N AMER PHILIPS/DISCRETE BSE D MM 6653931 0028448 740 MBAPX BUV26 BUV26A SILICON POWER TRANSISTORS High-speed, glass-passivated npn power transistors in a TO-220 envelope intended for fast switching applications such as high frequency and efficiency converters, switching regulators and motor control. QUICK REFERENCE DATA BUV26 | 26A Coliector-emitter voltage peak value; VpE = 0 VcESM max. 180 200 V open base VcEO max. 90 100 V Collector-emitter saturation voltage VCEsat max. 1,5 10 V Collector current saturation ICsat max. 12 10 A DC Ic max. 14 A peak value lcm max. 25 A Total power dissipation up to Tmp = 25 OC Prot max. 65 W Fall time; inductive load tf typ. 40 ns MECHANICAL DATA Fig. 1 TO-220AB. Pinning: 1 = base 2 = collector 3 = emitter Collector connected to mounting base. Dimensions in mm 10.3 pe) 45 ee max max | 3.7 13> [ | ' t 2.8 5.9 ~ 4 min rT r ! } 15.8 ! t ' max 1 | 1 1 1 1 T b------4 Lt | | 4 3.0 max I not tinned_ | ) . ! 13.5 1.3 1 min max (2x) | ! | yy2 ll 3 H | | 0.9 i io IM max | ia 0.6 | i | (3x) el + le See 2.4 MSA060 - 1 2.54 2.54 | [oom 1991 263 N AMER PHILIPS/DISCRETE BSE D MM 66535931 0028449 87 mAPX BUV26 BUV26A RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) BUV26 | 26A Collector-emitter voltage peak value; Veg = 0 VCESM open base VCEO Collector current saturation ICsat DC Ic peak value lom Base current DC Ip max, 4,0 A peak value lem max. 6,0 A Total power dissipation UP tO Tmp = 25 OC Prot max. 65 Ww Storage temperature range Tstg 65 to + 150 C Junction temperature Tj max, 150 oC THERMAL RESISTANCE From junction to mounting base Rthj-mb = 1,92 K/W 264 September 1988 N AMER PHILIPS/DISCRETE b9E D MM 6653931 00246450 3T9 MAPX Silicon diffused power transistors BUV26 BUV26A CHARACTERISTICS Tj = 25 9C unless otherwise specified Collector cut-off currents* VCE = VCESmax: Vee=15V; Tj = 125 C Icex max. 1,0 mA Vice = Vcesmax: Ree = 50 2; Tj = 125 C IcER max. 3,0 mA Emitter cut-off current Vep=5 Vi Ic =0 lEBO max. 1,0 mA BUV26 | 26A Collector-emitter sustaining voltage (Figs 2 and 3) 1g = 0; I = 0,2 A; L = 25 mH VcEOsust min. Vv Saturation voltages lo = Icsat? IB = ICgat/t0 VCEsat max. Vv VBEsat max. Vv Ic = Iesat/2: Ip = Iegat/20 VCEsat max. Vv VBEsat max. Vv Switching times resistive load (Figs 4 and 5) IC on = !Csat: !B on = ICsat/10; IB off = 21B on: VCE = 50 V Turn-on time ton typ. 0,4 us Turn-off; storage time ts typ. 0,45 us fall time tf typ. 0,12 KS Turn-on time ton max. 0,6 BS Turn-off; storage time ts max. 1,0 US fall time tf max. 0,25 us Switching times inductive load (Figs 6 and 7) Icon = !csat: 1B on = ICsat/10 Turn-off storage time ts typ. 0.5 us fall time tt typ. 40 MS Turn-off; Tj = 125 C storage time ts max. 2.0 KS fall time tf max. 150 ns * Measured with a half-sinewave voltage (curve tracer). December 1991 265 N AMER PHILIPS/DISCRETE a BUV26A horizontal oscilloscope vertical BV 3002 12 30-60Hz y 7224186 Fig, 2 Test circuit for VcEsust- Vim 0 | i < T 7Z89210.1 Fig. 4 Test circuit resistive load. Lp 0,5 wH Le = 200 wH Veco = 50V VeE = 5V VcL = 50V Fig. 6 Test circuit inductive load. b9E D MM 6653931 0028451 235 MBAPX 7277036.1 min Voce {Vv} VcEOsust Fig. 3 Oscilloscope display for sustaining voltage. t 7277499.5 > "ae 90% +} ---|f->- +> IBon Ig 10% b2== t 8 off 90% L-_|-f 4 = con Ic 10% + - +4}+---- = > ety +e j! tot le Fig. 5 Switching times waveforms with resistive load; tp < 30 ns. t 7Z89212.2 t ~~) 90% }-- === = 'Bon lp \ 10% --4 t 'Boft 90% L-_-_~--4 | ICon To 10% | ets t > ts * wm! top i Fig. 7 Switching times waveforms with inductive load, 266 September 1988 (~