC (at 25°C). An input clamp diode with a resistor to the IC input terminal
can be used.
7.2 Functional Block Diagram
Figure 15. (Each Amplifier)
7.3 Feature Description
The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (–IN). The amplifer
amplifies only the difference in voltage between the two inpus, which is called the differential input voltage. The
output voltage of the op-amp Vout is given by Equation 1:
VOUT = AOL (IN+ - IN-)
where
AOL is the open-loop gain of the amplifier, typically around 100dB (100,000x, or 10uV per Volt). (1)
To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which
converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output
currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power
capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to
bias the on-chip vertical PNP transistor for output current sinking applications.
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be
used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover
distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.
Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values
of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop
gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power
supply voltage over the range of 3 VDC to 30 VDC.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can
be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase
in IC chip power dissipation which will cause eventual failure due to excessive junction temperatures. Putting
direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive
levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the
amplifiers. The larger value of output source current which is available at 25°C provides a larger output current
capability at elevated temperatures (see Typical Characteristics) than a standard IC op amp.
12 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
7.4 Device Functional Modes
Figure 16. Schematic Diagram
The circuits presented in the Typical Single-Supply Applications emphasize operation on only a single power
supply voltage. If complementary power supplies are available, all of the standard op-amp circuits can be used.
In general, introducing a pseudo-ground (a bias voltage reference of V+/2) will allow operation above and below
this value in single power supply systems. Many application circuits are shown which take advantage of the wide
input common-mode voltage range which includes ground. In most cases, input biasing is not required and input
voltages which range to ground can easily be accommodated.
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
The LM158 family bring performance, economy, and ease-of-use to a wide variety of op-amp applications.
8.2 Typical Applications
8.2.1 Noninverting DC Gain
Figure 17 shows a high input impedance non-inverting circuit. This circuit gives a closed-loop gain equal to the
ratio of the sum of R1 and R2 to R1 and a closed-loop 3 dB bandwidth equal to the amplifier unity-gain frequency
divided by the closed-loop gain. This design has the benefit of a very high input impedance, which is equal to the
differential input impedance multiplied by loop gain. (Open loop gain/Closed loop gain.) In DC coupled
applications, input impedance is not as important as input current and its voltage drop across the source
resistance. Note that the amplifier output will go into saturation if the input is allowed to float. This may be
important if the amplifier must be switched from source to source.
*R not needed due to temperature independent IIN
Figure 17. Non-Inverting DC Gain (0-V Output)
8.2.1.1 Design Requirements
For this example application, the supply voltage is +5V, and 100x±5% of noninverting gain is necessary. Signal
input impedance is approx 10kΩ.
8.2.1.2 Detailed Design Procedure
Using the equation for a non-inverting amplifier configuration ; G = 1+ R2/R1, set R1 to 10kΩ, and R2 to 99x the
value of R1, which would be 990kΩ. Replacing the 990kΩwith a 1MΩwill result in a gain of 101, which is within
the desired gain tolerance.
The gain-frequency characteristic of the amplifier and its feedback network must be such that oscillation does not
occur. To meet this condition, the phase shift through amplifier and feedback network must never exceed 180°
for any frequency where the gain of the amplifier and its feedback network is greater than unity. In practical
applications, the phase shift should not approach 180° since this is the situation of conditional stability. Obviously
the most critical case occurs when the attenuation of the feedback network is zero.
14 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Applications (continued)
8.2.1.3 Application Curve
Figure 18. Transfer Curve for Non-Inverting Configuration
8.2.2 System Examples
8.2.2.1 Typical Single-Supply Applications
(V+= 5.0 VDC)
VO=0VDC for VIN =0VDC
Where: VO= V1+ V2V3V4AV= 10
(V1+ V2)(V3+ V4) to keep VO> 0 VDC
Figure 19. DC Summing Amplifier Figure 20. Power Amplifier
(VIN'S 0 VDC and VO0 VDC)
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Applications (continued)
(V+= 5.0 VDC)
fo= 1 kHz
Q = 50
Av= 100 (40 dB)
Figure 21. “BI-QUAD” RC Active Bandpass Filter Figure 22. Lamp Driver
Figure 23. LED Driver Figure 24. Driving TTL
16 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Applications (continued)
(V+= 5.0 VDC)
VO= VIN
Figure 25. Voltage Follower Figure 26. Pulse Generator
Figure 27. Squarewave Oscillator Figure 28. Pulse Generator
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Applications (continued)
(V+= 5.0 VDC)
HIGH ZIN IO= 1 amp/volt VIN
LOW ZOUT (Increase REfor IOsmall)
Figure 29. Low Drift Peak Detector Figure 30. High Compliance Current Sink
*WIDE CONTROL VOLTAGE RANGE: 0 VDC VC
2 (V+1.5V DC)
Figure 31. Comparator with Hysteresis Figure 32. Voltage Controlled Oscillator (VCO)
18 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Applications (continued)
(V+= 5.0 VDC)
fo= 1 kHz
Q=1
AV= 2
Figure 33. Ground Referencing a Differential Input Figure 34. DC Coupled Low-Pass RC Active Filter
Signal
fo= 1 kHz
Q = 25
Figure 35. Bandpass Active Filter Figure 36. Photo Voltaic-Cell Amplifier
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Applications (continued)
(V+= 5.0 VDC)
Figure 37. Using Symmetrical Amplifiers to Reduce Input Current (General Concept)
Figure 38. Fixed Current Sources
20 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Applications (continued)
(V+= 5.0 VDC)
*(Increase R1 for ILsmall)
VLV+2V
Figure 39. Current Monitor
Figure 40. AC Coupled Inverting Amplifier
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Applications (continued)
(V+= 5.0 VDC)
Av= 11 (As Shown)
Figure 41. AC Coupled Non-Inverting Amplifier
Figure 42. High Input Z, DC Differential Amplifier
Figure 43. Bridge Current Amplifier
22 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Applications (continued)
(V+= 5.0 VDC)
Figure 44. High Input Z Adjustable-Gain DC Instrumentation Amplifier
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 23
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
9 Power Supply Recommendations
For proper operation, the power supplies must be properly decoupled. For decoupling the supply pins it is
suggested that 10 nF capacitors be placed as close as possible to the op-amp power supply pins. For single
supply, place a capacitor between V+ and Vsupply leads. For dual supplies, place one capacitor between
V+ and ground, and one capacitor between V- and ground.
Precautions should be taken to insure that the power supply for the integrated circuit never becomes
reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited
current surge through the resulting forward diode within the IC could cause fusing of the internal conductors
and result in a destroyed unit.
10 Layout
10.1 Layout Guidelines
For single-ended supply configurations, the V+ pin should be bypassed to ground with a low ESR capacitor. The
optimum placement is closest to the V+ pin. Care should be taken to minimize the loop area formed by the
bypass capacitor connection between V+ and ground. The ground pin should be connected to the PCB ground
plane at the pin of the device. The feedback components should be placed as close to the device as possible to
minimize stray parasitics.
For dual supply configurations, both the V+ pin and V- pin should be bypassed to ground with a low ESR
capacitor. The optimum placement is closest to the corresponding supply pin. Care should be taken to minimize
the loop area formed by the bypass capacitor connection between V+ or V- and ground. The feedback
components should be placed as close to the device as possible to minimize stray parasitics.
For both configurations, as ground plane underneath the device is recommended.
10.2 Layout Example
Figure 45. Layout Example
24 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
11 Device and Documentation Support
11.1 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 1. Related Links
TECHNICAL TOOLS & SUPPORT &
PARTS PRODUCT FOLDER SAMPLE & BUY DOCUMENTS SOFTWARE COMMUNITY
LM158-N Click here Click here Click here Click here Click here
LM258-N Click here Click here Click here Click here Click here
LM2904-N Click here Click here Click here Click here Click here
LM358-N Click here Click here Click here Click here Click here
11.2 Trademarks
All trademarks are the property of their respective owners.
11.3 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
11.4 Glossary
SLYZ022 TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 25
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
PACKAGE OPTION ADDENDUM
www.ti.com 19-Sep-2019
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM158AH ACTIVE TO-99 LMC 8 500 TBD Call TI Call TI -55 to 125 ( LM158AH, LM158AH
)
LM158AH/NOPB ACTIVE TO-99 LMC 8 500 Green (RoHS
& no Sb/Br) Call TI Level-1-NA-UNLIM -55 to 125 ( LM158AH, LM158AH
)
LM158H ACTIVE TO-99 LMC 8 500 TBD Call TI Call TI -55 to 125 ( LM158H, LM158H)
LM158H/NOPB ACTIVE TO-99 LMC 8 500 Green (RoHS
& no Sb/Br) AU | Call TI Level-1-NA-UNLIM -55 to 125 ( LM158H, LM158H)
LM158J ACTIVE CDIP NAB 8 40 TBD Call TI Call TI -55 to 125 LM158J
LM258H ACTIVE TO-99 LMC 8 500 TBD Call TI Call TI -25 to 85 ( LM258H, LM258H)
LM258H/NOPB ACTIVE TO-99 LMC 8 500 Green (RoHS
& no Sb/Br) Call TI Level-1-NA-UNLIM -25 to 85 ( LM258H, LM258H)
LM2904ITP/NOPB ACTIVE DSBGA YPB 8 250 Green (RoHS
& no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 85 A
09
LM2904ITPX/NOPB ACTIVE DSBGA YPB 8 3000 Green (RoHS
& no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 85 A
09
LM2904M OBSOLETE SOIC D 8 TBD Call TI Call TI -40 to 85 LM
2904M
LM2904M/NOPB ACTIVE SOIC D 8 95 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 LM
2904M
LM2904MX NRND SOIC D 8 2500 TBD Call TI Call TI -40 to 85 LM
2904M
LM2904MX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 LM
2904M
LM2904N/NOPB ACTIVE PDIP P 8 40 Green (RoHS
& no Sb/Br) CU SN Level-1-NA-UNLIM -40 to 85 LM
2904N
LM358AM NRND SOIC D 8 95 TBD Call TI Call TI 0 to 70 LM
358AM
LM358AM/NOPB ACTIVE SOIC D 8 95 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 LM
358AM
LM358AMX NRND SOIC D 8 2500 TBD Call TI Call TI 0 to 70 LM
358AM
PACKAGE OPTION ADDENDUM
www.ti.com 19-Sep-2019
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM358AMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 LM
358AM
LM358AN/NOPB ACTIVE PDIP P 8 40 Green (RoHS
& no Sb/Br) CU SN Level-1-NA-UNLIM 0 to 70 LM
358AN
LM358H/NOPB ACTIVE TO-99 LMC 8 500 Green (RoHS
& no Sb/Br) Call TI Level-1-NA-UNLIM 0 to 70 ( LM358H, LM358H)
LM358M NRND SOIC D 8 95 TBD Call TI Call TI 0 to 70 LM
358M
LM358M/NOPB ACTIVE SOIC D 8 95 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 LM
358M
LM358MX NRND SOIC D 8 2500 TBD Call TI Call TI 0 to 70 LM
358M
LM358MX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 LM
358M
LM358N/NOPB ACTIVE PDIP P 8 40 Green (RoHS
& no Sb/Br) CU SN Level-1-NA-UNLIM 0 to 70 LM
358N
LM358TP/NOPB ACTIVE DSBGA YPB 8 250 Green (RoHS
& no Sb/Br) SNAGCU Level-1-260C-UNLIM 0 to 70 A
07
LM358TPX/NOPB ACTIVE DSBGA YPB 8 3000 Green (RoHS
& no Sb/Br) SNAGCU Level-1-260C-UNLIM 0 to 70 A
07
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
PACKAGE OPTION ADDENDUM
www.ti.com 19-Sep-2019
Addendum-Page 3
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LM2904-N :
Automotive: LM2904-Q1
Enhanced Product: LM2904-EP
NOTE: Qualified Version Definitions:
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Enhanced Product - Supports Defense, Aerospace and Medical Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM2904ITP/NOPB DSBGA YPB 8 250 178.0 8.4 1.5 1.5 0.66 4.0 8.0 Q1
LM2904ITPX/NOPB DSBGA YPB 8 3000 178.0 8.4 1.5 1.5 0.66 4.0 8.0 Q1
LM2904MX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LM2904MX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LM358AMX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LM358AMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LM358MX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LM358MX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LM358TP/NOPB DSBGA YPB 8 250 178.0 8.4 1.5 1.5 0.66 4.0 8.0 Q1
LM358TPX/NOPB DSBGA YPB 8 3000 178.0 8.4 1.5 1.5 0.66 4.0 8.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 7-Oct-2014
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM2904ITP/NOPB DSBGA YPB 8 250 210.0 185.0 35.0
LM2904ITPX/NOPB DSBGA YPB 8 3000 210.0 185.0 35.0
LM2904MX SOIC D 8 2500 367.0 367.0 35.0
LM2904MX/NOPB SOIC D 8 2500 367.0 367.0 35.0
LM358AMX SOIC D 8 2500 367.0 367.0 35.0
LM358AMX/NOPB SOIC D 8 2500 367.0 367.0 35.0
LM358MX SOIC D 8 2500 367.0 367.0 35.0
LM358MX/NOPB SOIC D 8 2500 367.0 367.0 35.0
LM358TP/NOPB DSBGA YPB 8 250 210.0 185.0 35.0
LM358TPX/NOPB DSBGA YPB 8 3000 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 7-Oct-2014
Pack Materials-Page 2
MECHANICAL DATA
NAB0008A
www.ti.com
J08A (Rev M)
www.ti.com
PACKAGE OUTLINE
C
.228-.244 TYP
[5.80-6.19]
.069 MAX
[1.75]
6X .050
[1.27]
8X .012-.020
[0.31-0.51]
2X
.150
[3.81]
.005-.010 TYP
[0.13-0.25]
0 - 8 .004-.010
[0.11-0.25]
.010
[0.25]
.016-.050
[0.41-1.27]
4X (0 -15 )
A
.189-.197
[4.81-5.00]
NOTE 3
B .150-.157
[3.81-3.98]
NOTE 4
4X (0 -15 )
(.041)
[1.04]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES:
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
18
.010 [0.25] C A B
5
4
PIN 1 ID AREA
SEATING PLANE
.004 [0.1] C
SEE DETAIL A
DETAIL A
TYPICAL
SCALE 2.800
www.ti.com
EXAMPLE BOARD LAYOUT
.0028 MAX
[0.07]
ALL AROUND
.0028 MIN
[0.07]
ALL AROUND
(.213)
[5.4]
6X (.050 )
[1.27]
8X (.061 )
[1.55]
8X (.024)
[0.6]
(R.002 ) TYP
[0.05]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
METAL SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
EXPOSED
METAL
OPENING
SOLDER MASK METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED
METAL
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:8X
SYMM
1
45
8
SEE
DETAILS
SYMM
www.ti.com
EXAMPLE STENCIL DESIGN
8X (.061 )
[1.55]
8X (.024)
[0.6]
6X (.050 )
[1.27] (.213)
[5.4]
(R.002 ) TYP
[0.05]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.125 MM] THICK STENCIL
SCALE:8X
SYMM
SYMM
1
45
8
www.ti.com
PACKAGE OUTLINE
C
0.575 MAX
0.15
0.11
1
TYP
1
TYP
8X 0.18
0.16
0.5
TYP
0.5
TYP
B E A
D
4215100/B 07/2016
DSBGA - 0.575 mm max heightYPB0008
DIE SIZE BALL GRID ARRAY
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
SYMM
SYMM
BALL A1
CORNER
SEATING PLANE
BALL TYP 0.05 C
12
0.015 C A B
A
B
C
3
SCALE 9.000
D: Max =
E: Max =
1.337 mm, Min =
1.337 mm, Min =
1.276 mm
1.276 mm
www.ti.com
EXAMPLE BOARD LAYOUT
8X ( 0.16)
( 0.16)
METAL 0.05 MAX
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
( 0.16)
SOLDER MASK
OPENING
0.05 MIN
(0.5) TYP
(0.5)
TYP
4215100/B 07/2016
DSBGA - 0.575 mm max heightYPB0008
DIE SIZE BALL GRID ARRAY
NOTES: (continued)
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).
SOLDER MASK DETAILS
NOT TO SCALE
12
A
B
SYMM
SYMM
LAND PATTERN EXAMPLE
SCALE:40X
C
3
NON-SOLDER MASK
DEFINED
(PREFERRED) SOLDER MASK
DEFINED
www.ti.com
EXAMPLE STENCIL DESIGN
8X ( 0.3) (R0.05) TYP
METAL
TYP
(0.5) TYP
(0.5) TYP
4215100/B 07/2016
DSBGA - 0.575 mm max heightYPB0008
DIE SIZE BALL GRID ARRAY
NOTES: (continued)
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
12
A
B
C
3
SYMM
SYMM
SOLDER PASTE EXAMPLE
BASED ON 0.125mm THICK STENCIL
SCALE:50X
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated