Casey T-13/4 ( mm), Wide Viewing Angle, High Intensity LED Lamps Technical Data Features * Outstanding LED Material Efficiency Extremely Wide Horizontal Viewing Angle * High Light Output over a Wide Range of Currents * Untinted, Non-diffused Lens * Choice of Four Colors: 644 nm Red, 590 nm Amber, 570 nm Green, and 615 nm Orange Outline Drawing Description These high intensity LED lamps provide the user with an extremely wide 60 (horizontal) by 30 (vertical) oval shaped radiation pattern. Available in TS AlGaAs red, AllnGaP amber, AlInGaP orange, and GaP green colors, these untinted non- diffused T-124 (6 mm) LEDs are an excellent choice for outdoor applications requiring an extremely wide field of vision and high brightness. Device Selection Guide HLMA-VH00 HLMA-VL00 HLMP-V100 HLMP-V500 Applications Outdoor Message Boards * Safety Lighting Equipment * Changeable Message Signs Alternative to Incandescent Lamps i Amber Red-Orange Red Green : ering Ag = 590 nm Aq = 615 nm Aq = 644 nm Ag = 570 nm osee e030) (0.543 0.016) HLMA-VLOO HLMA-VHO0O HLMP-V100 HLMP-V500 i t 102 (0.040) [| lit NOTE 1 20.32 MIN 7 (0.800) 0.51 SQUARE (0.020) NOMINAL NOTES: 2see076 + 1, LEAD ORIENTATION: (0.100 + 0.030) rae 254 2 0.25 DEVICE TYPE | CENTER LEAD OUTER LEADS (0-100 = 0.010) HLMP-V100_ | COMMONANODE | CATHODE 2.644.025 e| HLMP-V500 | COMMON CATHODE | ANODE (0.100 0.040) HLMA-VLOO | COMMON CATHODE | ANODE HLMA-VHOO | COMMON CATHODE | ANODE a 5.08 + 0.25 * (0.200 + 0.010) 2. ALL DIMENSIONS ARE IN MM (INCHES). $.59 + 0.25 (0.220 + 0.010) 1-56 5964-9292Eian) Absolute Maximum Ratings at T, = 25C ne Parameter HLMA-VL00 | HLMA-VH00 | HLMP-V100 | HLMP-v500 | Units eae DC Forward Current!!.31 6014.5] 60145) 60 50 mA rie Peak Forward Current!2.3] 400 400 600 180 mA : Average Input Power!?] 120 120 120 110 mw Reverse Voltage (Ip = 200 1A) 5 5 5 5 Vv Operating Temperature Range -40 to +100 | -40 to +100 -55 to +85 -20 to +100 C Storage Temperature Range -55 to +100 | -55to +100 | -55to +100 | -55 to +100 C Junction Temperature 110 C Soldering Temperature 260C for 5 seconds [1.59 mm (0.06 in.) below seating plane] Notes: 1. Derate linearly as shown in Figure 5. 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or the Max Allowable Average Power as specified in Figure 6. 3. Specified with both die powered simultaneously. 4. Drive Currents between LO mA and 30 mA are recommended for best long term performance. 5. Operation at currents below 10 mA is not recommended, please contact your Hewlett-Packard sales representative. Optical Characteristics at T, = 25C Luminous Color, Viewing Intensity Peak Dominant Angle Luminous Ty GQned) Wavelength Wavelength 2601/2 Efficacy @ 40 mA!!! Apeak (1m) Ag!) Gam Degreesl3! Tw Part Number Min. | Typ. Typ. Typ. Typ. (m/w) HLMA-VLOO 212 460 592 590 60 horizontal 480 HiMAvHoo | 200 | 460 621 615 30 vertical 268 HLMP-V100 500 1000 654 644 60 horizontal 85 30 vertical HLMP-V500 112 | 270 568 570 60 horizontal 595 30 vertical Notes: 1. The luminous intensity, ly, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis. 2. The dominant wavelength, Ay, is derived from the CIE Chromaticity Diagram and represents the color of the device. 3. 2 0 is the off-axis angle where the luminous intensity is 1/2 the on-axis intensity. Electrical Characteristics at Ts = 25C Forward Reverse Capacitance Speed of Response Voltage Breakdown C (pF) Thermal T, (ns) Vy (Volts) Vp (Volts) Vr = 0, Resistance Time Constant @ Ir = 40 mA @ Ip = 200 pA f= 1 MHz RO).pin etis Part Number | Typ. | Max. Min. Typ. CC/W) Typ. HLMA-VLOO 1.90 2.4 5 120 100 13 HLMA-VHOO 1.90 2.4 5 120 100 13 HLMP-V100 1.85 2.4 5 50 115 26 HLMP-V500 2.20 3.0 5 20 100 171 1-57lp - FORWARD CURRENT - mA 1.0 15 20 25 3.0 Ve FORWARD VOLTAGE - V Figure 2a. Forward Current vs, Forward Voltage, HLMA-VL00/VH00. RELATIVE LUMINOUS INTENSITY 10 20 wo a0 50 60 Ip - FORWARD CURRENT - mA Figure 3. Relative Luminous Intensity vs. Forward Current. 1.0 og 8 07 (NORMALIZED AT 40 mA) 06 Tipeak RELATIVE EFFICIENCY 2 in bh Oo 20 40 60 80 100 120 140 160 180 peak PEAK FORWARD CURRENT ~ mA Figure 4c. Relative Efficiency vs. Peak Forward Current, HLMP-V500. 1-58 Ip ~ FORWARD CURRENT - mA (BOTH DIE POWERED SIMULTANEOUSLY) 3 a2 in 2.0 25 3.0 35 40 45 Ve FORWARD VOLTAGE - Vv Figure 2b. Forward Current vs. Forward Voltage, HLMP-V100. 2.0 16 14 1.2 1.0 08 06 0.4 0.2 0 fy RELATIVE EFFICIENCY (NORMALIZED AT 40 mA) D 40 80 120 160 200 240 290 320 360 400 fpeax PEAK FORWARD CURRENT ~ mA Figure 4a. Relative Efficiency vs. Peak Forward Current, HLMA-VL00/VHO0. Roya = 350 COW Roy, = 480 COW le - FORWARD CURRENT - mA (BOTH DIE POWERED SIMULTANEOUSLY) 9 20 40 6o 80 100 Ta - AMBIENT TEMPERATURE - C Figure 5a. Maximum Forward DC Current vs. Ambient Temperature, HLMA-VL00/VHO0. 8 a Ip - FORWARD CURRENT - mA (BOTH DIE POWERED SIMULTANEOUSLY) 3 1 1719 20 22 24 26 28 30 32 Vp ~ FORWARD VOLTAGE - V Figure 2c. Forward Current vs. Forward Voltage, HLMP-V500. 12 (NORMALIZED AT 40 mA) ty RELATIVE EFFICIENCY SfeefeS 88552 1 4 10 20 40 100 200 400 600 Ipeax - PEAK FORWARD CURRENT ~ mA Figure 4b. Relative Efficiency vs. Peak Forward Current, HLMP-V100. = - FORWARD CURRENT - mA (8OTH DIE POWERED SIMULTANEOUSLY) Q 2 40 60 80 100 35 T, AMBIENT TEMPERATURE - C Figure 5b. Maximum Forward DC Current vs. Ambient Temperature, HLMP-V100.a @ & & 8 ig - FORWARD CURRENT ~ mA {BOTH DIE POWERED SIMULTANEOUSLY) 3 0 20 40 6 80 100 T,~ AMBIENT TEMPERATURE C Figure 5c. Maximum Forward DC Current vs. Ambient Temperature, HLMP-V500. f2100 Hz TIME AVERAGE POWER (mW) (BOTH DIE POWERED SIMULTANEOUSLY) 0 20 40 eo 80 100 Ta - AMBIENT TEMPERATURE -~C Figure 6c. Maximum Allowable Average Power vs. Ambient Temperature, HLMP-V500. TIME AVERAGE POWER (mW) (BOTH DIE POWERED SIMULTANEOUSLY) o 2 4 6 8 100 T, AMBIENT TEMPERATURE - C Figure 6a, Maximum Allowable Average Power vs. Ambient Temperature, HLMA-VL00/VHOO. NORMALIZED LUMINOUS INTENSITY 100 80 60 40 20 8 8 * 8 8 8 TIME AVERAGE POWER (mW) (BOTH DIE POWERED SIMULTANEOUSLY) 0 20 a0 60 380 100 85 Ta - AMBIENT TEMPERATURE - C Figure 6b. Maximum Allowable Average Power vs. Ambient Temperature, HLMP-V100. -20 40 40 80-100 ANGULAR DISPLACEMENT (DEGREES) Figure 7a. Relative Intensity vs. Angle, HLMA-VL00/VH00 Horizontal Axis. NORMALIZED LUMINOUS INTENSITY 100 80 eo 40 20 ANGULAR DISPLACEMENT (DEGREES) Figure 7b. Relative Intensity vs. Angle, HLMA-VL00/VH00 Vertical Axis. -20 40 60 80 -100 1-59 a ioe lo) i a 1} jan}NORMALIZED LUMINOUS INTENSITY 100 80 60 40 20 Qa -20 40 60 80 100 ANGULAR DISPLACEMENT (DEGREES) Figure 8a. Relative Intensity vs. Angle, HLMP-V100 Horizontal Axis. NORMALIZED LUMINOUS INTENSITY 100 80 @ 40 20 Qo -20 40 60 80 -100 ANGULAR DISPLACEMENT (DEGREES) Figure 8b. Relative Intensity vs. Angle, HLMP-V100 Vertical Axis. NORMALIZED LUMINOUS INTENSITY 100 80 60 40 20 0 -20 40 60 80 -100 ANGULAR DISPLACEMENT (DEGREES) Figure 9a. Relative Intensity vs. Angle, HLMP-V500 Horizontal Axis. 1-60NORMALIZED LUMINOUS INTENSITY 100-80 60 40 20 a -20 40 60 20 = -100 ANGULAR DISPLACEMENT (DEGREES) Figure 9b. Relative Intensity vs. Angle, HLMP-V500 Vertical Axis. 1-61 Sy a OQ FE cn o) io}