Rev. 2.1, Feb. 2017 K4A8G045WB K4A8G085WB 8Gb B-die DDR4 SDRAM 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) 1.2V datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. (c) 2017 Samsung Electronics Co., Ltd.GG All rights reserved. -1- Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM Revision History Revision No. History Draft Date Remark Editor 1.0 - First SPEC release Nov. 2014 - J.Y.Lee 1.01 - Corrected typo Dec. 2014 - J.Y.Lee 1.1 - Added IDD value [1Gx8] Jan. 2015 - J.Y.Lee 1.11 - Corrected typo Mar. 2015 - J.Y.Lee 1.2 - Added values on page 11 [Table 5] 27th Oct. 2015 - J.Y.Lee 1.3 - Added information about I-temp 3th Dec. 2015 - J.Y.Lee 1.4 - Change of IDD value on page 50 17th Dec. 2015 - J.Y.Lee 1.5 - Change of Package Pinout on page 5~6 30th Dec. 2015 - J.Y.Lee 1.6 - Addition of DDR4-2666 11th Jan. 2016 - J.Y.Lee 1.61 - Corrected typo 25th Mar. 2016 - J.Y.Lee 1.7 - Addition of IDD value (K4A8G085WB-BCTD) on page 53~54 3rd Jun. 2016 - J.Y.Lee 1.8 - Addition of DDR4-2666 (K4A4G085WB-BITD) 28th Jun. 2016 - J.Y.Lee 1.81 - Correction of typo on IDD specification 12th Aug. 2016 - J.Y.Lee 1.9 - Addition of IDD value (K4A8G045WB-BCTD) on page 53~54 22th Aug. 2016 - J.Y.Lee 2.0 - Update referring to JEDEC DDR4 datasheet rev.79-4B 15th Dec. 2016 - J.Y.Lee 2nd Feb. 2017 - J.Y.Lee - Correction of typo 2.1 - Addition of Key Feature "Connectivity Test Mode (TEN) is Supported" on page 5 -2- K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM Table Of Contents 8Gb B-die DDR4 SDRAM 1. Ordering Information .....................................................................................................................................................5 2. Key Features.................................................................................................................................................................5 3. Package Pinout/Mechanical Dimension & Addressing .................................................................................................6 3.1 x4 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 6 3.2 x8 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 7 3.3 FBGA Package Dimension (x4/x8) .......................................................................................................................... 8 4. Input/Output Functional Description..............................................................................................................................9 5. DDR4 SDRAM Addressing ...........................................................................................................................................11 6. Absolute Maximum Ratings ..........................................................................................................................................12 6.1 Absolute Maximum DC Ratings............................................................................................................................... 12 6.2 DRAM Component Operating Temperature Range ................................................................................................ 12 7. AC & DC Operating Conditions.....................................................................................................................................12 8. AC & DC Input Measurement Levels ............................................................................................................................13 8.1 AC & DC Logic Input Levels for Single-ended Signals ............................................................................................ 13 8.2 AC and DC Input Measurement Levels: VREF Tolerances..................................................................................... 13 8.3 AC & DC Logic Input Levels for Differential Signals ............................................................................................... 14 8.3.1. Differential Signals Definition ........................................................................................................................... 14 8.3.2. Differential Swing Requirement for Clock (CK_t - CK_c) ................................................................................. 14 8.3.3. Single-ended Requirements for Differential Signals ........................................................................................ 15 8.3.4. Address, Command and Control Overshoot and Undershoot Specifications................................................... 16 8.3.5. Clock Overshoot and Undershoot Specifications ............................................................................................. 17 8.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications ................................................................. 18 8.4 Slew Rate Definitions .............................................................................................................................................. 19 8.4.1. Slew Rate Definitions for Differential Input Signals (CK) ................................................................................. 19 8.4.2. Slew Rate Definition for Single-ended Input Signals ( CMD/ADD ).................................................................. 20 8.5 Differential Input Cross Point Voltage...................................................................................................................... 21 8.6 CMOS Rail to Rail Input Levels ............................................................................................................................... 22 8.6.1. CMOS Rail to Rail Input Levels for RESET_n ................................................................................................. 22 8.7 AC and DC Logic Input Levels for DQS Signals...................................................................................................... 23 8.7.1. Differential Signal Definition ............................................................................................................................. 23 8.7.2. Differential Swing Requirements for DQS (DQS_t - DQS_c) ........................................................................... 23 8.7.3. Peak Voltage Calculation Method .................................................................................................................... 24 8.7.4. Differential Input Cross Point Voltage .............................................................................................................. 25 8.7.5. Differential Input Slew Rate Definition.............................................................................................................. 26 9. AC and DC Output Measurement Levels......................................................................................................................27 9.1 Output Driver DC Electrical Characteristics............................................................................................................. 27 9.1.1. Alert_n Output Drive Characteristic.................................................................................................................. 29 9.1.2. Output Driver Characteristic of Connectivity Test ( CT ) Mode ........................................................................ 29 9.2 Single-ended AC & DC Output Levels..................................................................................................................... 30 9.3 Differential AC & DC Output Levels......................................................................................................................... 30 9.4 Single-ended Output Slew Rate .............................................................................................................................. 31 9.5 Differential Output Slew Rate .................................................................................................................................. 32 9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode .......................................................................... 33 9.7 Test Load for Connectivity Test Mode Timing ......................................................................................................... 33 10. Speed Bin ...................................................................................................................................................................34 10.1 Speed Bin Table Note ........................................................................................................................................... 39 11. IDD and IDDQ Specification Parameters and Test Conditions ...................................................................................40 11.1 IDD, IPP and IDDQ Measurement Conditions....................................................................................................... 40 12. 8Gb DDR4 SDRAM B-die IDD Specification Table ....................................................................................................55 13. Input/Output Capacitance ...........................................................................................................................................57 14. Electrical Characteristics & AC Timing .......................................................................................................................59 14.1 Reference Load for AC Timing and Output Slew Rate .......................................................................................... 59 14.2 tREFI ..................................................................................................................................................................... 59 -3- K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM 14.3 Clock Specification ................................................................................................................................................ 60 14.3.1. Definition for tCK(abs) .................................................................................................................................... 60 14.3.2. Definition for tCK(avg) .................................................................................................................................... 60 14.3.3. Definition for tCH(avg) and tCL(avg) ............................................................................................................. 60 14.3.4. Definition for tERR(nper) ................................................................................................................................ 60 14.4 Timing Parameters by Speed Grade ..................................................................................................................... 61 14.5 Rounding Algorithms ............................................................................................................................................ 67 14.6 The DQ Input Receiver Compliance Mask for Voltage and Timing ....................................................................... 68 14.7 DDR4 Function Matrix ........................................................................................................................................... 72 -4- Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 1. Ordering Information [ Table 1 ] Samsung 8Gb DDR4 B-die Ordering Information Table Organization DDR4-2133 (15-15-15) DDR4-2400 (17-17-17)2 DDR4-2666 (19-19-19)2 Package 2Gx4 K4A8G045WB-BCPB K4A8G045WB-BCRC K4A8G045WB-BCTD 78 FBGA 1Gx8 K4A8G085WB-BCPB K4A8G085WB-BCRC K4A8G085WB-BCTD 78 FBGA 1Gx8 K4A8G085WB-BIPB K4A8G085WB-BIRC K4A8G085WB-BITD 78 FBGA NOTE : 1. Speed bin is in order of CL-tRCD-tRP. 2. Backward compatible to lower frequency 3. 13th digit stands for below. "C" : Commercial temp/Normal power "I" : Industrial temp/Normal power 2. Key Features [ Table 2 ] 8Gb DDR4 B-die Speed Bins Speed * * * * * * * * * * * * * * * * * * * * * * * * * * * DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 11-11-11 13-13-13 15-15-15 17-17-17 19-19-19 Unit tCK(min) 1.25 1.071 0.937 0.833 0.75 ns CAS Latency 11 13 15 17 19 nCK tRCD(min) 13.75 13.92 14.06 14.16 14.25 ns tRP(min) 13.75 13.92 14.06 14.16 14.25 ns tRAS(min) 35 34 33 32 32 ns tRC(min) 48.75 47.92 47.06 46.16 46.25 ns JEDEC standard 1.2V (1.14V~1.26V) VDDQ = 1.2V (1.14V~1.26V) 800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin, 1200MHz fCK for 2400Mb/sec/pin, 1333MHz fCK for 2666Mb/sec/pin 16 Banks (4 Bank Groups) Programmable CAS Latency (posted CAS): 10,11,12,13,14,15,16,17,18,19,20 Programmable Additive Latency: 0, CL-2 or CL-1 clock Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866),11,14 (DDR4-2133),12,16 (DDR4-2400) and 14,18 (DDR42666) 8-bit pre-fetch Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] Bi-directional Differential Data-Strobe Internal (self) calibration: Internal self calibration through ZQ pin (RZQ: 240 ohm 1%) On Die Termination using ODT pin Average Refresh Period 7.8us at lower than TCASE 85C, 3.9us at 85C < TCASE < 95 C Support Industrial Temp (-4095C) - tREFI 7.8us at -40 C TCASE 85C - tREFI 3.9us at 85 C < TCASE 95C Connectivity Test Mode (TEN) is Supported Asynchronous Reset Package: 78 balls FBGA - x4/x8 All of Lead-Free products are compliant for RoHS All of products are Halogen-free CRC (Cyclic Redundancy Check) for Read/Write data security Command address parity check DBI (Data Bus Inversion) Gear down mode POD (Pseudo Open Drain) interface for data input/output Internal VREF for data inputs External VPP for DRAM Activating Power PPR and sPPR is supported The 8Gb DDR4 SDRAM B-die is organized as a 128Mbit x 4 I/Os x 16banks or 64Mbit x8 I/Os x 16banks device. This synchronous device achieves high speed double-data-rate transfer rates of up to 2666Mb/sec/ pin (DDR4-2666) for general applications. The chip is designed to comply with the following key DDR4 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset. All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a RAS/CAS multiplexing style. The DDR4 device operates with a single 1.2V (1.14V~1.26V) power supply and 1.2V (1.14V~1.26V). The 8Gb DDR4 B-die device is available in 78ball FBGAs(x4/x8). NOTE : 1. This data sheet is an abstract of full DDR4 specification and does not cover the common features which are described in "DDR4 SDRAM Device Operation & Timing Diagram". 2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. -5- Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 3. Package Pinout/Mechanical Dimension & Addressing 3.1 x4 Package Pinout (Top view) : 78ball FBGA Package 1 2 3 4 5 6 7 8 9 A VDD VSSQ NC NC VSSQ VSS A B VPP VDDQ DQS_c DQ1 VDDQ ZQ B C VDDQ DQ0 DQS_t VDD VSS VDDQ C D VSSQ NC DQ2 DQ3 NC VSSQ D E VSS VDDQ NC NC VDDQ VSS E F VDD NC ODT CK_t CK_c VDD F G VSS NC CKE CS_n NC NC G H VDD WE_n A14 ACT_n CAS_n A15 RAS_n A16 VSS H J VREFCA BG0 A10 AP A12 BC_n BG1 VDD J K VSS BA0 A4 A3 BA1 VSS K L RESET_n A6 A0 A1 A5 ALERT_n L M VDD A8 A2 A9 A7 VPP M N VSS A11 PAR NC A13 VDD N 1 Ball Locations (x4) A B C Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N -6- 2 3 4 5 6 7 8 9 Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 3.2 x8 Package Pinout (Top view) : 78ball FBGA Package 1 2 3 7 8 9 VDD VSSQ TDQS_c DM_n, DBI_n, TDQS_t VSSQ VSS A B VPP VDDQ C VDDQ DQ0 DQS_c DQ1 VDDQ ZQ B DQS_t VDD VSS VDDQ D VSSQ C DQ4 DQ2 DQ3 DQ5 VSSQ E D VSS VDDQ DQ6 DQ7 VDDQ VSS E F VDD NC ODT CK_t CK_c VDD F G VSS NC CKE CS_n NC NC G H VDD WE_n A14 ACT_n CAS_n A15 A12 BC_n RAS_n VSS H BG1 VDD J K A 4 5 6 J VREFCA BG0 A10 AP K VSS BA0 A4 A3 BA1 VSS L RESET_n A6 A0 A1 A5 ALERT_n L M VDD A8 A2 A9 A7 VPP M N VSS A11 PAR NC A13 VDD N 1 Ball Locations (x8) A B C Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N -7- 2 3 4 5 6 7 8 9 Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 3.3 FBGA Package Dimension (x4/x8) 0.80 x 8 6.40 0.80 (Datum A) 1.60 Units : Millimeters A #A1 INDEX MARK 3.20 B 0.80 0.80 (Datum B) 4.80 A B C D E F G H J K L M N 0.80 x12 = 9.60 9 8 7 6 5 4 3 2 1 11.00 0.10 7.50 0.10 78 - 0.48 Solder ball (Post Reflow 0.50 0.05) 0.2 M A B 0.10MAX BOTTOM VIEW 7.50 0.10 11.00 0.10 #A1 0.37 0.05 1.10 0.10 TOP VIEW -8- datasheet K4A8G045WB K4A8G085WB Rev. 2.1 DDR4 SDRAM 4. Input/Output Functional Description [ Table 3 ] Input/Output Function Description Symbol Type CK_t, CK_c Input CKE, (CKE1) Input CS_n, (CS1_n) Input C0,C1,C2 Input ODT, (ODT1) Input ACT_n Input RAS_n/A16. CAS_n/ A15. WE_n/A14 Input DM_n/DBI_n/TDQS_t, (DMU_n/DBIU_n), (DML_n/DBIL_n) Input/Output BG0 - BG1 Input BA0 - BA1 Input A0 - A17 Input A10 / AP Input A12 / BC_n Input RESET_n Input DQ Input / Output DQS_t, DQS_c, DQSU_t, DQSU_c, DQSL_t, DQSL_c Input / Output Function Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c. Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t,CK_cSGODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh. Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. Chip ID : Chip ID is only used for 3DS for 2,4,8high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/ TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 conurations. For x16 conuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM. Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14 Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. Those pins have multi function. ForG example, for activation with ACT_n Low, those are Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command pins for Read, Write and other command defined in command truth table Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifing whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8 Bank Group Inputs : BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8 have BG0 and BG1 but X16 has only BG0 Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle. Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/ Write commands to select one location out of the memory array in the respective bank. (A10/AP, A12/ BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows.The address inputs also provide the op-code during Mode Register Set commands.A17 is only defined for the x4 conuration. Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses. Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst chop (on-thefly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details. Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD, Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific datasheets to determine which DQ is used. Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended. -9- datasheet K4A8G045WB K4A8G085WB Symbol Type TDQS_t, TDQS_c Output PAR Input ALERT_n Input/Output TEN Input Rev. 2.1 DDR4 SDRAM Function Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/ TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/ TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11,12,10and TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1. Command and Address Parity Input : DDR4 Supports Even Parity check in DRAM with MR setting. Once it's enabled via Register in MR5, then DRAM calculates Parity with ACT_n,RAS_n/A16,CAS_n/A15,WE_n/ A14,BG0-BG1,BA0-BA1,A17-A0, and C0-C2 (3DS devices). Input parity should maintain at the rising edge of the clock and at the same time with command & address with CS_n LOW Alert : It has multi functions such as CRC error flag , Command and Address Parity error flag as Output signal. If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. If there is error in Command Address Parity Check, then Alert_n goes LOW for relatively long period until on going DRAM internal recovery transaction to complete. During Connectivity Test mode, this pin works as input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded to VDD on board. Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. No Connect: No internal electrical connection is present. NC VDDQ Supply DQ Power Supply: 1.2 V +/- 0.06 V VSSQ Supply DQ Ground VDD Supply Power Supply: 1.2 V +/- 0.06 V VSS Supply Ground VPP Supply DRAM Activating Power Supply: 2.5V ( 2.375V min , 2.75V max) VREFCA Supply Reference voltage for CA ZQ Supply Reference Pin for ZQ calibration NOTE : Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination. - 10 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 5. DDR4 SDRAM Addressing 2 Gb Addressing Table Configuration Bank Address 512 Mb x4 256 Mb x8 128 Mb x16 # of Bank Groups 4 4 2 BG Address BG0~BG1 BG0~BG1 BG0 Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1 Row Address A0~A14 A0~A13 A0~A13 Column Address A0~A9 A0~A9 A0~A9 Page size 512B 1KB 2KB 4 Gb Addressing Table Configuration Bank Address 1 Gb x4 512 Mb x8 256 Mb x16 # of Bank Groups 4 4 2 BG Address BG0~BG1 BG0~BG1 BG0 Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1 Row Address A0~A15 A0~A14 A0~A14 Column Address A0~A9 A0~A9 A0~A9 Page size 512B 1KB 2KB 8 Gb Addressing Table Configuration Bank Address 2 Gb x4 1 Gb x8 512 Mb x16 # of Bank Groups 4 4 2 BG Address BG0~BG1 BG0~BG1 BG0 Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1 Row Address A0~A16 A0~A15 A0~A15 Column Address A0~A9 A0~A9 A0~A9 Page size 512B 1KB 2KB 4 Gb x4 2 Gb x8 1 Gb x16 16 Gb Addressing Table Configuration Bank Address # of Bank Groups 4 4 2 BG Address BG0~BG1 BG0~BG1 BG0 Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1 Row Address A0~A17 A0~A16 A0~A16 Column Address A0~A9 A0~A9 A0~A9 Page size 512B 1KB 2KB 16 Gb Addressing Table(SR x16 DDP) Configuration Bank Address 1 Gb x16 # of Bank Groups 4 BG Address BG0~BG1 Bank Address in a BG BA0~BA1 Row Address A0~A15 Column Address A0~A9 Page size 2KB NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: page size = 2 COLBITS * ORG8 where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits - 11 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 6. Absolute Maximum Ratings 6.1 Absolute Maximum DC Ratings [ Table 4 ] Absolute Maximum DC Ratings Symbol VDD VDDQ VPP VIN, VOUT TSTG Parameter Rating Units NOTE Voltage on VDD pin relative to Vss -0.3 ~ 1.5 V 1,3 Voltage on VDDQ pin relative to Vss -0.3 ~ 1.5 V 1,3 Voltage on VPP pin relative to Vss -0.3 ~ 3.0 V 4 Voltage on any pin except VREFCA relative to Vss -0.3 ~ 1.5 V 1,3,5 Storage Temperature -55 to +100 C 1,2 NOTE : 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA may be equal to or less than 300 mV 4. VPP must be equal or greater than VDD/VDDQ at all times. 5. Overshoot area above 1.5 V is specified in section 8.3.4, 8.3.5 and section 8.3.6. 6.2 DRAM Component Operating Temperature Range [ Table 5 ] Temperature Range Symbol TOPER Parameter Operating Temperature Range rating Unit NOTE Normal 0 to 95 C 1, 2, 4 Industrial -40 to 95 C 1, 3, 4 NOTE : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85C under all operating conditions 3. The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between -40-95C under all operating conditions 4. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b). 7. AC & DC Operating Conditions [ Table 6 ] Recommended DC Operating Conditions Symbol Parameter Rating Min. Typ. Max. Unit NOTE VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3 VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3 VPP Peak-to-Peak Voltage 2.375 2.5 2.75 V 3 NOTE : 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 3. DC bandwidth is limited to 20MHz. - 12 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8. AC & DC Input Measurement Levels 8.1 AC & DC Logic Input Levels for Single-ended Signals [ Table 7 ] Single-ended AC & DC input Levels for Command and Address Symbol Parameter VIH.CA(DC75) DC input logic high DDR4-1600/1866/2133/2400 DDR4-2666 Unit Min. Max. Min. Max. VREFCA+ 0.075 VDD TBD TBD V NOTE VIL.CA(DC75) DC input logic low VSS VREFCA-0.075 TBD TBD V VIH.CA(AC100) AC input logic high VREF + 0.1 Note 2 TBD TBD V 1 VIL.CA(AC100) AC input logic low Note 2 VREF - 0.1 TBD TBD V 1 VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD TBD TBD V 2,3 NOTE : 1. See "Overshoot and Undershoot Specifications" . 2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than 1% VDD (for reference : approx. 12mV) 3. For reference : approx. VDD/2 12mV 8.2 AC and DC Input Measurement Levels: VREF Tolerances The DC-tolerance limits and ac-noise limits for the reference voltages VREFCA is illustrated in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than 1% VDD. voltage VDD VSS time Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1. This clarifies, that DC-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. - 13 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.3 AC & DC Logic Input Levels for Differential Signals 8.3.1 Differential Signals Definition tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK) VIH.DIFF.AC.MIN VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC NOTE : 1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope. 2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope. 8.3.2 Differential Swing Requirement for Clock (CK_t - CK_c) [ Table 8 ] Differential AC & DC Input Levels Symbol Parameter VIHdiff differential input high DDR4 -1600/1866/2133 DDR4 -2400/2666 unit NOTE NOTE 3 V 1 min max min max +0.150 NOTE 3 TBD VILdiff differential input low NOTE 3 -0.150 NOTE 3 TBD V 1 VIHdiff(AC) differential input high ac 2 x (VIH(AC) - VREF) NOTE 3 2 x (VIH(AC) - VREF) NOTE 3 V 2 VILdiff(AC) differential input low ac NOTE 3 2 x (VIL(AC) - VREF) NOTE 3 2 x (VIL(AC) - VREF) V 2 NOTE: 1. Used to define a differential signal slew-rate. 2. for CK_t - CK_c use VIHCA/VILCA(AC) of ADD/CMD and VREFCA; 3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIHCA(DC) max, VILCA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. - 14 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 9 ] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV Slew Rate [V/ns] min max > 4.0 120 - 4.0 115 - 3.0 110 - 2.0 105 - 1.8 100 - 1.6 95 - 1.4 90 - 1.2 85 - 1.0 80 - < 1.0 80 - 8.3.3 Single-ended Requirements for Differential Signals Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals. CK_t and CK _c have to approximately reach VSEHmin / VSELmax [approximately equal to the ac-levels { VIH.CA(AC) / VIL.CA(AC)} for ADD/CMD signals] in every half-cycle. Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g. if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK _c . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK VSEL max VSEL VSS or VSSQ time Figure 3. Single-ended requirement for differential signals Note that while ADD/CMD signal requirements are with respect to VREFCA, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. - 15 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 10 ] Single-ended Levels for CK_t, CK_c Symbol Parameter Single-ended high-level for VSEH CK_t , CK_c Single-ended low-level for VSEL CK_t , CK_c DDR4-1600/1866/2133 Min Max DDR4-2400/2666 Min Max Unit NOTE (VDD/2)+0.100 NOTE3 TBD NOTE3 V 1, 2 NOTE3 (VDD/2)-0.100 NOTE3 TBD V 1, 2 NOTE : 1. For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD; 2. VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; 3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. 8.3.4 Address, Command and Control Overshoot and Undershoot Specifications [ Table 11 ] AC Overshoot/Undershoot Specification for Address, Command and Control Pins Parameter Symbol Maximum peak amplitude above VAOS VAOSP Specification Unit DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 0.06 0.06 0.06 0.06 TBD V TBD V Upper boundary of overshoot area AAOS1 VAOS Maximum peak amplitude allowed for undershoot VAUS 0.3 0.3 0.3 0.3 TBD V-ns Maximum overshoot area per 1 tCK above VAOS AAOS2 0.0083 0.0071 0.0062 0.0055 TBD V-ns Maximum overshoot area per 1 tCK between VDD and VAOS AAOS1 0.2550 0.2185 0.1914 0.1699 TBD V-ns AAUS 0.2644 0.2265 0.1984 0.1762 TBD V-ns Maximum undershoot area per 1 tCK below VSS VDD + 0.24 NOTE 1 (A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0) NOTE: 1.The value of VAOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 4. VAOSP VAOS Volts (V) VDD AAOS2 AAOS1 1 tCK VSS AAUS VAUS Figure 4. Address, Command and Control Overshoot and Undershoot Definition - 16 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.3.5 Clock Overshoot and Undershoot Specifications [ Table 12 ] AC Overshoot/Undershoot Specification for Clock Parameter Symbol Maximum peak amplitude above VCOS VAOSP Specification DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 0.06 0.06 0.06 0.06 TBD NOTE V Upper boundary of overshoot area ADOS1 VAOS TBD V Maximum peak amplitude allowed for undershoot VAUS 0.3 0.3 0.3 0.3 TBD V Maximum overshoot area per 1 UI above VCOS AAOS2 0.0038 0.0032 0.0028 0.0025 TBD V-ns Maximum overshoot area per 1 UI between VDD and VDOS AAOS1 0.1125 0.0964 0.0844 0.0750 TBD V-ns AAUS 0.1144 0.0980 0.0858 0.0762 TBD V-ns Maximum undershoot area per 1 UI below VSS VDD + 0.24 Unit 1 (CK_t, CK_c) NOTE: The value of VCOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 4. VCOSP VCOS Volts (V) VDD ACOS2 ACOS1 1 UI VSS ACUS VCUS Figure 5. Clock Overshoot and Undershoot Definition - 17 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications [ Table 13 ] AC Overshoot/Undershoot Specification for Data, Strobe and Mask Parameter Symbol Maximum peak amplitude above VDOS VDOSP Upper boundary of overshoot area ADOS1 VDOS Lower boundary of undershoot area ADUS1 VDUS Specification Unit NOTE DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 0.16 0.16 0.16 0.16 TBD TBD V 1 0.30 0.30 0.30 TBD V 2 VDDQ + 0.24 0.30 V Maximum peak amplitude below VDUS VDUSP 0.10 0.10 0.10 0.10 TBD V Maximum overshoot area per 1 UI above VDOS ADOS2 0.0150 0.0129 0.0113 0.0100 TBD V-ns Maximum overshoot area per 1 UI between VDDQ and VDOS ADOS1 0.1050 0.0900 0.0788 0.0700 TBD V-ns Maximum undershoot area per 1 UI between VSSQ and VDUS1 ADUS1 0.1050 0.0900 0.0788 0.0700 TBD V-ns Maximum undershoot area per 1 UI below VDUS ADUS2 0.0150 0.0129 0.0113 0.0100 TBD V-ns (DQ, DQS_t, DQS_c, DM_n, DBI_n, TDQS_t, TDQS_c) NOTE : 1. The value of VDOS matches (VIN, VOUT) max as defined in Table 4 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 4. 2. The value of VDUS matches (VIN, VOUT) min as defined in Table 4 Absolute Maximum DC Ratings VDOSP VDOS Volts (V) VDDQ ADOS2 ADOS1 1 UI VSSQ ADUS1 VDUSP ADUS2 Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition - 18 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.4 Slew Rate Definitions 8.4.1 Slew Rate Definitions for Differential Input Signals (CK) Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7. [ Table 14 ] Differential Input Slew Rate Definition Measured Description From Differential input slew rate for rising edge(CK_t - CK_c) V Differential input slew rate for falling edge(CK_t - CK_c) V ILdiffmax IHdiffmin Defined by To IHdiffmin VIHdiffmin - VILdiffmax DeltaTRdiff ILdiffmax VIHdiffmin - VILdiffmax DeltaTFdiff V V NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds. Differential Input Voltage(i,e, CK_t - CK_c) Delta TRdiff V IHdiffmin 0 V Delta TFdiff Figure 7. Differential Input Slew Rate definition for CK, CK - 19 - ILdiffmax K4A8G045WB K4A8G085WB Rev. 2.1 datasheet DDR4 SDRAM 8.4.2 Slew Rate Definition for Single-ended Input Signals ( CMD/ADD ) Delta TRsingle V IHCA(AC) Min V IHCA(DC) Min VREFCA(DC) V ILCA(DC) Max V ILCA(AC) Max Delta TFsingle NOTE : 1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single 2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single 3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope. 4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope. Figure 8. Single-ended Input Slew Rate definition for CMD and ADD - 20 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.5 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS. VDD CK_t Vix VDD/2 Vix CK_c VSEL VSEH VSS Figure 9. Vix Definition (CK) [ Table 15 ] Cross Point Voltage for Differential Input Signals (CK) DDR4-1600/1866/2133 Symbol Parameter - Area of VSEH, VSEL VSEL =< VDD/2 145mV VDD/2 - 145mV =< VSEL =< VDD/2 100mV VDD/2 + 100mV =< VSEH =< VDD/ 2 + 145mV VDD/2 + 145mV =< VSEH VlX(CK) Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c -120mV -(VDD/2 - VSEL) + 25mV (VSEH - VDD/2) 25mV 120mV Symbol Parameter - Area of VSEH, VSEL TBD TBD TBD TBD VlX(CK) Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c TBD TBD TBD TBD min max DDR4-2400/2666 min - 21 - max Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.6 CMOS Rail to Rail Input Levels 8.6.1 CMOS Rail to Rail Input Levels for RESET_n [ Table 16 ] CMOS Rail to Rail Input Levels for RESET_n Parameter Symbol Min Max Unit NOTE AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6 DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2 DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD V 1 AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD V 7 Rising time TR_RESET - 1.0 us 4 RESET pulse width tPW_RESET 1.0 - us 3,5 NOTE : 1.After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset. 2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset asserting RESET_n signal LOW. 3. RESET is destructive to data contents. 4. No slope reversal(ringback) requirement during its level transition from Low to High. 5. This definition is applied only "Reset Procedure at Power Stable". 6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings. 7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings tPW_RESET 0.8*VDD 0.7*VDD 0.3*VDD 0.2*VDD TR_RESET Figure 10. RESET_n Input Slew Rate Definition - 22 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.7 AC and DC Logic Input Levels for DQS Signals 8.7.1 Differential Signal Definition Figure 11. Definition of differential DQS Signal AC-swing Level 8.7.2 Differential Swing Requirements for DQS (DQS_t - DQS_c) [ Table 17 ] Differential AC and DC Input Levels for DQS Symbol Parameter VIHDiffPeak VILDiffPeak VIH.DIFF.Peak Voltage VIL.DIFF.Peak Voltage DDR4-1600/1866/2133 Min 186 Note2 Max Note2 -186 DDR4-2400 Min 160 Note2 Max Note2 -160 DDR4-2666 Min TBD TBD Max TBD TBD Unit Note mV mV 1 1 NOTE : 1.Used to define a differential signal slew-rate. 2.These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended signals. - 23 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.7.3 Peak Voltage Calculation Method The peak voltage of Differential DQS signals are calculated in a following equation. VIH.DIFF.Peak Voltage = Max(f(t)) VIL.DIFF.Peak Voltage = Min(f(t)) Single Ended Input Voltage : DQS_t and DQS_c f(t) = VDQS_t - VDQS_c DQS_t Max(f(t)) Min(f(t)) +35% +35% DQS_c Time Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling - 24 - +50% +50% Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.7.4 Differential Input Cross Point Voltage To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Table 18. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid of the DQS_t and DQS_c signals. VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals. A non-monotonic transitioning signal's ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within +/- 35% of the midpoint of either VIH.DIFF.Peak Voltage (DQS_t rising) or VIL.DIFF.Peak Voltage (DQS_c rising), refer to Figure 12. A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition's horizontal tangent is derived from its negative slope to zero slope transition (point A in Figure 13) and a ring-back's horizontal tangent derived from its positive slope to zero slope transition (point B in Figure 13) is not a valid horizontal tangent; and a rising transition's horizontal tangent is derived from its positive slope to zero slope transition (point C in Figure 13) and a ring-back's horizontal tangent derived from its negative slope to zero slope transition (point D in Figure 13) is not a valid horizontal tangent C DQS_t VIX_DQS,RF VIX_DQS,FR VDQSmid VIX_DQS,RF VIX_DQS,FR B DQS_c VDQS_trans D VDQS_trans/2 DQS_t,DQS_c : Single-ended Input Voltages Lowest horizontal tangent above VDQSmid of the transitioning signals A Highest horizontal tanget below VDQSmid of the transitioning signals VSSQ Figure 13. Vix Definition (DQS) [ Table 18 ] Cross Point Voltage for DQS differential Input Signals Symbol Parameter DQS_t and DQS_c crossing relative to the midpoint of the DQS_t and DQS_c signal swings VDQSmid offset relative to VDQSmid_to_Vcent Vcent_DQ(midpoint) Vix_DQS_ratio DDR4-1600/1866/2133/2400 DDR4-2666 Unit Note 25 % 1, 2 min(VIHdiff,50) mV 3, 4, 5 Min Max Min Max - 25 - - min(VIHdiff,50) - NOTE : 1. Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals. 2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs drivers and paths are matched. 3. The maximum limit shall not exceed the smaller of VIHdiff minimum limit or 50mV. 4. VIX measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and high-z states are not applicable conditions. 5. The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a system. - 25 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 8.7.5 Differential Input Slew Rate Definition Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in are Figure 13 and Figure 14. NOTE : 1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope. 2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope. Figure 14. Differential Input Slew Rate Definition for DQS_t, DQS_c [ Table 19 ] Differential Input Slew Rate Definition for DQS_t, DQS_c Description Defined by From To Differential input slew rate for rising edge(DQS_t - DQS_c) VILDiff_DQS VIHDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff Differential input slew rate for falling edge(DQS_t - DQS_c) VIHDiff_DQS VILDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff [ Table 20 ] Differential Input Level for DQS_t, DQS_c Symbol Parameter VIHDiff_DQS VILDiff_DQS Differntial Input High Differntial Input Low DDR4-1600/1866/2133 Min 136 - DDR4-2400 Max -136 Min 130 - DDR4-2666 Max -130 Min TBD TBD Max TBD TBD Unit NOTE mV mV [ Table 21 ] Differential Input Slew Rate for DQS_t, DQS_c Symbol Parameter SRIdiff Differential Intput Slew Rate DDR4-1600/1866/2133/2400 DDR4-2666 Min Max Min Max 3 18 TBD TBD - 26 - Unit V/ns NOTE Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 9. AC and DC Output Measurement Levels 9.1 Output Driver DC Electrical Characteristics The DDR4 driver supports two different Ron values. These Ron values are referred as strong(low Ron) and weak mode(high Ron). A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows: The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows: RONPu = VDDQ -Vout I out under the condition that RONPd is off RONPd = Vout I out under the condition that RONPu is off Chip In Drive Mode Output Drive To other circuity like RCV, ... VDDQ IPu RONPu DQ RONPd Iout IPd Vout VSSQ Figure 15. Output driver - 27 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range; after proper ZQ calibration RONNOM Resistor Vout Min Nom Max Unit NOTE VOLdc= 0.5*VDDQ 0.8 1 1.1 RZQ/7 1,2 RON34Pd VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2 VOHdc= 1.1* VDDQ 0.9 1 1.25 RZQ/7 1,2 1,2 34 RON34Pu RON48Pd 48 RON48Pu VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/7 VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2 VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/7 1,2 VOLdc= 0.5*VDDQ 0.8 1 1.1 RZQ/5 1,2 VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2 VOHdc= 1.1* VDDQ 0.9 1 1.25 RZQ/5 1,2 VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/5 1,2 VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2 VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/5 1,2 Mismatch between pull-up and pull-down, MMPuPd VOMdc= 0.8* VDDQ -10 - 10 % 1,2,3,4 Mismatch DQ-DQ within byte variation pull-up, MMPudd VOMdc= 0.8* VDDQ - - 10 % 1,2,4 Mismatch DQ-DQ within byte variation pull-dn, MMPddd VOMdc= 0.8* VDDQ - - 10 % 1,2,4 NOTE : 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity(TBD). 2. Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8 * VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.5 * VDDQ and 1.1 * VDDQ. 3. Measurement definition for mismatch between pull-up and pull-down, MMPuPd : Measure RONPu and RONPD both at 0.8*VDD separately; Ronnom is the nominal Ron value MMPuPd = RONPu -RONPd RONNOM *100 4. RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c. MMPudd = MMPddd = RONPuMax -RONPuMin RONNOM RONPdMax -RONPdMin RONNOM 5. This parameter of x16 device is specified for Upper byte and Lower byte. - 28 - *100 *100 Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 9.1.1 Alert_n Output Drive Characteristic A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows: RONPd = Vout l Iout l under the condition that RONPu is off Alert Driver DRAM Alert RONPd Iout IPd Vout VSSQ Resistor RONPd Vout Min Max Unit NOTE VOLdc= 0.1* VDDQ 0.3 1.2 34 1 VOMdc = 0.8* VDDQ 0.4 1.2 34 1 VOHdc = 1.1* VDDQ 0.4 1.4 34 1 NOTE : 1. VDDQ voltage is at VDDQ DC. VDDQ DC definition is TBD. 9.1.2 Output Driver Characteristic of Connectivity Test ( CT ) Mode Following Output driver impedance RON will be applied Test Output Pin during Connectivity Test ( CT ) Mode. The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows: RONPu_CT = RONPd_CT = VDDQ-VOUT l Iout l VOUT l Iout l Chip In Driver Mode Output Driver VDDQ IPu_CT To other circuity like RCV,... RON Pu_CT DQ Iout RON Pd_CT Vout IPd_CT VSSQ Figure 16. Output Driver - 29 - RONNOM_CT Rev. 2.1 datasheet K4A8G045WB K4A8G085WB Resistor RONPd_CT 34 RONPu_CT DDR4 SDRAM Vout Max Units NOTE VOBdc = 0.2 x VDDQ 1.9 34 1 VOLdc = 0.5 x VDDQ 2.0 34 1 VOMdc = 0.8 x VDDQ 2.2 34 1 VOHdc = 1.1 x VDDQ 2.5 34 1 VOBdc = 0.2 x VDDQ 2.5 34 1 VOLdc = 0.5 x VDDQ 2.2 34 1 VOMdc = 0.8 x VDDQ 2.0 34 1 VOHdc = 1.1 x VDDQ 1.9 34 1 NOTE : 1. Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined. 9.2 Single-ended AC & DC Output Levels [ Table 23 ] Single-ended AC & DC Output Levels Symbol Parameter DDR4-1600/1866/2133/2400/2666 Units VOH(DC) DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V NOTE VOM(DC) DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V VOH(AC) AC output high measurement level (for output SR) (0.7 + 0.15) x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) (0.7 - 0.15) x VDDQ V 1 NOTE : 1. The swing of 0.15 x VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 50 to VTT = VDDQ. 9.3 Differential AC & DC Output Levels [ Table 24 ] Differential AC & DC Output Levels DDR4-1600/1866/2133/2400/2666 Units NOTE VOHdiff(AC) Symbol AC differential output high measurement level (for output SR) Parameter +0.3 x VDDQ V 1 VOLdiff(AC) AC differential output low measurement level (for output SR) -0.3 x VDDQ V 1 NOTE : 1. The swing of 0.3 x VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 50 to VTT = VDDQ at each of the differential outputs. - 30 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 9.4 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 25 and Figure 17. [ Table 25 ] Single-ended Output Slew Rate Definition Measured Description Defined by From To Single ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC)-VOL(AC)] / Delta TRse Single ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / Delta TFse NOTE : 1. Output slew rate is verified by design and characterization, and may not be subject to production test. VOH(AC) VTT VOL(AC) delta TFse delta TRse Figure 17. Single-ended Output Slew Rate Definition [ Table 26 ] Single-ended Output Slew Rate Parameter Symbol Single ended output slew rate SRQse DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 Min Max Min Max Min Max Min Max Min Max 4 9 4 9 4 9 4 9 4 9 Units V/ns Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting NOTE : 1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane. -Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low). -Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 9 V/ns applies - 31 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 9.5 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 27 and Figure 18. [ Table 27 ] Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) [VOHdiff(AC)-VOLdiff(AC)] / Delta TRdiff Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) [VOHdiff(AC)-VOLdiff(AC)] /Delta TFdiff NOTE : 1. Output slew rate is verified by design and characterization, and may not be subject to production test. VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 18. Differential Output Slew Rate Definition [ Table 28 ] Differential Output Slew Rate Parameter Differential output slew rate Symbol SRQdiff DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 Min Max Min Max Min Max Min Max Min Max 8 18 8 18 8 18 8 18 8 18 Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals For Ron = RZQ/7 setting - 32 - Units V/ns Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode. [ Table 29 ] Single-ended AC & DC Output Levels of Connectivity Test Mode Symbol Parameter DDR4-1600/1866/2133/2400/2666 Unit VOH(DC) DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V Notes VOM(DC) DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V VOB(DC) DC output below measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + (0.1 x VDDQ) V 1 VOL(AC) AC output below measurement level (for output SR) VTT - (0.1 x VDDQ) V 1 Unit Notes NOTE 1. The effective test load is 50 terminated by VTT = 0.5 * VDDQ. VOH(AC) 0.5 * VDDQ VTT VOL(AC) TR_output_CT TR_output_CT Figure 19. Output Slew Rate Definition of Connectivity Test Mode [ Table 30 ] Single-ended Output Slew Rate of Connectivity Test Mode Parameter DDR4-1600/1866/2133/2400/2666 Symbol Min Max Output signal Falling time TF_output_CT - 10 ns/V Output signal Rising time TR_output_CT - 10 ns/V 9.7 Test Load for Connectivity Test Mode Timing The reference load for ODT timings is defined in Figure 20. VDDQ CT_INPUTS DQ, DM DQSL , DQSL DQSU , DQSU DQS , DQS DUT Rterm = 50 ohm VSSQ Timing Reference Points Figure 20. Connectivity Test Mode Timing Reference Load - 33 - 0.5*VDDQ Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 10. Speed Bin [ Table 31 ] DDR4-1600 Speed Bins and Operations Speed Bin DDR4-1600 CL-nRCD-nRP 11-11-11 Parameter Symbol 18.00 ns 11 tAA(max) +2nCK ns 11 - ns 11 - ns 11 9 x tREFI ns 11 - ns 11 1.6 ns 1,2,3,4,10,13 ns 1,2,3,4,10 ns 1,2,3,4 ns 1,2,3,4 min max 13.75 tAA Internal read command to first data with read DBI enabled tAA_DBI (13.50)5,11 ACT to internal read or write delay time tRCD PRE command period tRP ACT to PRE command period tRAS ACT to ACT or REF command period tRC CWL = 9,11 NOTE 13 Internal read command to first data CWL = 9 Unit tAA(min) + 2nCK 13 13.75 (13.50)5,11 13.7513 (13.50)5,11 35 48.75 (48.50)5,11 Normal Read DBI CL = 9 CL = 11 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 11 CL = 13 tCK(AVG) 1.25 CL = 12 CL = 14 tCK(AVG) 1.25 1.5 (Optional)5,11 Reserved Reserved <1.5 ns 1,2,3 Supported CL Settings 9,11,12 nCK 12,13 Supported CL Settings with read DBI 11,13,14 nCK 12 Supported CWL Settings 9,11 nCK - 34 - <1.5 Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 32 ] DDR4-1866 Speed Bins and Operations Speed Bin DDR4-1866 CL-nRCD-nRP 13-13-13 Parameter Symbol Internal read command to first data tAA Internal read command to first data with read DBI enabled tAA_DBI ACT to internal read or write delay time tRCD PRE command period tRP ACT to PRE command period tRAS ACT to ACT or REF command period tRC CWL = 9 CWL = 9,11 CWL = 10,12 Normal Read DBI CL = 9 CL = 11 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 10 CL = 12 tCK(AVG) Unit NOTE 18.00 ns 11 tAA(max) +2nCK ns 11 - ns 11 - ns 11 9 x tREFI ns 11 - ns 11 1.6 ns 1,2,3,4,10,13 ns 1,2,3,4,10 ns 4 ns 1,2,3,4,6 min max 13.9213 (13.50)5,11 tAA(min) + 2nCK 13 13.92 (13.50)5,11 13.9213 (13.50)5,11 34 47.92 (47.50)5,11 1.5 (Optional)5,11 Reserved Reserved 1.25 <1.5 CL = 11 CL = 13 tCK(AVG) CL = 12 CL = 14 tCK(AVG) CL = 12 CL = 14 tCK(AVG) CL = 13 CL = 15 tCK(AVG) 1.071 CL = 14 CL = 16 tCK(AVG) 1.071 (Optional)5,11 1.25 <1.5 ns 1,2,3,6 ns 1,2,3,4 <1.25 ns 1,2,3,4 <1.25 ns 1,2,3 Reserved Supported CL Settings 9,11,12,13,14 nCK 12,13 Supported CL Settings with read DBI 11,13,14,15,16 nCK 12 Supported CWL Settings 9,10,11,12 nCK - 35 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 33 ] DDR4-2133 Speed Bins and Operations Speed Bin DDR4-2133 CL-nRCD-nRP 15-15-15 Parameter Symbol Internal read command to first data tAA Internal read command to first data with read DBI enabled tAA_DBI ACT to internal read or write delay time tRCD PRE command period tRP ACT to PRE command period tRAS ACT to ACT or REF command period CWL = 9 CWL = 9,11 CWL = 10,12 CWL = 11,14 tRC Normal Read DBI CL = 9 CL = 11 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 11 CL = 13 tCK(AVG) CL = 12 CL = 14 tCK(AVG) Unit NOTE 18.00 ns 11 tAA(max) + 3nCK ns 11 - ns 11 - ns 11 9 x tREFI ns 11 - ns 11 1.6 ns 1,2,3,4,10,1 3 ns 1,2,3,10 ns 1,2,3,4,7 ns 1,2,3,7 ns 1,2,3,4,7 min max 14.0613 (13.75)5,11 tAA(min) + 3nCK 14.06 (13.75)5,11 14.06 (13.75)5,11 33 47.06 (46.75)5,11 1.5 (Optional)5,11 Reserved 1.25 <1.5 (Optional)5,11 1.25 <1.5 1.071 <1.25 CL = 13 CL = 15 tCK(AVG) CL = 14 CL = 16 tCK(AVG) CL = 14 CL = 17 tCK(AVG) CL = 15 CL = 18 tCK(AVG) 0.937 CL = 16 CL = 19 tCK(AVG) 0.937 (Optional)5,11 1.071 <1.25 ns 1,2,3,7 ns 1,2,3,4 <1.071 ns 1,2,3,4 <1.071 ns 1,2,3 12,13 Reserved Supported CL Settings 9,11.12,13,14,15,16 nCK Supported CL Settings with read DBI 11,13,14,15,16,18,19 nCK Supported CWL Settings 9,10,11,12,14 nCK - 36 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 34 ] DDR4-2400 Speed Bins and Operations Speed Bin DDR4-2400 CL-nRCD-nRP 17-17-17 Parameter Symbol Internal read command to first data tAA Internal read command to first data with read DBI enabled tAA_DBI ACT to internal read or write delay time tRCD PRE command period tRP ACT to PRE command period tRAS ACT to ACT or REF command period tRC Normal CWL = 9 CWL = 9,11 CWL = 10,12 CWL = 11,14 CWL = 12,16 Unit NOTE 18.00 ns 11 tAA(max) + 3nCK ns 11 - ns 11 - ns 11 9 x tREFI ns 11 - ns 11 ns 1,2,3,4,9 ns 1,2,3,4,9 ns 4 ns 1,2,3,4,8 min max 14.16 (13.75)5,11 tAA(min) + 3nCK 14.16 (13.75)5,11 14.16 (13.75)5,11 32 46.16 (45.75)5,11 Read DBI CL = 9 CL = 11 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 11 CL = 13 tCK(AVG) CL = 12 CL = 14 tCK(AVG) CL = 12 CL = 14 tCK(AVG) CL = 13 CL = 15 tCK(AVG) CL = 14 CL = 16 tCK(AVG) CL = 14 CL = 17 tCK(AVG) Reserved 1.5 1.6 Reserved 1.25 <1.5 (Optional)5,11 1.25 <1.5 ns 1,2,3,8 ns 4 <1.25 ns 1,2,3,4,8 <1.25 ns 1,2,3,8 Reserved 1.071 5,11 (Optional) 1.071 Reserved 0.937 ns 4 <1.071 ns 1,2,3,4,8 <1.071 ns 1,2,3,8 ns 1,2,3,4 ns 1,2,3,4 CL = 15 CL = 18 tCK(AVG) CL = 16 CL = 19 tCK(AVG) CL = 15 CL = 18 tCK(AVG) CL = 16 CL = 19 tCK(AVG) CL = 17 CL = 20 tCK(AVG) 0.833 <0.937 CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 (Optional)5,11 0.937 Reserved Reserved ns 1,2,3 Supported CL Settings 10,11,12,13,14,15,16,17,18 nCK 12,13 Supported CL Settings with read DBI 12,13,14,15,16,18,19,20,21 nCK Supported CWL Settings 9,10,11,12,14,16 nCK - 37 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 35 ] DDR4-2666 Speed Bins and Operations Speed Bin DDR4-2666 CL-nRCD-nRP 19-19-19 Parameter Symbol Internal read command to first data tAA Internal read command to first data with read DBI enabled tAA_DBI ACT to internal read or write delay time tRCD PRE command period tRP ACT to PRE command period tRAS ACT to ACT or REF command period tRC Normal CWL = 9 CWL = 9,11 CWL = 10,12 CWL = 11,14 CWL = 12,16 CWL = 14.18 Unit NOTE 18.00 ns 11 tAA(max) + 3nCK ns 11 - ns 11 - ns 11 9 x tREFI ns 11 - ns 11 ns 1,2,3,4,10 ns 1,2,3,10 ns 4 ns 1,2,3,4,9 min max 14.2514 (13.75)5,12 tAA(min) + 3nCK 14.25 (13.75)5,12 14.2514 (13.75)5,12 32 46.25 (45.75)5,12 Read DBI CL = 9 CL = 11 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 10 CL = 12 tCK(AVG) CL = 11 CL = 13 tCK(AVG) CL = 12 CL = 14 tCK(AVG) CL = 12 CL = 14 tCK(AVG) CL = 13 CL = 15 tCK(AVG) CL = 14 CL = 16 tCK(AVG) CL = 14 CL = 17 tCK(AVG) Reserved 1.5 1.6 Reserved 1.25 <1.5 (Optional)5,12 1.25 <1.5 Reserved 1.071 <1.25 (Optional) 5,12 1.071 <1.25 Reserved 0.937 <1.071 ns 1,2,3,9 ns 4 ns 1,2,3,4,9 ns 1,2,3,9 ns 4 ns 1,2,3,4,9 CL = 15 CL = 18 tCK(AVG) CL = 16 CL = 19 tCK(AVG) ns 1,2,3,9 CL = 15 CL = 18 tCK(AVG) Reserved ns 4 CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4S9 CL = 17 CL = 20 tCK(AVG) CL = 18 CL = 21 tCK(AVG) CL = 17 CL = 20 tCK(AVG) CL = 18 CL = 21 tCK(AVG) CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 (Optional)5,12 0.937 <1.071 0.833 <0.937 (Optional)5,12 0.833 <0.937 Reserved Reserved ns 1,2,3,4S9 ns 1,2,3 ns 1,2,3S4 ns 1,2,3S4 ns 1,2,3S4 ns 1,2,3 12 Supported CL Settings 10,11,12,13,14,15,16,17,18,19,20 nCK Supported CL Settings with read DBI 12,13,14,15,17,18,19,20,21,22,23 nCK Supported CWL Settings 9,10,11,12,14,16,18 nCK - 38 - 1,2,3,4S9 K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM 10.1 Speed Bin Table Note Absolute Specification - VDDQ = VDD = 1.20V +/- 0.06 V - VPP = 2.5V +0.25/-0.125 V - The values defined with above-mentioned table are DLL ON case. - DDR4-1600, 1866, 2133S2400Gand 2666 Speed Bin Tables are valid only when Geardown Mode is disabled. 1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. CL in clock cycle is calculated from tAA following rounding algorithm defined in Section "Rounding Algorithms" 3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.937 ns or 0.833 ns). This result is tCK(avg).MAX corresponding to CL SELECTED. 4. `Reserved' settings are not allowed. User must program a different value. 5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD information if and how this setting is supported. 6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 9. Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 10. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate. 11. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables. 12. CL number in parentheses, it means that these numbers are optional. 13. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min). 14. Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins. - 39 - K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM 11. IDD and IDDQ Specification Parameters and Test Conditions 11.1 IDD, IPP and IDDQ Measurement Conditions In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure 21 shows the setup and test load for IDD, IPP and IDDQ measurements. l l l IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA, IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents. IPP currents have the same definition as IDD except that the current on the VPP supply is measured. IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 22. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD, IPP and IDDQ measurements, the following definitions apply: l "0" and "LOW" is defined as VIN <= VILAC(max). l l l l l l l l l "1" and "HIGH" is defined as VIN >= VIHAC(min). "MID-LEVEL" is defined as inputs are VREF = VDD / 2. Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 36. Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 37. Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 38 through Table 46. IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); RTT_NOM = RZQ/6 (40 Ohm in MR1); RTT_WR = RZQ/2 (120 Ohm in MR2); RTT_PARK = Disable; Qoff = 0B (Output Buffer enabled) in MR1; TDQS_t disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR5; Gear down mode disabled in MR3 Read/Write DBI disabled in MR5; DM disabled in MR5 Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed. Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} apply invert of BG/BA changes when directed above. - 40 - datasheet K4A8G045WB K4A8G085WB IDD VDD RESET CK_t/CK_c CKE CS C ACT,RAS,CAS,WE A,BG,BA ODT ZQ IPP Rev. 2.1 DDR4 SDRAM IDDQ VPP VDDQ DDR4 SDRAM DQS_t/DQS_c DQ DM VSS VSSQ NOTE: 1. DIMM level Output test load condition may be different from above Figure 21. Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements Application specific IDDQ TestLad memory channel environment Channel IO Powe Simulatin IDDQ Simuaion IDDQ Measurement X X Correlation Channel IO Power Number Figure 22. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement. - 41 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 36 ] Timings Used for IDD, IPP and IDDQ Measurement-Loop Patterns DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 11-11-11 13-13-13 15-15-15 17-17-17 19-19-19 tCK 1.25 1.071 0.937 0.833 TBD ns CL 11 13 15 17 TBD nCK CWL 11 12 14 16 TBD nCK nRCD 11 13 15 17 TBD nCK nRC 39 45 51 56 TBD nCK nRAS 28 32 36 39 TBD nCK nRP 11 13 15 17 TBD nCK x4 16 16 16 16 TBD nCK x8 20 22 23 26 TBD nCK x16 28 28 32 36 TBD nCK x4 4 4 4 4 TBD nCK Symbol nFAW nRRDS nRRDL Unit x8 4 4 4 4 TBD nCK x16 5 5 6 7 TBD nCK x4 5 5 6 6 TBD nCK x8 5 5 6 6 TBD nCK 6 6 7 8 TBD nCK tCCD_S x16 4 4 4 4 TBD nCK tCCD_L 5 5 6 6 TBD nCK tWTR_S 2 3 3 3 TBD nCK tWTR_L 6 7 8 9 TBD nCK nRFC 2Gb 128 150 171 193 TBD nCK nRFC 4Gb 208 243 278 313 TBD nCK nRFC 8Gb 280 327 374 421 TBD nCK TBD nCK - 42 - K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM [ Table 37 ] Basic IDD, IPP and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current (AL=0) IDD0 CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between ACT and PRE; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 38 on page 46; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 38 on page 46); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 38 on page 46 IDD0A IPP0 Operating One Bank Active-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD0 Operating One Bank Active-Precharge IPP Current Same condition with IDD0 Operating One Bank Active-Read-Precharge Current (AL=0) IDD1 CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between ACT, RD and PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 39 on page 47; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 39 on page 47); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 39 on page 47 IDD1A IPP1 Operating One Bank Active-Read-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD1 Operating One Bank Active-Read-Precharge IPP Current Same condition with IDD1 Precharge Standby Current (AL=0) IDD2N CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 40 on page 48; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 40 on page 48 IDD2NA IPP2N Precharge Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD2N Precharge Standby IPP Current Same condition with IDD2N Precharge Standby ODT Current IDD2NT CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 41 on page 49; Data IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: toggling according to Table 41 on page 49; Pattern Details: see Table 41 on page 49 IDDQ2NT Precharge Standby ODT IDDQ Current (Optional) Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current IDD2NL IDD2NG IDD2ND IDD2N_par IDD2P Precharge Standby Current with CAL enabled Same definition like for IDD2N, CAL enabled3 Precharge Standby Current with Gear Down mode enabled Same definition like for IDD2N, Gear Down mode enabled3,5 Precharge Standby Current with DLL disabled Same definition like for IDD2N, DLL disabled3 Precharge Standby Current with CA parity enabled Same definition like for IDD2N, CA parity enabled3 Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0 IPP2P Precharge Power-Down IPP Current Same condition with IDD2P IDD2Q Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0 IDD3N Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 40 on page 48; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 40 on page 48 - 43 - K4A8G045WB K4A8G085WB datasheet Symbol IDD3NA Rev. 2.1 DDR4 SDRAM Description Active Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD3N IPP3N Active Standby IPP Current Same condition with IDD3N IDD3P Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0 IPP3P Active Power-Down IPP Current Same condition with IDD3P IDD4R Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 82; AL: 0; CS_n: High between RD; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 42 on page 50; Data IO: seamless read data burst with different data between one burst and the next one according to Table 42 on page 50; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 42 on page 50); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 42 on page 50 IDD4RA Operating Burst Read Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4R IDD4RB Operating Burst Read Current with Read DBI Read DBI enabled3, Other conditions: see IDD4R IPP4R Operating Burst Read IPP Current Same condition with IDD4R IDDQ4R (Optional) Operating Burst Read IDDQ Current Same definition like for IDD4R, however measuring IDDQ current instead of IDD current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current IDD4W Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between WR; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 43 on page 51; Data IO: seamless write data burst with different data between one burst and the next one according to Table 43 on page 51; DM_n: stable at 1; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 43 on page 51); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at HIGH; Pattern Details: see Table 43 on page 51 IDD4WA Operating Burst Write Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4W IDD4WB Operating Burst Write Current with Write DBI Write DBI enabled3, Other conditions: see IDD4W IDD4WC Operating Burst Write Current with Write CRC Write CRC enabled3, Other conditions: see IDD4W IDD4W_par Operating Burst Write Current with CA Parity CA Parity enabled3, Other conditions: see IDD4W IPP4W Operating Burst Write IPP Current Same condition with IDD4W IDD5B Burst Refresh Current (1X REF) CKE: High; External clock: On; tCK, CL, nRFC: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between REF; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 45 on page 53; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF command every nRFC (see Table 45 on page 53); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 45 on page 53 IPP5B Burst Refresh Write IPP Current (1X REF) Same condition with IDD5B IDD5F2 Burst Refresh Current (2X REF) tRFC=tRFC_x2, Other conditions: see IDD5B IPP5F2 Burst Refresh Write IPP Current (2X REF) Same condition with IDD5F2 IDD5F4 Burst Refresh Current (4X REF) tRFC=tRFC_x4, Other conditions: see IDD5B IPP5F4 Burst Refresh Write IPP Current (4X REF) Same condition with IDD5F4 - 44 - K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM Symbol Description IDD6N Self Refresh Current: Normal Temperature Range TCASE: 0 - 85C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL IPP6N Self Refresh IPP Current: Normal Temperature Range Same condition with IDD6N IDD6E Self-Refresh Current: Extended Temperature Range) TCASE: 0 - 95C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MIDLEVEL IPP6E Self Refresh IPP Current: Extended Temperature Range Same condition with IDD6E IDD6R Self-Refresh Current: Reduced Temperature Range TCASE: 0 - 45 C; Low Power Array Self Refresh (LP ASR) : Reduced4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MIDLEVEL IPP6R Self Refresh IPP Current: Reduced Temperature Range Same condition with IDD6R IDD6A Auto Self-Refresh Current TCASE: 0 - 95C; Low Power Array Self Refresh (LP ASR) : Auto4;CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL IPP6A Auto Self-Refresh IPP Current Same condition with IDD6A IDD7 Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 36 on page 42; BL: 81; AL: CL-1; CS_n: High between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 46 on page 54; Data IO: read data bursts with different data between one burst and the next one according to Table 46 on page 54; DM_n: stable at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 46 on page 54; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 46 on page 54 IPP7 Operating Bank Interleave Read IPP Current Same condition with IDD7 IDD8 Maximum Power Down Current TBD IPP8 Maximum Power Down IPP Current Same condition with IDD8 NOTE : 1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00]. 2. Output Buffer Enable - set MR1 [A12 = 0] : Qoff = Output buffer enabled - set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7 RTT Nom enable - set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6 RTT_WR enable - set MR2 [A10:9 = 01] : RTT_WR = RZQ/2 RTT_PARK disable - set MR5 [A8:6 = 000] 3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s 010] : 1866MT/s, 2133MT/s 011] : 2400MT/s ,2666MT/s Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate DLL disabled : set MR1 [A0 = 0] CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s 010] : 2400MT/s ,2666MT/s Read DBI enabled : set MR5 [A12 = 1] Write DBI enabled : set :MR5 [A11 = 1] 4. Low Power Auto Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal 01] : Reduced Temperature range 10] : Extended Temperature range 11] : Auto Self Refresh 5. IDD2NG should be measured after sync pulse (NOP) input. - 45 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 0 0 0 - 0 0 0 0 - 3,4 D_#, D_# 1 1 1 1 1 0 0 32 3 0 0 0 7 F 0 - ... repeat pattern 1...4 until nRAS - 1, truncate if necessary 0 0 0 0 0 0 0 0 - PRE 0 1 0 1 0 0 0 1*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead 2 2*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead 3 3*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead 4 4*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead 5 5*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead 6 6*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead 7 7*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead 8 8*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead 9 9*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead 10 10*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead 11 11*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead 12*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead 2= 2, BA[1:0] = 3 instead 13 14 15 13*nRC 14*nRC 15*nRC Data4 repeat pattern 1...4 until nRC - 1, truncate if necessary 1 12 A[2:0] 0 0 A[6:3] 0 0 A[9:7] 0 0 A[10]/AP 0 0 A[13,11] 0 0 A12/BC_n 0 0 BA[1:0] 0 0 BG[1:0]2 0 0 C[2:0]3 0 0 ODT 0 0 ... Static High WE_n/ A14 0 1 nRAS toggling CAS_n/ A15 0 D, D RAS_n ACT ACT_n 0 1,2 CS_n Command 0 Cycle Number Sub-Loop CKE CK_t /CK_c [ Table 38 ] IDD0, IDD0A and IPP0 Measurement-Loop Pattern1 repeat Sub-Loop 0, use BG[1:0] 2 repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 0 instead NOTE : 1. DQS_t, DQS_c are VDDQ. 2. BG1 is don't care for x16 device 3. C[2:0] are used only for 3DS device 4. DQ signals are VDDQ. - 46 - For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM CS_n ACT_n RAS_n CAS_n/A15 WE_n/A14 ODT C[2:0]3 BG[1:0]2 BA[1:0] A12/BC_n A[13,11] A[10]/AP A[9:7] A[6:3] A[2:0] 0 ACT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 b 3 0 0 0 7 F 0 - 0 Cycle Number Command Data4 Sub-Loop CKE CK_t, CK_c [ Table 39 ] IDD1, IDD1A and IPP1 Measurement-Loop Pattern1 3, 4 D#, D# ... repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary nRCD -AL RD 1 0 1 1 1 1 1 0 1 1 0 0 0 3 0 ... repeat pattern 1...4 until nRAS - 1, truncate if necessary nRAS PRE 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF 0 0 0 0 0 0 0 - ... repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC + 0 ACT 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 - 1*nRC + 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1*nRC + 3, 4 D#, D# 1 1 1 1 1 0 0 3b 3 0 0 0 7 F 0 - ... repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary 1 Static High toggling 1*nRC + nRCD - AL RD 0 1 1 0 1 0 0 1 ... repeat pattern 1...4 until nRAS - 1, truncate if necessary 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00 0 0 0 0 0 0 0 - 1*nRC + nRAS PRE ... repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary 2 2*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead 3 3*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead 4 4*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead 5 5*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead 6 6*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead 8 7*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead 9 9*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 0 instead 10 10*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead 11 11*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 2 instead 12 12*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead 13 13*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 1 instead 14 14*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead 15 15*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 3 instead 16 16*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead NOTE : 1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ 2. BG1 is don't care for x16 device 3. C[2:0] are used only for 3DS device 4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ. - 47 - For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM Static High toggling A[6:3] A[2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 7 F 0 0 3 0 0 0 7 F 0 0 2 D#, D# 1 1 1 1 1 0 0 32 3 D#, D# 1 1 1 1 1 0 0 2 1 4-7 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead 5 20-23 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead 6 24-27 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead 7 28-31 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead 8 32-35 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead 9 36-39 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead 10 40-43 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead 11 44-47 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead 12 48-51 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead 13 52-55 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead 14 56-59 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead 15 60-63 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead NOTE : 1. DQS_t, DQS_c are VDDQ. 2. BG1 is don't care for x16 device 3. C[2:0] are used only for 3DS device 4. DQ signals are VDDQ. - 48 - 3 A[13,11] 0 0 BA[1:0] 0 0 BG[1:0]2 0 0 C[2:0]3 0 0 ODT A[9:7] A12/BC_n WE_n/A14 CAS_n/A15 1 1 RAS_n D, D D, D ACT_n 0 1 CS_n Data4 Cycle Number A[10]/AP 0 Command Sub-Loop CKE CK_t, CK_c [ Table 40 ] IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P Measurement-Loop Pattern1 Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM Static High A[2:0] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 3 2 3 0 0 0 7 F 0 - 3 2 3 0 0 0 7 F 0 - D#, D# D#, D# 1 1 1 1 1 1 1 1 1 1 ODT D, D D, D 2 0 0 0 A[9:7] A[10]/AP A[13,11] A12/BC_n BA[1:0] BG[1:0]2 C[2:0]3 WE_n/A14 CAS_n/A15 RAS_n ACT_n 0 1 CS_n Data4 3 toggling Command A[6:3] 0 Cycle Number Sub-Loop CKE CK_t, CK_c [ Table 41 ] IDD2NT and IDDQ2NT Measurement-Loop Pattern1 2 1 4-7 repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 1, BA[1:0] = 1 instead 2 8-11 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 3 instead 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead 5 20-23 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead 6 24-27 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 3 instead 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead 8 32-35 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead 9 36-39 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 1 instead 10 40-43 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead 11 44-47 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead 12 48-51 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 1 instead 13 52-55 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead 14 56-59 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead 15 60-63 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 0 instead NOTE : 1. DQS_t, DQS_c are VDDQ. 2. BG1 is don't care for x16 device 3. C[2:0] are used only for 3DS device 4. DQ signals are VDDQ. - 49 - For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM CS_n ACT_n RAS_n CAS_n/A15 WE_n/A14 ODT C[2:0]3 BG[1:0]2 BA[1:0] A12/BC_n A[13,11] A[10]/AP A[9:7] A[6:3] A[2:0] 0 RD 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF 1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 3 0 0 0 7 F 0 - Cycle Number Command Data4 Sub-Loop CKE CK_t, CK_c [ Table 42 ] IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern1 0 2,3 D#, D# 1 1 1 1 1 0 0 32 4 RD 0 1 1 0 1 0 0 1 1 0 0 0 7 F 0 D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00 5 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 2 3 0 0 0 7 F 0 - 1 Static High toggling 6,7 D#, D# 1 1 1 1 1 0 3 2 2 8-11 repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead 3 12-15 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead 5 20-23 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead 6 24-27 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead 7 28-31 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead 8 32-35 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead 9 36-39 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead 10 40-43 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead 11 44-47 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead 12 48-51 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead 13 52-55 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead 14 56-59 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead 15 60-63 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead NOTE : 1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ. 2. BG1 is don't care for x16 device 3. C[2:0] are used only for 3DS device 4. Burst Sequence driven on each DQ signal by Read Command. - 50 - For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM CS_n ACT_n RAS_n CAS_n/A15 WE_n/A14 ODT C[2:0]3 BG[1:0]2 BA[1:0] A12/BC_n A[13,11] A[10]/AP A[9:7] A[6:3] A[2:0] 0 WR 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF 1 D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 3 0 0 0 7 F 0 - Cycle Number Command Data4 Sub-Loop CKE CK_t, CK_c [ Table 43 ] IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern1 0 2,3 D#, D# 1 1 1 1 1 1 0 32 4 WR 0 1 1 0 0 1 0 1 1 0 0 0 7 F 0 D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00 5 D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 2 3 0 0 0 7 F 0 - 1 Static High toggling 6,7 D#, D# 1 1 1 1 1 1 3 2 2 8-11 repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead 3 12-15 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead 5 20-23 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead 6 24-27 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead 7 28-31 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead 8 32-35 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead 9 36-39 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead 10 40-43 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead 11 44-47 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead 12 48-51 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead 13 52-55 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead 14 56-59 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead 15 60-63 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead NOTE : 1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ. 2. BG1 is don't care for x16 device 3. C[2:0] are used only for 3DS device 4. Burst Sequence driven on each DQ signal by Write Command. - 51 - For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM Static High 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1,2 D, D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 2 3 0 0 0 7 F 0 - D#, D# 1 1 1 1 1 1 3 A[6:3] 0 ODT WR 3,4 A[9:7] A[10]/AP A[13,11] A12/BC_n BA[1:0] BG[1:0]2 C[2:0]3 WE_n/A14 CAS_n/A15 RAS_n ACT_n 0 D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF D8=CRC CS_n Data4 5 WR 0 1 1 0 0 1 0 1 1 0 0 0 7 F 0 D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00 D8=CRC 6,7 D, D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 32 3 0 0 0 7 F 0 - 8,9 toggling Command A[2:0] 0 Cycle Number Sub-Loop CKE CK_t, CK_c [ Table 44 ] IDD4WC Measurement-Loop Pattern1 D#, D# 1 1 1 1 1 1 2 2 10-14 repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead 3 15-19 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead 4 20-24 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead 5 25-29 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead 6 30-34 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead 7 35-39 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead 8 40-44 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead 9 45-49 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead 10 50-54 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead 11 55-59 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead 12 60-64 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead 13 65-69 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead 14 70-74 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead 15 75-79 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead NOTE : 1. DQS_t, DQS_c are VDDQ. 2. BG1 is don't care for x16 device. 3. C[2:0] are used only for 3DS device. 4. Burst Sequence driven on each DQ signal by Write Command. - 52 - For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 0 Static High toggling A[2:0] A[6:3] A[9:7] A[10]/AP A[13,11] A12/BC_n BA[1:0] BG[1:0]2 C[2:0]3 ODT WE_n/A14 CAS_n/A15 RAS_n ACT_n CS_n REF 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 2 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 2 3 0 0 0 7 F 0 - 2 3 0 0 0 7 F 0 - 4 2 Data4 0 3 1 Command Cycle Number Sub-Loop CKE CK_t, CK_c [ Table 45 ] IDD5B Measurement-Loop Pattern1 D#, D# D#, D# 1 1 1 1 1 1 1 1 1 1 0 0 0 3 3 2 4-7 repeat pattern 1...4, use BG[1:0] = 1, BA[1:0] = 1 instead 8-11 repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 2 instead 12-15 repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 3 instead 16-19 repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead 20-23 repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 2 instead 24-27 repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead 28-31 repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead 32-35 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 0 instead 36-39 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead 40-43 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead 44-47 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 3 instead 48-51 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead 52-55 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead 56-59 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 3 instead 60-63 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 0 instead 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary NOTE : 1. DQS_t, DQS_c are VDDQ. 2. BG1 is don't care for x16 device. 3. C[2:0] are used only for 3DS device. 4. DQ signals are VDDQ. - 53 - For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM RAS_n CAS_n/A15 WE_n/A14 ODT C[2:0]3 BG[1:0]2 BA[1:0] A12/BC_n A[13,11] A[10]/AP A[9:7] A[6:3] A[2:0] ACT ACT_n 0 CS_n Command Cycle Number Sub-Loop CKE CK_t, CK_c [ Table 46 ] IDD7 Measurement-Loop Pattern1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RDA 0 1 1 0 1 0 2 D 1 0 0 0 0 0 3 D# 1 1 1 1 1 0 - 0 0 D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 - 0 32 3 0 0 0 7 F 0 - 0 0 0 0 - 0 D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00 0 Static High toggling 1 ... repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary nRRD ACT 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 nRRD + 1 RDA ... repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary 2 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead 3 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead 4 4*nRRD repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary 5 nFAW repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead 6 nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead 7 nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead 8 nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead 9 nFAW + 4*nRRD repeat Sub-Loop 4 0 1 10 2*nFAW repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead 11 2*nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead 12 2*nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead 13 2*nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead 14 2*nFAW + 4*nRRD repeat Sub-Loop 4 15 3*nFAW repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead 16 3*nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead 17 3*nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead 18 3*nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead 19 3*nFAW + 4*nRRD repeat Sub-Loop 4 20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary NOTE : 1. DQS_t, DQS_c are VDDQ. 2. BG1 is don't care for x16 device. 3. C[2:0] are used only for 3DS device. 4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ. - 54 - Data4 0 0 For x4 and x8 only Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 12.8Gb DDR4 SDRAM B-die IDD Specification Table IDD and IPP values are for typical operating range of voltage and temperature unless otherwise noted. [ Table 47 ] IDD and IDDQ Specification 2Gx4 (K4A8G045WB) DDR4-2133 Symbol DDR4-2400 1Gx8 (K4A8G085WB) DDR4-2666 DDR4-2133 DDR4-2400 DDR4-2666 15-15-15 17-17-17 19-19-19 15-15-15 17-17-17 19-19-19 VDD 1.2V VDD 1.2V VDD 1.2V VDD 1.2V VDD 1.2V VDD 1.2V IDD Max. IDD Max. IDD Max. IDD Max. IDD Max. IDD Max. Unit IDD0 30 32 35 31 31 32 mA IDD0A 31 35 38 32 34 35 mA IDD1 41 43 49 44 45 45 mA IDD1A 43 46 50 47 48 51 mA IDD2N 21 21 21 22 23 23 mA IDD2NA 24 24 25 25 26 26 mA IDD2NT 24 24 25 25 26 26 mA IDD2NL 15 15 16 15 17 17 mA IDD2NG 21 21 22 22 23 23 mA IDD2ND 19 19 20 20 21 21 mA IDD2N_par 22 22 23 23 24 24 mA IDD2P 15 15 15 16 16 16 mA IDD2Q 19 19 20 20 21 21 mA IDD3N 35 35 36 36 36 36 mA IDD3NA 38 38 38 38 38 38 mA IDD3P 20 20 20 21 22 22 mA IDD4R 83 93 102 101 107 124 mA IDD4RA 86 97 107 105 111 130 mA IDD4RB 84 94 104 102 109 125 mA IDD4W 77 88 96 84 89 101 mA IDD4WA 81 92 100 88 94 106 mA IDD4WB 77 88 96 84 90 102 mA IDD4WC 74 76 88 74 83 94 mA IDD4W_par 86 98 106 92 99 112 mA IDD5B 197 201 216 199 199 216 mA IDD5F2 138 141 152 138 139 150 mA IDD5F4 115 118 128 116 117 126 mA IDD6N 22 22 22 23 23 24 mA IDD6E 33 33 33 34 34 36 mA IDD6R 15 15 15 16 16 16 mA IDD6A 21 21 21 22 22 22 mA IDD7 170 191 212 142 143 155 mA IDD8 10 10 10 11 11 11 mA - 55 - NOTE Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 48 ] IPP Specification 2Gx4 (K4A8G0485WB) DDR4-2133 Symbol DDR4-2400 1Gx8 (K4A8G085WB) DDR4-2666 DDR4-2133 DDR4-2400 DDR4-2666 15-15-15 17-17-17 19-19-19 15-15-15 17-17-17 19-19-19 VPP 2.5V VPP 2.5V VPP 2.5V VPP 2.5V VPP 2.5V VPP 2.5V Unit IPP Max. IPP Max. IPP Max. IPP Max. IPP Max. IPP Max. IPP0 4 4 4 4 4 4 mA IPP1 4 4 4 4 4 4 mA IPP2N 3 3 3 3 3 3 mA IPP2P 3 3 3 3 3 3 mA IPP3N 3 3 3 3 3 3 mA IPP3P 3 3 3 3 3 3 mA IPP4R 3 3 3 3 3 3 mA IPP4W 3 3 3 3 3 3 mA IPP5B 18 18 18 18 18 18 mA IPP5F2 15 15 15 15 15 15 mA IPP5F4 14 14 14 14 14 14 mA IPP6N 4 4 4 4 4 4 mA IPP6E 5 5 5 5 5 6 mA IPP7 8 8.5 9 8 9 9 mA IPP8 3 3 3 3 3 3 mA NOTE [ Table 49 ] IDD6 Specification Symbol Temperature Range Value Value 2Gx4 (K4A8G045WB) 1Gx8 (K4A8G085WB) DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2133 DDR4-2400 DDR4-2666 15-15-15 17-17-17 19-19-19 15-15-15 1.2V 17-17-17 Unit NOTE 19-19-19 1.2V IDD6N 0 - 85 oC 22 22 22 23 23 24 mA 3,4 IDD6E oC 33 33 33 34 34 36 mA 4,5 0 - 95 NOTE : 1. Some IDD currents are higher for x16 organization due to larger page-size architecture. 2. Max. values for IDD currents considering worst case conditions of process, temperature and voltage. 3. Applicable for MR2 settings A6=0 and A7=0. 4. Include a max value for IDD6. 5. Applicable for MR2 settings A6=0 and A7=1. IDD6E is only specified for devices which support the Extended Temperature Range feature. - 56 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 13. Input/Output Capacitance [ Table 50 ] Silicon Pad I/O Capacitance Symbol Parameter CIO DDR4-1600/1866/2133 DDR4-2400/2666 Unit NOTE 1.15 pF 1,2,3 -0.1 0.1 pF 1,2,3,11 0.05 - 0.05 pF 1,2,3,5 0.2 0.8 0.2 0.7 pF 1,3 Input capacitance delta CK_t and CK_c - 0.05 - 0.05 pF 1,3,4 Input capacitance(CTRL, ADD, CMD pins only) 0.2 0.8 0.2 0.7 pF 1,3,6 min max min max Input/output capacitance 0.55 1.4 0.55 CDIO Input/output capacitance delta -0.1 0.1 CDDQS Input/output capacitance delta DQS_t and DQS_c - CCK Input capacitance, CK_t and CK_c CDCK CI CDI_ CTRL Input capacitance delta(All CTRL pins only) -0.1 0.1 -0.1 0.1 pF 1,3,7,8 CDI_ ADD_CMD Input capacitance delta(All ADD/CMD pins only) -0.1 0.1 -0.1 0.1 pF 1,2,9,10 CALERT Input/output capacitance of ALERT 0.5 1.5 0.5 1.5 pF 1,3 CZQ Input/output capacitance of ZQ - 2.3 - 2.3 pF 1,3,12 CTEN Input capacitance of TEN 0.2 2.3 0.2 2.3 pF 1,3,13 NOTE: 1. This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is validated by de-embedding the package L & C parasitic. The capacitance is measured with VDD, VDDQ, VSS, VSSQ applied with all other signal pins floating. Measurement procedure tbd. 2. DQ, DM_n, DQS_T, DQS_C, TDQS_T, TDQS_C. Although the DM, TDQS_T and TDQS_C pins have different functions, the loading matches DQ and DQS 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value CK_T-CK_C 5. Absolute value of CIO(DQS_T)-CIO(DQS_C) 6. CI applies to ODT, CS_n, CKE, A0-A15, BA0-BA1, BG0-BG1, RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR. 7. CDI CTRL applies to ODT, CS_n and CKE 8. CDI_CTRL = CI(CTRL)-0.5*(CI(CLK_T)+CI(CLK_C)) 9. CDI_ADD_ CMD applies to, A0-A15, BA0-BA1, BG0-BG1,RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR. 10. CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CLK_T)+CI(CLK_C)) 11. CDIO = CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_C)) 12. Maximum external load capacitance on ZQ pin: tbd pF. 13.TEN pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. In this case CTEN might not be valid and system shall verify TEN signal with Vendor specific information. - 57 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 51 ] DRAM Package Electrical Specifications (x4/x8) Symbol Parameter ZIO DDR4-1600/1866/2133/2400 DDR4-2666 Unit NOTE 85 W 1,2,4,5,10,11 14 42 ps 1,3,4,5,11 3.3 - 3.3 nH 11,12 0.78 - 0.78 pF 11,13 min max min max Input/output Zpkg 45 85 45 TdIO Input/output Pkg Delay 14 42 Lio Input/Output Lpkg - Cio Input/Output Cpkg - ZIO DQS DQS_t, DQS_c Zpkg 45 85 45 85 W 1,2,5,10,11 TdIO DQS DQS_t, DQS_c Pkg Delay 14 42 14 42 ps 1,3,5,10,11 Lio DQS DQS Lpkg - 3.3 - 3.3 nH 11,12 Cio DQS DQS Cpkg - 0.78 - 0.78 pF 11,13 DZDIO DQS Delta Zpkg DQS_t, DQS_c - 10 - 10 W 1,2,5,7,10 DTdDIO DQS Delta Delay DQS_t, DQS_c - 5 - 5 ps 1,3,5,7,10 90 50 90 W 1,2,5,9,10,11 ZI CTRL Input- CTRL pins Zpkg 50 TdI_ CTRL Input- CTRL pins Pkg Delay 14 42 14 42 ps 1,3,5,9,10,11 Li CTRL Input CTRL Lpkg - 3.4 - 3.4 nH 11,12 Ci CTRL Input CTRL Cpkg - 0.7 - 0.7 pF 11,13 ZIADD CMD Input- CMD ADD pins Zpkg 50 90 50 90 W 1,2,5,8,10,11 TdIADD_ CMD Input- CMD ADD pins Pkg Delay 14 45 14 45 ps 1,3,5,8,10,11 Li ADD CMD Input CMD ADD Lpkg - 3.6 - 3.6 nH 11,12 Ci ADD CMD Input CMD ADD Cpkg - 0.74 - 0.74 pF 11,13 ZCK CLK_t & CLK_c Zpkg 50 90 50 90 W 1,2,5,10,11 TdCK CLK_t & CLK_c Pkg Delay 14 42 14 42 ps 1,3,5,10,11 Li CLK Input CLK Lpkg - 3.4 - 3.4 nH 11,12 Ci CLK Input CLK Cpkg - 0.7 - 0.7 pF 11,13 DZDCK Delta Zpkg CLK_t & CLK_c - 10 - 10 W 1,2,5,6,10 DTdCK Delta Delay CLK_t & CLK_c - 5 - 5 ps 1,3,5,6,10 ZOZQ 100 - 100 W 1,2,5,10,11 ZQ Zpkg - TdO ZQ ZQ Delay 20 90 20 90 ps 1,3,5,10,11 ZO ALERT ALERT Zpkg 40 100 40 100 W 1,2,5,10,11 TdO ALERT ALERT Delay 20 55 20 55 ps 1,3,5,10,11 NOTE : 1. This parameter is not subject to production test. It is verified by design and characterization. The package parasitic( L & C) are validated using package only samples. The capacitance is measured with VDD, VDDQ, VSS, VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS and VSSQ shorted and all other signal pins shorted at the die side(not pin). Measurement procedure tbd 2. Package only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg(total per pin) = GGGGLpkg/Cpkg 3. Package only delay(Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg(total per pin) = GGLpkgCpkg 4. Z & Td IO applies to DQ, DM, TDQS_T and TDQS_C 5. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 6. Absolute value of ZCK_t-ZCK_c for impedance(Z) or absolute value of TdCK_t-TdCK_c for delay(Td). 7. Absolute value of ZIO(DQS_t)-ZIO(DQS_c) for impedance(Z) or absolute value of TdIO(DQS_t)-TdIO(DQS_c) for delay(Td) 8. ZI & Td ADD CMD applies to A0-A13,A17, ACT_n, BA0-BA1, BG0-BG1, RAS_n/16, CAS_n/A15, WE_n/A14 and PAR. 9. ZI & Td CTRL applies to ODT, CS_n and CKE 10. This table applies to monolithic X4 and X8 devices. 11. Package implementations shall meet spec if the Zpkg and Pkg Delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown. 12. It is assumed that Lpkg can be approximated as Lpkg = Zo*Td. 13. It is assumed that Cpkg can be approximated as Cpkg = Td/Zo. - 58 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 14. Electrical Characteristics & AC Timing 14.1 Reference Load for AC Timing and Output Slew Rate Figure 23 represents the effective reference load of 50 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ 50 Ohm DUT CK_t, CK_c DQ DQS_t DQS_c VTT = VDDQ Timing Reference Point Timing Reference Point Figure 23. Reference Load for AC Timing and Output Slew Rate 14.2 tREFI Average periodic Refresh interval (tREFI) of DDR4 SDRAM is defined as shown in the table. [ Table 52 ] tREFI by Device Density Parameter All Bank Refresh to active/refresh cmd time Average periodic refresh interval tREFI Symbol 2Gb 4Gb 8Gb 16Gb tRFC Units NOTE 160 260 350 550 ns 0CTCASE 85C 7.8 7.8 7.8 7.8 s -40CTCASE 85C 7.8 7.8 7.8 7.8 s 2 85CTCASE 95C 3.9 3.9 3.9 3.9 s 1 NOTE : 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR4 SDRAM devices support the following options or requirements referred to in this material. 2. Supported only for Industrial Temperature - 59 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 14.3 Clock Specification The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR4 SDRAM device. 14.3.1 Definition for tCK(abs) tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject t o production test. 14.3.2 Definition for tCK(avg) tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge. N tCK avg = tCK abs j N j=1 N = 200 14.3.3 Definition for tCH(avg) and tCL(avg) tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses. N tCH avg = tCHj N tCK avg j=1 N = 200 tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses. N tCL avg = tCLj N tCK avg j=1 N = 200 14.3.4 Definition for tERR(nper) tERR is defined as the cumulative error across n consecutive cycles of n x tCK(avg). tERR is not subject to production test. - 60 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 14.4 Timing Parameters by Speed Grade [ Table 53 ] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666 Speed DDR4-1600 Parameter Symbol Minimum Clock Cycle Time (DLL off mode) tCK (DLL_OFF) MIN DDR4-1866 MAX MIN DDR4-2133 MAX DDR4-2400 DDR4-2666 MIN MAX MIN MAX MIN MAX Units NOTE ns 35,36 Clock Timing 8 20 8 20 8 20 8 20 8 20 Average Clock Period tCK(avg) 1.25 <1.5 1.071 <1.25 0.937 <1.071 0.833 <0.937 0.750 <0.833 ns Average high pulse width tCH(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg) Average low pulse width tCL(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg) tCK(avg)min + tJIT(per)min_tot tCK(avg)m ax + tJIT(per)max_tot Absolute Clock Period tCK(abs) Absolute clock HIGH pulse width tCH(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) Absolute clock LOW pulse width tCL(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) 24 Clock Period Jitter- total JIT(per)_tot -63 63 -54 54 -47 47 -42 42 -38 38 ps 23 26 tCK(avg) Clock Period Jitter- deterministic JIT(per)_dj -31 31 -27 27 -23 23 -21 21 -19 19 ps Clock Period Jitter during DLL locking period tJIT(per, lck) -50 50 -43 43 -38 38 -33 33 -30 30 ps Cycle to Cycle Period Jitter tJIT(cc) - 125 - 107 - 94 - 83 - 75 ps Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) - 100 - 86 - 75 - 67 - 60 ps Duty Cycle Jitter tJIT(duty) TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD ps Cumulative error across 2 cycles tERR(2per) -92 92 -79 79 -69 69 -61 61 -55 55 ps Cumulative error across 3 cycles tERR(3per) -109 109 -94 94 -82 82 -73 73 -66 66 ps Cumulative error across 4 cycles tERR(4per) -121 121 -104 104 -91 91 -81 81 -73 73 ps Cumulative error across 5 cycles tERR(5per) -131 131 -112 112 -98 98 -87 87 -78 78 ps Cumulative error across 6 cycles tERR(6per) -139 139 -119 119 -104 104 -92 92 -83 83 ps Cumulative error across 7 cycles tERR(7per) -145 145 -124 124 -109 109 -97 97 -87 87 ps Cumulative error across 8 cycles tERR(8per) -151 151 -129 129 -113 113 -101 101 -91 91 ps 23 Cumulative error across 9 cycles tERR(9per) -156 156 -134 134 -117 117 -104 104 -94 94 ps Cumulative error across 10 cycles tERR(10per) -160 160 -137 137 -120 120 -107 107 -96 96 ps Cumulative error across 11 cycles tERR(11per) -164 164 -141 141 -123 123 -110 110 -99 99 ps Cumulative error across 12 cycles tERR(12per) -168 168 -144 144 -126 126 -112 112 -101 101 ps Cumulative error across 13 cycles tERR(13per) -172 172 -147 147 -129 129 -114 114 -103 103 ps Cumulative error across 14 cycles tERR(14per) -175 175 -150 150 -131 131 -116 116 -104 104 ps Cumulative error across 15 cycles tERR(15per) -178 178 -152 152 -133 133 -118 118 -106 106 ps Cumulative error across 16 cycles tERR(16per) -180 189 -155 155 -135 135 -120 120 -108 108 ps Cumulative error across 17 cycles tERR(17per) -183 183 -157 157 -137 137 -122 122 -110 110 ps Cumulative error across 18 cycles tERR(18per) -185 185 -159 159 -139 139 -124 124 -112 112 ps Cumulative error across n = 13, 14 . . . 49, 50 cycles tERR(nper) Command and Address setup time to CK_t,CK_c referenced to Vih(ac) / Vil(ac) levels tIS(base) 115 - 100 - 80 - 62 - TBD - ps Command and Address setup time to CK_t,CK_c referenced to Vref levels tIS(Vref) 215 - 200 - 180 - 162 - TBD - ps Command and Address hold time to CK_t,CK_c referenced to Vih(dc) / Vil(dc) levels tIH(base) 140 - 125 - 105 - 87 - TBD - ps Command and Address hold time to CK_t,CK_c referenced to Vref levels tIH(Vref) 215 - 200 - 180 - 162 - TBD - ps Control and Address Input pulse width for each input tIPW 600 - 525 - 460 - 410 - 385 - ps CAS_n to CAS_n command delay for same bank group tCCD_L max(5 nCK, 6.250 ns) - max(5 nCK, 5.355 ns) - max(5 nCK, 5.625 ns) - max(5 nCK, 5 ns) - max(5 nCK, 5 ns) - nCK 34 CAS_n to CAS_n command delay for different bank group tCCD_S 4 - 4 - 4 - 4 - 4 - nCK 34 ACTIVATE to ACTIVATE Command delay to different bank group for 2KB page size tRRD_S(2K) Max(4nC K,6ns) - Max(4nC K,5.3ns) - Max(4nC K,5.3ns) - Max(4nC K,5.3ns) - Max(4nC K,5.3ns) - nCK 34 ACTIVATE to ACTIVATE Command delay to different bank group for 2KB page size tRRD_S(1K) Max(4nC K,5ns) Max(4nC K,4.2ns) Max(4nC K,3.7ns) Max(4nC K,3.3ns) - Max(4nC K,3.3ns) - nCK 34 ACTIVATE to ACTIVATE Command delay to different bank group for 1/2KB page size tRRD_S(1/2K) Max(4nC K,5ns) Max(4nC K,4.2ns) Max(4nC K,3.7ns) Max(4nC K,3.3ns) - Max(4nC K,3.3ns) - nCK 34 t ERR(nper)min t = ((1 + 0.68ln(n)) * tJIT(per)_total min) ERR(nper)max = ((1 + 0.68ln(n)) * tJIT(per)_total max) ps Command and Address Timing - 61 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB Speed DDR4-1600 DDR4-1866 Parameter Symbol MIN MAX MIN ACTIVATE to ACTIVATE Command delay to same bank group for 2KB page size tRRD_L(2K) Max(4nC K,7.5ns) Max(4nC K,6.4ns) ACTIVATE to ACTIVATE Command delay to same bank group for 1KB page size tRRD_L(1K) Max(4nC K,6ns) ACTIVATE to ACTIVATE Command delay to same bank group for 1/2KB page size tRRD_L(1/2K) Four activate window for 2KB page size DDR4 SDRAM DDR4-2133 DDR4-2400 DDR4-2666 Units NOTE - nCK 34 Max(4nC K,4.9ns) - nCK 34 - Max(4nC K,4.9ns) - nCK 34 Max(28nC K,30ns) - Max(28n CK,30ns) - ns 34 Max(20nC K,21ns) Max(20nC K,21ns) - Max(20n CK,21ns) - ns 34 Max(16nC K,15ns) Max(16nC K,13ns) - Max(16n CK,13ns) - ns 34 - max (2nCK, 2.5ns) - max (2nCK, 2.5ns) - ns 1,2,e,3 4 max(4nC K,7.5ns) - max (4nCK,7.5 ns) - max (4nCK,7. 5ns) - ns 1,34 - max(4nC K,7.5ns) - max (4nCK,7.5 ns) - max (4nCK,7. 5ns) - ns 34 - 15 - 15 - 15 - ns 1 - ns 1, 28 MAX MIN MAX MIN MAX MIN MAX Max(4nC K,6.4ns) Max(4nC K,6.4ns) - Max(4nC K,6.4ns) Max(4nC K,5.3ns) Max(4nC K,5.3ns) Max(4nC K,4.9ns) - Max(4nC K,6ns) Max(4nC K,5.3ns) Max(4nC K,5.3ns) Max(4nC K,4.9ns) tFAW_2K Max(28nC K,35ns) Max(28nC K,30ns) Max(28nC K,30ns) Four activate window for 1KB page size tFAW_1K Max(20nC K,25ns) Max(20nC K,23ns) Four activate window for 1/2KB page size tFAW_1/2K Max(16nC K,20ns) Max(16nC K,17ns) Delay from start of internal write transaction to internal read command for different bank group tWTR_S max(2nC K,2.5ns) - max(2nC K,2.5ns) - max(2nC K,2.5ns) Delay from start of internal write transaction to internal read command for same bank group tWTR_L max(4nC K,7.5ns) - max(4nC K,7.5ns) - Internal READ Command to PRECHARGE Command delay tRTP max(4nC K,7.5ns) - max(4nC K,7.5ns) WRITE recovery time tWR 15 - 15 Write recovery time when CRC and DM are enabled tWR_CRC _DM tWR+max (4nCK,3.7 5ns) - tWR+max (5nCK,3.7 5ns) - tWR+max (5nCK,3.7 5ns) - tWR+max (5nCK,3.7 5ns) - tWR+ma x (5nCK,3. 75ns) delay from start of internal write transaction to internal read command for different bank group with both CRC and DM enabled tWTR_S_C RC_DM tWTR_S+ max (4nCK,3.7 5ns) - tWTR_S+ max (5nCK,3.7 5ns) - tWTR_S+ max (5nCK,3.7 5ns) - tWTR_S+ max (5nCK,3.7 5ns) - tWTR_S +max (5nCK,3. 75ns) - ns 2, 29, 34 delay from start of internal write transaction to internal read command for same bank group with both CRC and DM enabled tWTR_L_C RC_DM tWTR_L+ max (4nCK,3.7 5ns) - tWTR_L+ max (5nCK,3.7 5ns) - tWTR_L+ max (5nCK,3.7 5ns) - tWTR_L+ max (5nCK,3.7 5ns) - tWTR_L+ max (5nCK,3. 75ns) - ns 3,30, 34 DLL locking time tDLLK 597 - 597 - 768 - 768 - 854 - nCK Mode Register Set command cycle time tMRD 8 - 8 - 8 - 8 - 8 - nCK Mode Register Set command update delay tMOD max(24nC K,15ns) - max(24nC K,15ns) - max(24nC K,15ns) - max(24nC K,15ns) - max(24n CK,15ns) - nCK Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - 1 - 1 - nCK - tMOD (min) + AL + PL - nCK tMOD (min) + AL + PL tMOD (min) + AL + PL - - tMOD (min) + AL + PL - tMOD (min) + AL + PL 33 Multi Purpose Register Write Recovery Time tWR_MPR Auto precharge write recovery + precharge time tDAL(min) DQ0 or DQL0 driven to 0 set-up time to first DQS rising edge tPDA_S 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 45,47 DQ0 or DQL0 driven to 0 hold time from last DQS fall-ing edge tPDA_H 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 46,47 CS_n to Command Address Latency tCAL max(3 nCK, 3.748 ns) - max(3 nCK, 3.748 ns) - max(3 nCK, 3.748 ns) - 5 - 5 - nCK Mode Register Set command cycle time in CAL mode tMRD_tCAL tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL tMOD+ tCAL - tMOD+ tCAL - nCK Mode Register Set update delay in CAL mode tMOD_tCAL tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL tMOD+ tCAL - tMOD+ tCAL - nCK Programmed WR + roundup ( tRP / tCK(avg)) nCK CS_n to Command Address Latency DRAM Data Timing DQS_t,DQS_c to DQ skew, per group, per access tDQSQ - 0.16 - 0.16 - 0.16 - 0.16 - 0.18 tCK(avg)/ 2 13,18,3 9,49 DQ output hold time per group, per access from DQS_t,DQS_c tQH 0.76 - 0.76 - 0.76 - 0.74 - 0.74 - tCK(avg)/ 2 13,17,1 8,39,49 Data Valid Window per device per UI: (tQH tDQSQ) of each UI on a given DRAM tDVWd 0.63 - 0.63 - 0.64 - 0.64 - TBD - UI 17,18,3 9,49 Data Valid Window , per pin per UI : (tQH tDQSQ) each UI on a pin of a given DRAM tDVWp 0.66 - 0.66 - 0.69 - 0.72 - 0.72 - UI 17,18,3 9,49 DQ low impedance time from CK_t, CK_c tLZ(DQ) -450 225 -390 195 -390 180 -330 175 -310 170 ps 39 DQ high impedance time from CK_t, CK_c tHZ(DQ) - 225 - 195 - 180 - 175 - 170 ps 39 0.9 NOTE44 0.9 NOTE 44 0.9 NOTE 44 tCK 40 Data Strobe Timing DQS_t, DQS_c differential READ Pre-amble (1 clock preamble) tRPRE 0.9 NOTE44 0.9 NOTE44 - 62 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB Speed DDR4-1600 DDR4-1866 DDR4 SDRAM DDR4-2133 DDR4-2400 DDR4-2666 Units NOTE NOTE 44 tCK 41 0.33 NOTE 45 tCK - 0.4 - tCK 21 - 0.4 - tCK 20 0.9 - 0.9 - tCK 42 1.8 - 1.8 - tCK 43 - 0.33 - 0.33 - tCK -360 180 -330 175 -310 170 ps 195 - 180 - 175 - 170 ps 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 tCK 42 tDQSS2 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD tCK 43 DQS_t, DQS_c falling edge setup time to CK_t, CK_c rising edge tDSS 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK DQS_t, DQS_c falling edge hold time from CK_t, CK_c rising edge tDSH 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK DQS_t, DQS_c rising edge output timing locatino from rising CK_t, CK_c with DLL On mode tDQSCK (DLL On) -225 225 -195 195 -180 180 -175 175 -170 170 ps 37,38,3 9 DQS_t, DQS_c rising edge output variance window per DRAM tDQSCKI (DLL On) 270 ps 37,38,3 9 Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX DQS_t, DQS_c differential READ Pre-amble (2 clock preamble) tRPRE2 NA NA NA NA NA NA 1.8 NOTE 44 1.8 DQS_t, DQS_c differential READ Postamble tRPST 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 DQS_t,DQS_c differential output high time tQSH 0.4 - 0.4 - 0.4 - 0.4 DQS_t,DQS_c differential output low time tQSL 0.4 - 0.4 - 0.4 - 0.4 DQS_t, DQS_c differential WRITE Pre-amble (1 clock preamble) tWPRE 0.9 - 0.9 - 0.9 - DQS_t, DQS_c differential WRITE Pre-amble (2 clock preamble) tWPRE2 NA DQS_t, DQS_c differential WRITE Postamble tWPST 0.33 - 0.33 - 0.33 DQS_t and DQS_c low-impedance time (Referenced from RL-1) tLZ(DQS) -450 225 -390 195 DQS_t and DQS_c high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 225 - DQS_t, DQS_c differential input low pulse width tDQSL 0.46 0.54 DQS_t, DQS_c differential input high pulse width tDQSH 0.46 DQS_t, DQS_c rising edge to CK_t, CK_c rising edge (1 clock preamble) tDQSS DQS_t, DQS_c rising edge to CK_t, CK_c rising edge (2 clock preamble) NA 370 NA 330 310 290 MPSM Timing Command path disable delay upon MPSM entry tMPED tMOD(min )+ tCPDED(min) Valid clock requirement after MPSM entry tCKMPE tMOD(min )+ tCPDED(min) - tMOD(min ) + tCPDED(min) - tMOD(min )+ tCPDED(min) - tMOD(min )+ tCPDED(min) - TBD - Valid clock requirement before MPSM exit tCKMPX tCKSRX( min) - tCKSRX( min) - tCKSRX( min) - tCKSRX( min) - TBD - Exit MPSM to commands not requiring a locked DLL tXMP tXS(min) - tXS(min) - tXS(min) - tXS(min) - TBD - Exit MPSM to commands requiring a locked DLL tXMPDLL tXMP(min )+ tXSDLL(min) - tXMP(min )+ tXSDLL(min) - tXMP(min )+ tXSDLL(min) - tXMP(min )+ tXSDLL(min) - TBD - CS setup time to CKE tMPX_S tIS(min) + tIHL(min) - tIS(min) + tIHL(min) - tIS(min) + tIHL(min) - tIS(min) + tIHL(min) - TBD - Power-up and RESET calibration time tZQinit 1024 - 1024 - 1024 - 1024 - 1024 - nCK Normal operation Full calibration time tZQoper 512 - 512 - 512 - 512 - 512 - nCK Normal operation Short calibration time tZQCS 128 - 128 - 128 - 128 - 128 - nCK - tMOD(min )+ tCPDED(min) - tMOD(min )+ tCPDED(min) - tMOD(min )+ tCPDED(min) - TBD - Calibration Timing Reset/Self Refresh Timing Exit Reset from CKE HIGH to a valid command tXPR max (5nCK,tR FC(min)+ 10ns) - max (5nCK,tR FC(min)+ 10ns) - max (5nCK,tR FC(min)+ 10ns) - max (5nCK,tR FC(min)+ 10ns) - max (5nCK,tR FC(min)+ 10ns) - nCK Exit Self Refresh to commands not requiring a locked DLL tXS tRFC(min) +10ns - tRFC(min) +10ns - tRFC(min) +10ns - tRFC(min) +10ns - tRFC(min )+10ns - nCK SRX to commands not requiring a locked DLL in Self Refresh ABORT tXS_ABORT( min) tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - nCK Exit Self Refresh to ZQCL,ZQCS and MRS (CL,CWL,WR,RTP and Gear Down) tXS_FAST (min) tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - tRFC4(mi n)+10ns - nCK Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(mi n) - tDLLK(mi n) - tDLLK(mi n) - tDLLK(mi n) - tDLLK(mi n) - nCK Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) +1nCK - tCKE(min) +1nCK - tCKE(min) +1nCK - tCKE(min) +1nCK - tCKE(min )+1nCK - nCK - 63 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB Speed DDR4-1600 DDR4-1866 DDR4 SDRAM DDR4-2133 DDR4-2400 DDR4-2666 Units Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX Minimum CKE low width for Self refresh entry to exit timing with CA Parity enabled tCKESR_ PAR tCKE(min) + 1nCK+PL - tCKE(min) + 1nCK+PL - tCKE(min) + 1nCK+PL - tCKE(min) + 1nCK+PL - tCKE(min )+ 1nCK+PL - nCK Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE) tCKSRE max(5nC K,10ns) - max(5nC K,10ns) - max(5nC K,10ns) - max (5nCK,10 ns) - max (5nCK,10 ns) - nCK Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down when CA Parity is enabled tCKSRE_PAR max (5nCK,10 ns)+PL - max (5nCK,10 ns)+PL - max (5nCK,10 ns)+PL - max (5nCK,10 ns)+PL - max (5nCK,10 ns)+PL - nCK Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit tCKSRX max(5nC K,10ns) - max(5nC K,10ns) - max(5nC K,10ns) - max (5nCK,10 ns) - max (5nCK,10 ns) - nCK NOTE Power Down Timing Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL tXP max (4nCK,6n s) - max (4nCK,6n s) - max (4nCK,6n s) - max (4nCK,6n s) - max (4nCK,6n s) - nCK CKE minimum pulse width tCKE max (3nCK, 5ns) - max (3nCK, 5ns) - max (3nCK, 5ns) - max (3nCK, 5ns) - max (3nCK, 5ns) - nCK Command pass disable delay tCPDED 4 - 4 - 4 - 4 - 4 - nCK 9*tREFI nCK 6 31,32 Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min ) Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 2 - 2 - 2 - nCK 7 Timing of PRE or PREA command to Power Down entry tPRPDEN 1 - 1 - 2 - 2 - 2 - nCK 7 Timing of RD/RDA command to Power Down entry tRDPDEN RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - nCK Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) tWRPDEN WL+4+(t WR/ tCK(avg)) - WL+4+(t WR/ tCK(avg)) - WL+4+(t WR/ tCK(avg)) - WL+4+(t WR/ tCK(avg)) - WL+4+(t WR/ tCK(avg)) - nCK 4 Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) tWRAPDEN WL+4+W R+1 - WL+4+W R+1 - WL+4+W R+1 - WL+4+W R+1 - WL+4+W R+1 - nCK 5 Timing of WR command to Power Down entry (BC4MRS) tWRPBC4DEN WL+2+(t WR/ tCK(avg)) - WL+2+(t WR/ tCK(avg)) - WL+2+(t WR/ tCK(avg)) - WL+2+(t WR/ tCK(avg)) - WL+2+(t WR/ tCK(avg)) - nCK 4 Timing of WRA command to Power Down entry (BC4MRS) tWRAPBC4DEN WL+2+W R+1 - WL+2+W R+1 - WL+2+W R+1 - WL+2+W R+1 - WL+2+W R+1 - nCK 5 Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 2 - 2 - 2 - nCK 7 Timing of MRS command to Power Down entry tMRSPDEN tMOD(min ) - tMOD(min ) - tMOD(min ) - tMOD(min ) - tMOD(mi n) - nCK Mode Register Set command cycle time in PDA mode tMRD_PDA max(16nC K,10ns) - max(16nC K,10ns) max(16nC K,10ns) - max(16nC K,10ns) - max(16n CK,10ns) - nCK Mode Register Set command update delay in PDA mode tMOD_PDA Asynchronous RTT turn-on delay (PowerDown with DLL frozen) tAONAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns Asynchronous RTT turn-off delay (PowerDown with DLL frozen) tAOFAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) PDA Timing tMOD - tMOD tMOD tMOD tMOD nCK ODT Timing Write Leveling Timing First DQS_t/DQS_n rising edge after write leveling mode is programmed tWLMRD 40 - 40 - 40 - 40 - 40 - nCK 12 DQS_t/DQS_n delay after write leveling mode is programmed tWLDQSEN 25 - 25 - 25 - 25 - 25 - nCK 12 Write leveling setup time from rising CK_t, CK_c crossing to rising DQS_t/DQS_n crossing tWLS 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - tCK(avg) Write leveling hold time from rising DQS_t/ DQS_n crossing to rising CK_t, CK_ crossing tWLH 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - tCK(avg) Write leveling output delay tWLO 0 9.5 0 9.5 0 9.5 0 9.5 0 9.5 ns Write leveling output error tWLOE 0 2 0 2 0 2 0 2 0 2 ns CA Parity Timing Commands not guaranteed to be executed during this time tPAR_UNKNOWN - PL - PL - PL - PL - PL nCK Delay from errant command to ALERT_n assertion tPAR_ALERT _ON - PL+6ns - PL+6ns - PL+6ns - PL+6ns - PL+6ns nCK - 64 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB Speed DDR4-1600 DDR4-1866 DDR4 SDRAM DDR4-2133 DDR4-2400 DDR4-2666 Units Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX Pulse width of ALERT_n signal when asserted tPAR_ALERT _PW 48 96 56 112 64 128 72 144 80 160 nCK Time from when Alert is asserted till controller must start providing DES commands in Persistent CA parity mode tPAR_ALERT _RSP - 43 - 50 - 57 - 64 71 nCK Parity Latency PL 4 4 4 5 5 NOTE nCK CRC Error Reporting CRC error to ALERT_n latency tCRC_ALERT 3 13 3 13 3 13 3 13 3 13 ns CRC ALERT_n pulse width CRC_ALERT_ PW 6 10 6 10 6 10 6 10 6 10 nCK Geardown timing Exit RESET from CKE HIGH to a valid MRS geardown (T2/Reset) tXPR_GEAR - - - - - - - - TBD CKE High Assert to Gear Down Enable time(T2/CKE) tXS_GEAR - - - - - - - - TBD MRS command to Sync pulse time(T3) tSYNC_GEA R - - - - - - - - Sync pulse to First valid command(T4) tCMD_GEAR - - - - - - - - Geardown setup time tGEAR_setup - - - - - - - - 2 - nCK Geardown hold time tGEAR_hold - - - - - - - - 2 - nCK TBD - 27 TBD 27 tREFI tRFC1 (min) tRFC2 (min) tRFC4 (min) 2Gb 160 - 160 - 160 - 160 - 160 - ns 34 4Gb 260 - 260 - 260 - 260 - 260 - ns 34 8Gb 350 - 350 - 350 - 350 - 350 - ns 34 16Gb 550 - 550 - 550 - 550 - 550 - ns 34 2Gb 110 - 110 - 110 - 110 - 110 - ns 34 4Gb 160 - 160 - 160 - 160 - 160 - ns 34 8Gb 260 - 260 - 260 - 260 - 260 - ns 34 16Gb 350 - 350 - 350 - 350 - 350 - ns 34 2Gb 90 - 90 - 90 - 90 - 90 - ns 34 4Gb 110 - 110 - 110 - 110 - 110 - ns 34 8Gb 160 - 160 - 160 - 160 - 160 - ns 34 16Gb 260 - 260 - 260 - 260 - 260 - ns 34 - 65 - K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM NOTE : 1. Start of internal write transaction is defined as follows: For BL8 (Fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL. For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL. 2. A separate timing parameter will cover the delay from write to read when CRC and DM are simultaneously enabled 3. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands. 4. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer. 5. WR in clock cycles as programmed in MR0. 6. tREFI depends on TOPER. 7. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations. 8. For these parameters, the DDR4 SDRAM device supports tnPARAM[nCK]=RU{tPARAM[ns]/tCK(avg)[ns]}, which is in clock cycles assuming all input clock jitter specifications are satisfied 9. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR. 10. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S. 11. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L. 12. The max values are system dependent. 13. DQ to DQS total timing per group where the total includes the sum of deterministic and random timing terms for a specified BER. BER spec and measurement method are tbd. 14. The deterministic component of the total timing. Measurement method tbd. 15. DQ to DQ static offset relative to strobe per group. Measurement method tbd. 16. This parameter will be characterized and guaranteed by design. 17U When the device is operated with the input clock jitter, this parameter needs to be derated by the actual tjit(per)_total of the input clock. (output deratings are relative to the SDRAM input clock). Example tbd. 18. DRAM DBI mode is off. 19. DRAM DBI mode is enabled. Applicable to x8 and x16 DRAM only. 20. tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge 21. tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge 22. There is no maximum cycle time limit besides the need to satisfy the refresh interval tREFI 23. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge 24. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge 25. Total jitter includes the sum of deterministic and random jitter terms for a specified BER. BER target and measurement method are tbd. 26. The deterministic jitter component out of the total jitter. This parameter is characterized and gauranteed by design. 27. This parameter has to be even number of clocks 28. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR. 29. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S. 30. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L. 31. After CKE is registered LOW, CKE signal level shall be maintained below VILDC for tCKE specification (Low pulse width). 32. After CKE is registered HIGH, CKE signal level shall be maintained above VIHDC for tCKE specification (HIGH pulse width). 33. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function. 34. Parameters apply from tCK(avg)min to tCK(avg) max at all standard JEDEC clock period values as stated in the Speed Bin Tables. 35. This parameter must keep consistency with Speed-Bin Tables. 36. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate. UI=tCK(avg).min/2 37. applied when DRAM is in DLL ON mode. 38. Assume no jitter on input clock signals to the DRAM 39. Value is only valid for RZQ/7 RONNOM = 34 ohms 40. 1tCK toggle mode with setting MR4:A11 to 0 41. 2tCK toggle mode with setting MR4:A11 to 1, which is valid for DDR4-2400/2666/3200 speed grade. 42. 1tCK mode with setting MR4:A12 to 0 43. 2tCK mode with setting MR4:A12 to 1, which is valid for DDR4-2400/2666/3200 speed grade. 44. The maximum read preamble is bounded by tLZ(DQS)min on the left side and tDQSCK(max) on the right side. 45. DQ falling signal middle-point of transferring from High to Low to first rising edge of DQS diff-signal cross-point 46. last falling edge of DQS diff-signal cross-point to DQ rising signal middle-point of transferring from Low to High 47. VrefDQ value must be set to either its midpoint or Vcent_DQ(midpoint) in order to capture DQ0 or DQL0 low level for entering PDA mode. 48. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. 49. Reference level of DQ output signal is specified with a midpoint as a widest part of Output signal eye which should be approximately 0.7 * VDDQ as a center level of the static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to VTT = VDDQ . 50. For MR7 commands, the minimum delay to a subsequent non-MRS command is 5nCK. . - 66 - K4A8G045WB K4A8G085WB datasheet Rev. 2.1 DDR4 SDRAM 14.5 Rounding Algorithms Software algorithms for calculation of timing parameters are subject to rounding errors from many sources. For example, a system may use a memory clock with a nominal frequency of 933.33... MHz, or a clock period of 1.0714... ns. Similarly, a system with a memory clock frequency of 1066.66... MHz yields mathematically a clock period of 0.9375... ns. In most cases, it is impossible to express all digits after the decimal point exactly, and rounding must be done because the DDR4 SDRAM specification establishes a minimum granularity for timing parameters of 1 ps. Rules for rounding must be defined to allow optimization of device performance without violating device parameters. These algorithms rely on results that are within correction factors on device testing and specification to avoid losing performance due to rounding errors. These rules are: *Clock periods such as tCKAVGmin are defined to 1 ps of accuracy; for example, 0.9375... ns is defined as 937 ps and 1.0714... ns is defined as 1071 ps. *Using real math, parameters like tAAmin, tRCDmin, etc. which are programmed in systems in numbers of clocks (nCK) but expressed in units of time (in ns) are divided by the clock period (in ns) yielding a unitless ratio, a correction factor of 2.5% is subtracted, then the result is set to the next higher integer number of clocks: nCK = ceiling [ (parameter_in_ns / application_tCK_in_ns) - 0.025 ] *Alternatively, programmers may prefer to use integer math instead of real math by expressing timing in ps, scaling the desired parameter value by 1000, dividing by the application clock period, adding an inverse correction factor of 97.4%, dividing the result by 1000, then truncating down to the next lower integer value: nCK = truncate [ {(parameter_in_ps x 1000) / (application_tCK_in_ps) + 974} / 1000 ] *Either algorithm yields identical results - 67 - Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM 14.6 The DQ Input Receiver Compliance Mask for Voltage and Timing The DQ input receiver compliance mask for voltage and timing is shown in the figure below. The receiver mask (Rx Mask) defines area the input signal must not encroach in order for the DRAM input receiver to be expected to be able to successfully capture a valid input signal with BER of 1e-16; any input signal encroaching within the Rx Mask is subject to being invalid data. The Rx Mask is the receiver property for each DQ input pin and it is not the valid data-eye. Figure 24. DQ Receiver(Rx) compliance mask DQx DQz DQy (Smallest Vref_DQ Level) Vcent_DQx (Largest Vref_DQ Level) Vcent_DQz Vcent_DQy Vcent_DQ(midpoint) Vref variation (Component) Figure 25. Vcent_DQ Variation to Vcent_DQ(midpoint) The Vref_DQ voltage is an internal reference voltage level that shall be set to the properly trained setting, which is generally Vcent_DQ(midpoint), in order to have valid Rx Mask values. Vcent_DQ is defined as the midpoint between the largest Vref_DQ voltage level and the smallest Vref_DQ voltage level across all DQ pins for a given DDR4 DRAM component Each DQ pin Vref level is defined by the center, i.e. widest opening, of the cumulative data input eye as depicted in Figure 25.This clarifies that any DDR4 DRAM component level variation must be accounted for within the DDR4 DRAM Rx mask.The component level Vref will be set by the system to account for Ron and ODT settings. - 68 - Rev. 2.1 datasheet DQS, DQs Data-in at DRAM Ball Rx Mask DDR4 SDRAM DQS, DQs Data-in at DRAM Ball Rx Mask - Alternative View DQS_t DQS_t DQS_c DQS_c DRAMa Rx Mask DQx-z 0.5xTdiVW 0.5xTdiVW VdiVW 0.5xTdiVW 0.5xTdiVW DRAMa TdiVW tDQS2DQ + 0.5 x TdiVW DRAMb Rx Mask VdiVW Rx Mask TdiVW DQy tDQ2DQ DQz VdiVW DRAMb tDQ2DQ Rx Mask Rx Mask DRAMb TdiVW DQz tDQ2DQ VdiVW DQy VdiVW tDQS2DQ DRAMb Rx Mask DQx-z TdiVW VdiVW K4A8G045WB K4A8G085WB tDQS2DQ + 0.5 x TdiVW tDQ2DQ Rx Mask VdiVW DQy TdiVW DQz tDQ2DQ DRAMc Rx Mask DRAMc VdiVW DQz Rx Mask DRAMc DQy Rx Mask TdiVW VdiVW DRAMc VdiVW tDQS2DQ tDQ2DQ NOTE : DQx represents an optimally centered mask. DQy represents earliest valid mask. DQz represents latest valid mask. . NOTE : DRAMa represents a DRAM without any DQS/DQ skews. DRAMb represents a DRAM with early skews (negative tDQS2DQ). DRAMc represents a DRAM with delayed skews (positive tDQS2DQ). NOTE : Figures show skew allowed between DRAM to DRAM and DQ to DQ for a DRAM. Signals assume data centered aligned at DRAM Latch. TdiPW is not shown; composite data-eyes shown would violate TdiPW. VCENT DQ(midpoint) is not shown but is assummed to be midpoint of VdiVW.. Figure 26. DQS to DQ and DQ to DQ Timings at DRAM Balls - 69 - datasheet K4A8G045WB K4A8G085WB Rev. 2.1 DDR4 SDRAM All of the timing terms in Figure 26 are measured at the VdIVW levels centered around Vcent_DQ(midpoint) and are referenced to the DQS_t/DQS_c center aligned to the DQ per pin. The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising edge are shown in Figure 27 below: A low to high transition tr1 is measured from 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) while tr2 is measured from the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min) above Vcent_DQ(midpoint). Rising edge slew rate equations: srr1 = VdIVW(max) / tr1 srr2 = (VIHL_AC(min) - VdIVW(max)) / (2*tr2) Rx Mask 0.5*VdiVW(max) Vcent_DQ(midpoint) 0.5*VdiVW(max) VdiVW(max) 0.5*VHL_AC(min) 0.5*VHL_AC(min) VHL_AC(min) tr2 tr1 Figure 27. Slew Rate Conditions For Rising Transition The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling edge are shown in Figure 28 B below: A high to low transition tf1 is measured from 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) while tf2 is measured from the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min) below Vcent_DQ(pin mid). tr1 Rx Mask 0.5*VdiVW(max) Vcent_DQ(midpoint) 0.5*VdiVW(max) tr2 Figure 28. Slew Rate Conditions For Falling Transition - 70 - VdiVW(max) 0.5*VHL_AC(min) 0.5*VHL_AC(min) VHL_AC(min) Falling edge slew rate equations: srf1 = VdIVW(max) / tf1 srf2 = (VIHL_AC(min) - VdIVW(max)) / (2*tf2) Rev. 2.1 datasheet K4A8G045WB K4A8G085WB DDR4 SDRAM [ Table 54 ] DRAM DQs In Receive Mode; * UI=tck(avg)min/2 Symbol Parameter 1600/1866/2133 min max 136 2400 2666 Unit NOTE min max min max - 130 - 120 mV 1,2,10 - 0.2 - 0.22 UI* 1,2,10 160 - 150 - mV 3,4,10 0.58 - UI* 5,10 -0.19 0.19 UI* 6, 10 tbd UI* 7 VdIVW Rx Mask voltage - pk-pk - TdIVW Rx timing window - VIHL_AC DQ AC input swing pk-pk 186 TdIPW DQ input pulse width 0.58 tDQS2DQ Rx Mask DQS to DQ offset -0.17 0.17 -0.17 0.17 tDQ2DQ Rx Mask DQ to DQ offset - tbd - tbd 1.0 9 1.0 9 1.0 tbd V/ns 8,10 - - 1.25 9 1 tbd V/ns 8,10 Input Slew Rate over VdIVW if tCK >= 0.935ns srr1, srf1 Input Slew Rate over VdIVW if 0.935ns > tCK >= 0.625ns 0.2 - 0.58 srr2 Rising Input Slew Rate over 1/2 VIHL_AC 0.2*srr1 9 0.2*srr1 9 0.2*srr1 tbd V/ns 9,10 srf2 Falling Input Slew Rate over 1/2 VIHL_AC 0.2*srf1 9 0.2*srf1 9 0.2*srr1 tbd V/ns 9,10 NOTE: 1. Data Rx mask voltage and timing total input valid window where VdIVW is centered around Vcent_DQ(midpoint) after VrefDQ training is completed. The data Rx mask is applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER = e-16 when the RxMask is not violated. The BER will be characterized and extrapolated if necessary using a dual dirac method from a higher BER(tbd). 2. Defined over the DQ internal Vref range 1. 3. See Overshoot and Undershoot Specification. 4. DQ input pulse signal swing into the receiver must meet or exceed VIHL AC(min). . VIHL_AC(min) is to be achieved on an UI basis when a rising and falling edge occur in the same UI, i.e. a valid TdiPW. 5. DQ minimum input pulse width defined at the Vcent_DQ(midpoint). 6. DQS to DQ offset is skew between DQS and DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls over process, voltage, and temperature. 7. DQ to DQ offset is skew between DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls for a given component over process, voltage, and temperature. 8. Input slew rate over VdIVW Mask centered at Vcent_DQ(midpoint). Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7 V/ns of each other. 9. Input slew rate between VdIVW Mask edge and VIHL_AC(min) points. 10. All Rx Mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated when satisfying TdiVW(min), VdiVW(max), and minimum slew rate limits, then either TdiVW(min) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated. - 71 - K4A8G045WB K4A8G085WB Rev. 2.1 datasheet DDR4 SDRAM 14.7 DDR4 Function Matrix DDR4 SDRAM has several features supported by ORG and also by Speed. The following Table is the summary of the features. [ Table 55 ] Function Matrix (By ORG. V:Supported, Blank:Not supported) Functions x4 x8 x16 Write Leveling V V V Temperature controlled Refresh V V V Low Power Auto Self Refresh V V V Fine Granularity Refresh V V V Multi Purpose Register V V V Data Mask V V Data Bus Inversion V V TDQS V ZQ calibration V V V DQ Vref Training V V V Per DRAM Addressability V V V Mode Register Readout V V V CAL V V V WRITE CRC V V V CA Parity V V V Control Gear Down Mode V V V Programmable Preamble V V V Maximum Power Down Mode V V Additive Latency V V 3DS V V V Boundary Scan Mode - 72 - NOTE K4A8G045WB K4A8G085WB Rev. 2.1 datasheet DDR4 SDRAM [ Table 56 ] Function Matrix (By Speed. V:Supported, Blank:Not supported) DLL Off mode Functions Write Leveling DLL On mode equal or slower than 250Mbps 1600/1866/2133 Mbps 2400Mbps 2666Mbps V V V V Temperature controlled Refresh V V V V Low Power Auto Self Refresh V V V V Fine Granularity Refresh V V V V Multi Purpose Register V V V V Data Mask V V V V Data Bus Inversion V V V V V V V TDQS ZQ calibration V V V V DQ Vref Training V V V V V V V Per DRAM Addressability V V V CAL V V V WRITE CRC V V V CA Parity V V V Mode Register Readout V V Control Gear Down Mode V V V V V Programmable Preamble ( = 2tCK) Maximum Power Down Mode Boundary Scan Mode V V V V 3DS V V V V - 73 - NOTE