- 1 -
K4A8G045WB
Rev. 2.1, Feb. 2017
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or other-
wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
© 2017 Samsung Electronics Co., Ltd.GG All rights reserved.
K4A8G085WB
8Gb B-die DDR4 SDRAM
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
datasheet
1.2V
- 2 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
Revision History
Revision No. History Draft Date Remark Editor
1.0 - First SPEC release Nov. 2014 - J.Y.Lee
1.01 - Corrected typo Dec. 2014 - J.Y.Lee
1.1 - Added IDD value [1Gx8] Jan. 2015 - J.Y.Lee
1.11 - Corrected typo Mar. 2015 - J.Y.Lee
1.2 - Added values on page 11 [Table 5] 27th Oct. 2015 - J.Y.Lee
1.3 - Added information about I-temp 3th Dec. 2015 - J.Y.Lee
1.4 - Change of IDD value on page 50 17th Dec. 2015 - J.Y.Lee
1.5 - Change of Package Pinout on page 5~6 30th Dec. 2015 - J.Y.Lee
1.6 - Addition of DDR4-2666 11th Jan. 2016 - J.Y.Lee
1.61 - Corrected typo 25th Mar. 2016 - J.Y.Lee
1.7 - Addition of IDD value (K4A8G085WB-BCTD) on page 53~54 3rd Jun. 2016 - J.Y.Lee
1.8 - Addition of DDR4-2666 (K4A4G085WB-BITD) 28th Jun. 2016 - J.Y.Lee
1.81 - Correction of typo on IDD specification 12th Aug. 2016 - J.Y.Lee
1.9 - Addition of IDD value (K4A8G045WB-BCTD) on page 53~54 22th Aug. 2016 - J.Y.Lee
2.0 - Update referring to JEDEC DDR4 datasheet rev.79-4B 15th Dec. 2016 - J.Y.Lee
- Correction of typo
2.1 - Addition of Key Feature
"Connectivity Test Mode (TEN) is Supported" on page 5 2nd Feb. 2017 - J.Y.Lee
- 3 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
Table Of Contents
8Gb B-die DDR4 SDRAM
1. Ordering Information .....................................................................................................................................................5
2. Key Features.................................................................................................................................................................5
3. Package Pinout/Mechanical Dimension & Addressing .................................................................................................6
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package ..........................................................................................6
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package ..........................................................................................7
3.3 FBGA Package Dimension (x4/x8).......................................................................................................................... 8
4. Input/Output Functional Description..............................................................................................................................9
5. DDR4 SDRAM Addressing ...........................................................................................................................................11
6. Absolute Maximum Ratings ..........................................................................................................................................12
6.1 Absolute Maximum DC Ratings...............................................................................................................................12
6.2 DRAM Component Operating Temperature Range ................................................................................................12
7. AC & DC Operating Conditions.....................................................................................................................................12
8. AC & DC Input Measurement Levels ............................................................................................................................13
8.1 AC & DC Logic Input Levels for Single-ended Signals............................................................................................ 13
8.2 AC and DC Input Measurement Levels: VREF Tolerances.....................................................................................13
8.3 AC & DC Logic Input Levels for Differential Signals............................................................................................... 14
8.3.1. Differential Signals Definition ...........................................................................................................................14
8.3.2. Differential Swing Requirement for Clock (CK_t - CK_c) ................................................................................. 14
8.3.3. Single-ended Requirements for Differential Signals ........................................................................................15
8.3.4. Address, Command and Control Overshoot and Undershoot Specifications...................................................16
8.3.5. Clock Overshoot and Undershoot Specifications............................................................................................. 17
8.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications .................................................................18
8.4 Slew Rate Definitions ..............................................................................................................................................19
8.4.1. Slew Rate Definitions for Differential Input Signals (CK) .................................................................................19
8.4.2. Slew Rate Definition for Single-ended Input Signals ( CMD/ADD )..................................................................20
8.5 Differential Input Cross Point Voltage......................................................................................................................21
8.6 CMOS Rail to Rail Input Levels ...............................................................................................................................22
8.6.1. CMOS Rail to Rail Input Levels for RESET_n .................................................................................................22
8.7 AC and DC Logic Input Levels for DQS Signals......................................................................................................23
8.7.1. Differential Signal Definition .............................................................................................................................23
8.7.2. Differential Swing Requirements for DQS (DQS_t - DQS_c)........................................................................... 23
8.7.3. Peak Voltage Calculation Method .................................................................................................................... 24
8.7.4. Differential Input Cross Point Voltage ..............................................................................................................25
8.7.5. Differential Input Slew Rate Definition..............................................................................................................26
9. AC and DC Output Measurement Levels......................................................................................................................27
9.1 Output Driver DC Electrical Characteristics.............................................................................................................27
9.1.1. Alert_n Output Drive Characteristic..................................................................................................................29
9.1.2. Output Driver Characteristic of Connectivity Test ( CT ) Mode ........................................................................ 29
9.2 Single-ended AC & DC Output Levels.....................................................................................................................30
9.3 Differential AC & DC Output Levels.........................................................................................................................30
9.4 Single-ended Output Slew Rate ..............................................................................................................................31
9.5 Differential Output Slew Rate ..................................................................................................................................32
9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode ..........................................................................33
9.7 Test Load for Connectivity Test Mode Timing .........................................................................................................33
10. Speed Bin ...................................................................................................................................................................34
10.1 Speed Bin Table Note ........................................................................................................................................... 39
11. IDD and IDDQ Specification Parameters and Test Conditions...................................................................................40
11.1 IDD, IPP and IDDQ Measurement Conditions....................................................................................................... 40
12. 8Gb DDR4 SDRAM B-die IDD Specification Table ....................................................................................................55
13. Input/Output Capacitance ...........................................................................................................................................57
14. Electrical Characteristics & AC Timing .......................................................................................................................59
14.1 Reference Load for AC Timing and Output Slew Rate.......................................................................................... 59
14.2 tREFI ..................................................................................................................................................................... 59
- 4 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
14.3 Clock Specification ................................................................................................................................................ 60
14.3.1. Definition for tCK(abs).................................................................................................................................... 60
14.3.2. Definition for tCK(avg).................................................................................................................................... 60
14.3.3. Definition for tCH(avg) and tCL(avg)............................................................................................................. 60
14.3.4. Definition for tERR(nper)................................................................................................................................ 60
14.4 Timing Parameters by Speed Grade ..................................................................................................................... 61
14.5 Rounding Algorithms ............................................................................................................................................ 67
14.6 The DQ Input Receiver Compliance Mask for Voltage and Timing .......................................................................68
14.7 DDR4 Function Matrix ........................................................................................................................................... 72
- 5 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
1. Ordering Information
[ Table 1 ] Samsung 8Gb DDR4 B-die Ordering Information Table
NOTE :
1. Speed bin is in order of CL-tRCD-tRP.
2. Backward compatible to lower frequency
3. 13th digit stands for below.
"C" : Commercial temp/Normal power
"I" : Industrial temp/Normal power
2. Key Features
[ Table 2 ] 8Gb DDR4 B-die Speed Bins
Organization DDR4-2133 (15-15-15) DDR4-2400 (17-17-17)2DDR4-2666 (19-19-19)2Package
2Gx4 K4A8G045WB-BCPB K4A8G045WB-BCRC K4A8G045WB-BCTD 78 FBGA
1Gx8 K4A8G085WB-BCPB K4A8G085WB-BCRC K4A8G085WB-BCTD 78 FBGA
1Gx8 K4A8G085WB-BIPB K4A8G085WB-BIRC K4A8G085WB-BITD 78 FBGA
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 Unit
11-11-11 13-13-13 15-15-15 17-17-17 19-19-19
tCK(min) 1.25 1.071 0.937 0.833 0.75 ns
CAS Latency 11 13 15 17 19 nCK
tRCD(min) 13.75 13.92 14.06 14.16 14.25 ns
tRP(min) 13.75 13.92 14.06 14.16 14.25 ns
tRAS(min) 35 34 33 32 32 ns
tRC(min) 48.75 47.92 47.06 46.16 46.25 ns
JEDEC standard 1.2V (1.14V~1.26V)
•V
DDQ = 1.2V (1.14V~1.26V)
800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin,
1067MHz fCK for 2133Mb/sec/pin, 1200MHz fCK for 2400Mb/sec/pin,
1333MHz fCK for 2666Mb/sec/pin
16 Banks (4 Bank Groups)
Programmable CAS Latency (posted CAS):
10,11,12,13,14,15,16,17,18,19,20
Programmable Additive Latency: 0, CL-2 or CL-1 clock
Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12
(DDR4-1866),11,14 (DDR4-2133),12,16 (DDR4-2400) and 14,18 (DDR4-
2666)
8-bit pre-fetch
Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or
write [either On the fly using A12 or MRS]
Bi-directional Differential Data-Strobe
Internal (self) calibration: Internal self calibration through ZQ pin
(RZQ: 240 ohm ± 1%)
On Die Termination using ODT pin
Average Refresh Period 7.8us at lower than TCASE 85C, 3.9us at 85C <
TCASE < 95 C
Support Industrial Temp (-4095C)
- tREFI 7.8us at -40 °C TCASE 85°C
- tREFI 3.9us at 85 °C < TCASE 95°C
Connectivity Test Mode (TEN) is Supported
Asynchronous Reset
Package: 78 balls FBGA - x4/x8
All of Lead-Free products are compliant for RoHS
All of products are Halogen-free
CRC (Cyclic Redundancy Check) for Read/Write data security
Command address parity check
DBI (Data Bus Inversion)
Gear down mode
POD (Pseudo Open Drain) interface for data input/output
Internal VREF for data inputs
External VPP for DRAM Activating Power
PPR and sPPR is supported
The 8Gb DDR4 SDRAM B-die is organized as a 128Mbit x 4 I/Os x
16banks or 64Mbit x8 I/Os x 16banks device. This synchronous device
achieves high speed double-data-rate transfer rates of up to 2666Mb/sec/
pin (DDR4-2666) for general applications.
The chip is designed to comply with the following key DDR4 SDRAM fea-
tures such as posted CAS, Programmable CWL, Internal (Self) Calibration,
On Die Termination using ODT pin and Asynchronous Reset.
All of the control and address inputs are synchronized with a pair of exter-
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-
ion. The address bus is used to convey row, column, and bank address
information in a RAS/CAS multiplexing style. The DDR4 device operates
with a single 1.2V (1.14V~1.26V) power supply and 1.2V (1.14V~1.26V).
The 8Gb DDR4 B-die device is available in 78ball FBGAs(x4/x8).
NOTE : 1. This data sheet is an abstract of full DDR4 specification and does not cover the common features which are described in “DDR4 SDRAM Device Operation & Timing
Diagram”. 2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.
- 6 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
3. Package Pinout/Mechanical Dimension & Addressing
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package
1 2 3 4 5 6 7 8 9
AVDD VSSQ NC NC VSSQ VSS A
BVPP VDDQ DQS_c DQ1 VDDQ ZQ B
CVDDQ DQ0 DQS_t VDD VSS VDDQ C
DVSSQ NC DQ2 DQ3 NC VSSQ D
EVSS VDDQ NC NC VDDQ VSS E
FVDD NC ODT CK_t CK_c VDD F
GVSS NC CKE CS_n NC NC G
HVDD WE_n
A14 ACT_n CAS_n
A15
RAS_n
A16 VSS H
JVREFCA BG0 A10
AP
A12
BC_n BG1 VDD J
KVSS BA0 A4 A3 BA1 VSS K
LRESET_n A6 A0 A1 A5 ALERT_n L
MVDD A8 A2 A9 A7 VPP M
NVSS A11 PAR NC A13 VDD N
Populated ball
Ball not populated
Ball Locations (x4)
Top view
(See the balls through the package)
1234 89567
A
B
C
D
E
F
G
H
J
K
L
N
M
- 7 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package
1 2 3 4 5 6 7 8 9
AVDD VSSQ TDQS_c
DM_n,
DBI_n,
TDQS_t
VSSQ VSS A
BVPP VDDQ DQS_c DQ1 VDDQ ZQ B
CVDDQ DQ0 DQS_t VDD VSS VDDQ C
DVSSQ DQ4 DQ2 DQ3 DQ5 VSSQ D
EVSS VDDQ DQ6 DQ7 VDDQ VSS E
FVDD NC ODT CK_t CK_c VDD F
GVSS NC CKE CS_n NC NC G
HVDD WE_n
A14 ACT_n CAS_n
A15 RAS_n VSS H
JVREFCA BG0 A10
AP
A12
BC_n BG1 VDD J
KVSS BA0 A4 A3 BA1 VSS K
LRESET_n A6 A0 A1 A5 ALERT_n L
MVDD A8 A2 A9 A7 VPP M
NVSS A11 PAR NC A13 VDD N
Populated ball
Ball not populated
Ball Locations (x8)
Top view
(See the balls through the package)
1234 89567
A
B
C
D
E
F
G
H
J
K
L
N
M
- 8 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
3.3 FBGA Package Dimension (x4/x8)
A
B
C
D
E
F
G
H
M
N
7.50 0.10
0.80 x12 = 9.60
3.20
0.80
4.80
78 - 0.48 Solder ball
0.2 ABM
(Datum B)
(Datum A)
0.10MAX
1.10 0.10
#A1
1.60
7.50 0.10
11.00  0.10
0.37 0.05
#A1 INDEX MARK
B
A
BOTTOM VIEW
TOP VIEW
11.00  0.10
J
K
L
0.80 0.80
(Post Reflow 0.50 0.05)
Units : Millimeters
876543219
0.80 x 8 6.40
- 9 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
4. Input/Output Functional Description
[ Table 3 ] Input/Output Function Description
Symbol Type Function
CK_t, CK_c Input Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on
the crossing of the positive edge of CK_t and negative edge of CK_c.
CKE, (CKE1) Input
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input
buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation
(all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit.
After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence,
they must be maintained during all operations (including Self-Refresh). CKE must be maintained high
throughout read and write accesses. Input buffers, excluding CK_t,CK_cSGODT and CKE are disabled
during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
CS_n, (CS1_n) Input Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank
selection on systems with multiple Ranks. CS_n is considered part of the command code.
C0,C1,C2 Input Chip ID : Chip ID is only used for 3DS for 2,4,8high stack via TSV to select each slice of stacked
component. Chip ID is considered part of the command code
ODT, (ODT1) Input
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the
DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/
TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8
conurations. For x16 conuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c,
DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
ACT_n Input Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The
input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14
RAS_n/A16. CAS_n/
A15. WE_n/A14 Input
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being
entered. Those pins have multi function. ForG example, for activation with ACT_n Low, those are
Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command
pins for Read, Write and other command defined in command truth table
DM_n/DBI_n/TDQS_t,
(DMU_n/DBIU_n),
(DML_n/DBIL_n)
Input/Output
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is
masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is
sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in
MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n
is an input/output identifing whether to store/output the true or inverted data. If DBI_n is LOW, the data will
be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only
supported in X8
BG0 - BG1 Input
Bank Group Inputs : BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command
is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8
have BG0 and BG1 but X16 has only BG0
BA0 - BA1 Input Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is
being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
A0 - A17 Input
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/
Write commands to select one location out of the memory array in the respective bank. (A10/AP, A12/
BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows.The address
inputs also provide the op-code during Mode Register Set commands.A17 is only defined for the x4
conuration.
A10 / AP Input
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge
should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW:
no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge
applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is
selected by bank addresses.
A12 / BC_n Input Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst chop (on-the-
fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
RESET_n Input
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is
HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC
high and low at 80% and 20% of VDD,
DQ Input / Output
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at
the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal Vref level during test via Mode
Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor
specific datasheets to determine which DQ is used.
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
Input / Output
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write
data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on
DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c,
DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and
writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.
- 10 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
TDQS_t, TDQS_c Output
Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode
Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/
TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/
TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11,12,10and
TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.
PAR Input
Command and Address Parity Input : DDR4 Supports Even Parity check in DRAM with MR setting. Once
it’s enabled via Register in MR5, then DRAM calculates Parity with ACT_n,RAS_n/A16,CAS_n/A15,WE_n/
A14,BG0-BG1,BA0-BA1,A17-A0, and C0-C2 (3DS devices). Input parity should maintain at the rising edge
of the clock and at the same time with command & address with CS_n LOW
ALERT_n Input/Output
Alert : It has multi functions such as CRC error flag , Command and Address Parity error flag as Output
signal. If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. If
there is error in Command Address Parity Check, then Alert_n goes LOW for relatively long period until on
going DRAM internal recovery transaction to complete. During Connectivity Test mode, this pin works as
input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin
must be bounded to VDD on board.
TEN Input
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal
to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins.
It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is
dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to
VSS.
NC No Connect: No internal electrical connection is present.
VDDQ Supply DQ Power Supply: 1.2 V +/- 0.06 V
VSSQ Supply DQ Ground
VDD Supply Power Supply: 1.2 V +/- 0.06 V
VSS Supply Ground
VPP Supply DRAM Activating Power Supply: 2.5V ( 2.375V min , 2.75V max)
VREFCA Supply Reference voltage for CA
ZQ Supply Reference Pin for ZQ calibration
NOTE : Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.
Symbol Type Function
- 11 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
5. DDR4 SDRAM Addressing
2 Gb Addressing Table
4 Gb Addressing Table
8 Gb Addressing Table
16 Gb Addressing Table
16 Gb Addressing Table(SR x16 DDP)
NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.
Page size is per bank, calculated as follows: page size = 2 COLBITS * ORG8
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits
Configuration 512 Mb x4 256 Mb x8 128 Mb x16
Bank Address
# of Bank Groups 4 4 2
BG Address BG0~BG1 BG0~BG1 BG0
Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1
Row Address A0~A14 A0~A13 A0~A13
Column Address A0~A9 A0~A9 A0~A9
Page size 512B 1KB 2KB
Configuration 1 Gb x4 512 Mb x8 256 Mb x16
Bank Address
# of Bank Groups 4 4 2
BG Address BG0~BG1 BG0~BG1 BG0
Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1
Row Address A0~A15 A0~A14 A0~A14
Column Address A0~A9 A0~A9 A0~A9
Page size 512B 1KB 2KB
Configuration 2 Gb x4 1 Gb x8 512 Mb x16
Bank Address
# of Bank Groups 4 4 2
BG Address BG0~BG1 BG0~BG1 BG0
Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1
Row Address A0~A16 A0~A15 A0~A15
Column Address A0~A9 A0~A9 A0~A9
Page size 512B 1KB 2KB
Configuration 4 Gb x4 2 Gb x8 1 Gb x16
Bank Address
# of Bank Groups 4 4 2
BG Address BG0~BG1 BG0~BG1 BG0
Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1
Row Address A0~A17 A0~A16 A0~A16
Column Address A0~A9 A0~A9 A0~A9
Page size 512B 1KB 2KB
Configuration 1 Gb x16
Bank Address
# of Bank Groups 4
BG Address BG0~BG1
Bank Address in a BG BA0~BA1
Row Address A0~A15
Column Address A0~A9
Page size 2KB
- 12 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
6. Absolute Maximum Ratings
6.1 Absolute Maximum DC Ratings
[ Table 4 ] Absolute Maximum DC Ratings
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA
may be equal to or less than 300 mV
4. VPP must be equal or greater than VDD/VDDQ at all times.
5. Overshoot area above 1.5 V is specified in section 8.3.4, 8.3.5 and section 8.3.6.
6.2 DRAM Component Operating Temperature Range
[ Table 5 ] Temperature Range
NOTE :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-
tained between 0-85C under all operating conditions
3. The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-
tained between -40-95C under all operating conditions
4. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range
capability (MR2 A6 = 0b and MR2 A7 = 1b).
7. AC & DC Operating Conditions
[ Table 6 ] Recommended DC Operating Conditions
NOTE :
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. DC bandwidth is limited to 20MHz.
Symbol Parameter Rating Units NOTE
VDD Voltage on VDD pin relative to Vss -0.3 ~ 1.5 V 1,3
VDDQ Voltage on VDDQ pin relative to Vss -0.3 ~ 1.5 V 1,3
VPP Voltage on VPP pin relative to Vss -0.3 ~ 3.0 V 4
VIN, VOUT Voltage on any pin except VREFCA relative to Vss -0.3 ~ 1.5 V 1,3,5
TSTG Storage Temperature -55 to +100 °C 1,2
Symbol Parameter rating Unit NOTE
TOPER Operating Temperature Range Normal 0 to 95 C 1, 2, 4
Industrial -40 to 95 C 1, 3, 4
Symbol Parameter Rating Unit NOTE
Min. Typ. Max.
VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3
VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3
VPP Peak-to-Peak Voltage 2.375 2.5 2.75 V 3
- 13 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8. AC & DC Input Measurement Levels
8.1 AC & DC Logic Input Levels for Single-ended Signals
[ Table 7 ] Single-ended AC & DC input Levels for Command and Address
NOTE :
1. See “Overshoot and Undershoot Specifications” .
2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3. For reference : approx. VDD/2 ± 12mV
8.2 AC and DC Input Measurement Levels: VREF Tolerances
The DC-tolerance limits and ac-noise limits for the reference voltages VREFCA is illustrated in Figure 1. It shows a valid reference voltage VREF(t) as a
function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7. Fur-
thermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF
.
"VREF" shall be understood as VREF(DC), as defined in Figure 1.
This clarifies, that DC-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
Symbol Parameter DDR4-1600/1866/2133/2400 DDR4-2666 Unit NOTE
Min. Max. Min. Max.
VIH.CA(DC75) DC input logic high VREFCA+ 0.075 VDD TBD TBD V
VIL.CA(DC75) DC input logic low VSS VREFCA-0.075 TBD TBD V
VIH.CA(AC100) AC input logic high VREF + 0.1 Note 2 TBD TBD V 1
VIL.CA(AC100) AC input logic low Note 2 VREF - 0.1 TBD TBD V 1
VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD TBD TBD V 2,3
voltage
VDD
VSS
time
- 14 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.3 AC & DC Logic Input Levels for Differential Signals
8.3.1 Differential Signals Definition
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC
NOTE :
1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
8.3.2 Differential Swing Requirement for Clock (CK_t - CK_c)
[ Table 8 ] Differential AC & DC Input Levels
NOTE:
1. Used to define a differential signal slew-rate.
2. for CK_t - CK_c use VIHCA/VILCA(AC) of ADD/CMD and VREFCA;
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIHCA(DC) max, VILCA(DC)min) for single-ended signals
as well as the limitations for overshoot and undershoot.
Symbol Parameter DDR4 -1600/1866/2133 DDR4 -2400/2666 unit NOTE
min max min max
VIHdiff differential input high +0.150 NOTE 3 TBD NOTE 3 V 1
VILdiff differential input low NOTE 3 -0.150 NOTE 3 TBD V 1
VIHdiff(AC) differential input high ac 2 x (VIH(AC) - VREF)NOTE 3 2 x (VIH(AC) - VREF)NOTE 3 V 2
VILdiff(AC) differential input low ac NOTE 3 2 x (VIL(AC) - VREF)NOTE 3 2 x (VIL(AC) - VREF)V2
0.0
tDVAC
VIH.DIFF.MIN
half cycle
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
- 15 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 9 ] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
8.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK _c have to approximately reach VSEHmin / VSELmax [approximately equal to the ac-levels { VIH.CA(AC) / VIL.CA(AC)} for ADD/CMD signals]
in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g. if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for
ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK _c .
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD signal requirements are with respect to VREFCA, the single-ended components of differential signals have a requirement with
respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended
components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode
characteristics of these signals.
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV
min max
> 4.0 120 -
4.0 115 -
3.0 110 -
2.0 105 -
1.8 100 -
1.6 95 -
1.4 90 -
1.2 85 -
1.0 80 -
< 1.0 80 -
VDD or VDDQ
VSEH min
VDD/2 or VDDQ/2
VSEL max
VSEH
VSS or VSSQ
VSEL
CK
time
- 16 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 10 ] Single-ended Levels for CK_t, CK_c
NOTE :
1. For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD;
2. VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA;
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended sig-
nals as well as the limitations for overshoot and undershoot.
8.3.4 Address, Command and Control Overshoot and Undershoot Specifications
[ Table 11 ] AC Overshoot/Undershoot Specification for Address, Command and Control Pins
NOTE: 1.The value of VAOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended
DC Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 4.
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
Symbol Parameter DDR4-1600/1866/2133 DDR4-2400/2666 Unit NOTE
Min Max Min Max
VSEH
Single-ended high-level for
CK_t , CK_c (VDD/2)+0.100 NOTE3 TBD NOTE3 V 1, 2
VSEL Single-ended low-level for
CK_t , CK_c NOTE3 (VDD/2)-0.100 NOTE3 TBD V 1, 2
Parameter Symbol Specification Unit NOTE
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Maximum peak amplitude above VAOS VAOSP 0.06 0.06 0.06 0.06 TBD V
Upper boundary of overshoot area AAOS1 VAOS VDD + 0.24 TBD V 1
Maximum peak amplitude allowed for undershoot VAUS 0.3 0.3 0.3 0.3 TBD V-ns
Maximum overshoot area per 1 tCK above VAOS AAOS2 0.0083 0.0071 0.0062 0.0055 TBD V-ns
Maximum overshoot area per 1 tCK between VDD and
VAOS AAOS1 0.2550 0.2185 0.1914 0.1699 TBD V-ns
Maximum undershoot area per 1 tCK below VSS AAUS 0.2644 0.2265 0.1984 0.1762 TBD V-ns
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
AAOS1
VDD
AAUS
VSS
Volts
(V) 1 tCK
VAOSP AAOS2
VAOS
VAUS
- 17 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.3.5 Clock Overshoot and Undershoot Specifications
[ Table 12 ] AC Overshoot/Undershoot Specification for Clock
NOTE: The value of VCOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 4.
Figure 5. Clock Overshoot and Undershoot Definition
Parameter Symbol Specification Unit NOTE
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Maximum peak amplitude above VCOS VAOSP 0.06 0.06 0.06 0.06 TBD V
Upper boundary of overshoot area ADOS1 VAOS VDD + 0.24 TBD V 1
Maximum peak amplitude allowed for undershoot VAUS 0.3 0.3 0.3 0.3 TBD V
Maximum overshoot area per 1 UI above VCOS AAOS2 0.0038 0.0032 0.0028 0.0025 TBD V-ns
Maximum overshoot area per 1 UI between VDD and VDOS AAOS1 0.1125 0.0964 0.0844 0.0750 TBD V-ns
Maximum undershoot area per 1 UI below VSS AAUS 0.1144 0.0980 0.0858 0.0762 TBD V-ns
(CK_t, CK_c)
ACOS1
VDD
ACUS
VSS
Volts
(V) 1 UI
VCOSP ACOS2
VCOS
VCUS
- 18 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications
[ Table 13 ] AC Overshoot/Undershoot Specification for Data, Strobe and Mask
NOTE :
1. The value of VDOS matches (VIN, VOUT) max as defined in Table 4 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 4.
2. The value of VDUS matches (VIN, VOUT) min as defined in Table 4 Absolute Maximum DC Ratings
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
Parameter Symbol Specification Unit NOTE
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Maximum peak amplitude above VDOS VDOSP 0.16 0.16 0.16 0.16 TBD V
Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24 TBD V 1
Lower boundary of undershoot area ADUS1 VDUS 0.30 0.30 0.30 0.30 TBD V 2
Maximum peak amplitude below VDUS VDUSP 0.10 0.10 0.10 0.10 TBD V
Maximum overshoot area per 1 UI above VDOS ADOS2 0.0150 0.0129 0.0113 0.0100 TBD V-ns
Maximum overshoot area per 1 UI between VDDQ and
VDOS ADOS1 0.1050 0.0900 0.0788 0.0700 TBD V-ns
Maximum undershoot area per 1 UI between VSSQ
and VDUS1 ADUS1 0.1050 0.0900 0.0788 0.0700 TBD V-ns
Maximum undershoot area per 1 UI below VDUS ADUS2 0.0150 0.0129 0.0113 0.0100 TBD V-ns
(DQ, DQS_t, DQS_c, DM_n, DBI_n, TDQS_t, TDQS_c)
ADOS1
VDDQ
ADUS2
VSSQ
Volts
(V) 1 UI
VDOSP ADOS2
VDOS
VDUSP
ADUS1
- 19 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.4 Slew Rate Definitions
8.4.1 Slew Rate Definitions for Differential Input Signals (CK)
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
[ Table 14 ] Differential Input Slew Rate Definition
NOTE :
The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds.
Figure 7. Differential Input Slew Rate definition for CK, CK
Description Measured Defined by
From To
Differential input slew rate for rising edge(CK_t - CK_c) VILdiffmax VIHdiffmin VIHdiffmin - VILdiffmax DeltaTRdiff
Differential input slew rate for falling edge(CK_t - CK_c) VIHdiffmin VILdiffmax VIHdiffmin - VILdiffmax DeltaTFdiff
Delta TRdiff
Delta TFdiff
VIHdiffmin
0
VILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)
- 20 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.4.2 Slew Rate Definition for Single-ended Input Signals ( CMD/ADD )
NOTE :
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
Figure 8. Single-ended Input Slew Rate definition for CMD and ADD
Delta TRsingle
Delta TFsingle
VIHCA(AC) Min
VIHCA(DC) Min
VREFCA(DC)
VILCA(DC) Max
VILCA(AC) Max
- 21 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.5 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals
(CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and
complement signals to the midlevel between of VDD and VSS.
Figure 9. Vix Definition (CK)
[ Table 15 ] Cross Point Voltage for Differential Input Signals (CK)
Symbol Parameter DDR4-1600/1866/2133
min max
- Area of VSEH, VSEL VSEL =< VDD/2 -
145mV
VDD/2 - 145mV =<
VSEL =< VDD/2 -
100mV
VDD/2 + 100mV
=< VSEH =< VDD/
2 + 145mV
VDD/2 + 145mV
=< VSEH
VlX(CK) Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c -120mV -(VDD/2 - VSEL) +
25mV
(VSEH - VDD/2) -
25mV 120mV
Symbol Parameter DDR4-2400/2666
min max
- Area of VSEH, VSEL TBD TBD TBD TBD
VlX(CK) Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c TBD TBD TBD TBD
Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
- 22 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.6 CMOS Rail to Rail Input Levels
8.6.1 CMOS Rail to Rail Input Levels for RESET_n
[ Table 16 ] CMOS Rail to Rail Input Levels for RESET_n
NOTE :
1.After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset
asserting RESET_n signal LOW.
3. RESET is destructive to data contents.
4. No slope reversal(ringback) requirement during its level transition from Low to High.
5. This definition is applied only “Reset Procedure at Power Stable”.
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings
Figure 10. RESET_n Input Slew Rate Definition
Parameter Symbol Min Max Unit NOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6
DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2
DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD V 1
AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD V 7
Rising time TR_RESET - 1.0 us 4
RESET pulse width tPW_RESET 1.0 - us 3,5
0.8*VDD
TR_RESET
tPW_RESET
0.7*VDD
0.3*VDD
0.2*VDD
- 23 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.7 AC and DC Logic Input Levels for DQS Signals
8.7.1 Differential Signal Definition
Figure 11. Definition of differential DQS Signal AC-swing Level
8.7.2 Differential Swing Requirements for DQS (DQS_t - DQS_c)
[ Table 17 ] Differential AC and DC Input Levels for DQS
NOTE :
1.Used to define a differential signal slew-rate.
2.These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended
signals.
Symbol Parameter DDR4-1600/1866/2133 DDR4-2400 DDR4-2666 Unit Note
Min Max Min Max Min Max
VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 160 Note2 TBD TBD mV 1
VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 Note2 -160 TBD TBD mV 1
- 24 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.7.3 Peak Voltage Calculation Method
The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t))
VIL.DIFF.Peak Voltage = Min(f(t))
f(t) = VDQS_t - VDQS_c
Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling
DQS_t
DQS_c
Single Ended Input Voltage : DQS_t and DQS_c
Min(f(t))
+35%
+35%
+50%
+50%
Time
Max(f(t))
- 25 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.7.4 Differential Input Cross Point Voltage
To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals
(DQS_t, DQS_c) must meet the requirements in Table 18. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is
measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid of the DQS_t and DQS_c signals.
VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the
difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of
the transitioning DQS signals.
A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within +/- 35%
of the midpoint of either VIH.DIFF.Peak Voltage (DQS_t rising) or VIL.DIFF.Peak Voltage (DQS_c rising), refer to Figure 12. A secondary horizontal tan-
gent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived
from its negative slope to zero slope transition (point A in Figure 13) and a ring-back’s horizontal tangent derived from its positive slope to zero slope tran-
sition (point B in Figure 13) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope tran-
sition (point C in Figure 13) and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in Figure 13) is not a valid
horizontal tangent
Figure 13. Vix Definition (DQS)
[ Table 18 ] Cross Point Voltage for DQS differential Input Signals
NOTE :
1. Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above
VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals.
2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs drivers and paths are matched.
3. The maximum limit shall not exceed the smaller of VIHdiff minimum limit or 50mV.
4. VIX measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and high-z states are not applicable conditions.
5. The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a system.
Symbol Parameter DDR4-1600/1866/2133/2400 DDR4-2666 Unit Note
Min Max Min Max
Vix_DQS_ratio
DQS_t and DQS_c crossing relative
to the midpoint of the DQS_t and
DQS_c signal swings
- 25 - 25 % 1, 2
VDQSmid_to_Vcent VDQSmid offset relative to
Vcent_DQ(midpoint) - min(VIHdiff,50) - min(VIHdiff,50) mV 3, 4, 5
C
D
B
A
VIX_DQS,RF
VIX_DQS,FR
VIX_DQS,FR
VIX_DQS,RF
DQS_t
VDQSmid
DQS_c
Lowest horizontal tangent above VDQSmid of the transitioning signals
DQS_t,DQS_c : Single-ended Input Voltages
V
SSQ
Highest horizontal tanget below VDQSmid of the transitioning signals
VDQS_trans/2
VDQS_trans
- 26 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
8.7.5 Differential Input Slew Rate Definition
Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in are Figure 13 and Figure 14.
NOTE :
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.
Figure 14. Differential Input Slew Rate Definition for DQS_t, DQS_c
[ Table 19 ] Differential Input Slew Rate Definition for DQS_t, DQS_c
[ Table 20 ] Differential Input Level for DQS_t, DQS_c
[ Table 21 ] Differential Input Slew Rate for DQS_t, DQS_c
Description Defined by
From To
Differential input slew rate for rising edge(DQS_t - DQS_c) VILDiff_DQS VIHDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff
Differential input slew rate for falling edge(DQS_t - DQS_c) VIHDiff_DQS VILDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff
Symbol Parameter DDR4-1600/1866/2133 DDR4-2400 DDR4-2666 Unit NOTE
Min Max Min Max Min Max
VIHDiff_DQS Differntial Input High 136 - 130 - TBD TBD mV
VILDiff_DQS Differntial Input Low - -136 - -130 TBD TBD mV
Symbol Parameter DDR4-1600/1866/2133/2400 DDR4-2666 Unit NOTE
Min Max Min Max
SRIdiff Differential Intput Slew Rate 3 18 TBD TBD V/ns
- 27 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
9. AC and DC Output Measurement Levels
9.1 Output Driver DC Electrical Characteristics
The DDR4 driver supports two different Ron values. These Ron values are referred as strong(low Ron) and weak mode(high Ron). A functional
representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:
Figure 15. Output driver
RONPu = VDDQ -Vout
I out under the condition that RONPd is off
RONPd = Vout
I out under the condition that RONPu is off
To
other
circuity
like
RCV, ...
Output Drive
DQ
RONPu
VSSQ
VDDQ
Iout Vout
Chip In Drive Mode
RONPd
IPu
IPd
- 28 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range;
after proper ZQ calibration
RONNOM Resistor Vout Min Nom Max Unit NOTE
34
RON34Pd
VOLdc= 0.5*VDDQ 0.8 1 1.1 RZQ/7 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2
VOHdc= 1.1* VDDQ 0.9 1 1.25 RZQ/7 1,2
RON34Pu
VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/7 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2
VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/7 1,2
48
RON48Pd
VOLdc= 0.5*VDDQ 0.8 1 1.1 RZQ/5 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2
VOHdc= 1.1* VDDQ 0.9 1 1.25 RZQ/5 1,2
RON48Pu
VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/5 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2
VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/5 1,2
Mismatch between pull-up and
pull-down, MMPuPd VOMdc= 0.8* VDDQ -10 - 10 % 1,2,3,4
Mismatch DQ-DQ within byte vari-
ation pull-up, MMPudd VOMdc= 0.8* VDDQ - - 10 % 1,2,4
Mismatch DQ-DQ within byte vari-
ation pull-dn, MMPddd VOMdc= 0.8* VDDQ - - 10 % 1,2,4
NOTE :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after cal-
ibration, see following section on voltage and temperature sensitivity(TBD).
2. Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8 * VDDQ. Other calibration schemes may be used to achieve the linearity spec
shown above, e.g. calibration at 0.5 * VDDQ and 1.1 * VDDQ.
3. Measurement definition for mismatch between pull-up and pull-down, MMPuPd : Measure RONPu and RONPD both at 0.8*VDD separately; Ronnom is the nominal Ron
value
4. RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c.
5. This parameter of x16 device is specified for Upper byte and Lower byte.
MMPuPd =
RONPu -RONPd
RONNOM *100
MMPudd =
RONPuMax -RONPuMin
RONNOM *100
MMPddd =
RONPdMax -RONPdMin
RONNOM *100
- 29 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
9.1.1 Alert_n Output Drive Characteristic
A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
NOTE :
1. VDDQ voltage is at VDDQ DC. VDDQ DC definition is TBD.
9.1.2 Output Driver Characteristic of Connectivity Test ( CT ) Mode
Following Output driver impedance RON will be applied Test Output Pin during Connectivity Test ( CT ) Mode.
The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows:
Figure 16. Output Driver
Resistor Vout Min Max Unit NOTE
RONPd
VOLdc= 0.1* VDDQ 0.3 1.2 34Ω1
VOMdc = 0.8* VDDQ 0.4 1.2 34Ω1
VOHdc = 1.1* VDDQ 0.4 1.4 34Ω1
RONPd =
Vout
l Iout l under the condition that RONPu is off
DRAM
Alert
VSSQ
Iout Vout
RONPd
IPd
Alert Driver
RONPu_CT =
VDDQ-VOUT
l Iout l
RONPd_CT =
VOUT
l Iout l
VDDQ
DQ
VSSQ
RON
Pu_CT
IPd_CT
RON
Pd_CT
To
other
circuity
like
RCV,...
Output Driver
IPu_CT
Iout
Vout
Chip In Driver Mode
- 30 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
NOTE :
1. Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined.
9.2 Single-ended AC & DC Output Levels
[ Table 23 ] Single-ended AC & DC Output Levels
NOTE :
1. The swing of ± 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test
load of 50Ω to VTT = VDDQ.
9.3 Differential AC & DC Output Levels
[ Table 24 ] Differential AC & DC Output Levels
NOTE :
1. The swing of ± 0.3 × VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load
of 50Ω to VTT = VDDQ at each of the differential outputs.
RONNOM_CT Resistor Vout Max Units NOTE
34
RONPd_CT
VOBdc = 0.2 x VDDQ 1.9 341
VOLdc = 0.5 x VDDQ 2.0 341
VOMdc = 0.8 x VDDQ 2.2 341
VOHdc = 1.1 x VDDQ 2.5 341
RONPu_CT
VOBdc = 0.2 x VDDQ 2.5 341
VOLdc = 0.5 x VDDQ 2.2 341
VOMdc = 0.8 x VDDQ 2.0 341
VOHdc = 1.1 x VDDQ 1.9 341
Symbol Parameter DDR4-1600/1866/2133/2400/2666 Units NOTE
VOH(DC) DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V
VOM(DC) DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V
VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V
VOH(AC) AC output high measurement level (for output SR) (0.7 + 0.15) x VDDQ V1
VOL(AC) AC output low measurement level (for output SR) (0.7 - 0.15) x VDDQ V1
Symbol Parameter DDR4-1600/1866/2133/2400/2666 Units NOTE
VOHdiff(AC) AC differential output high measurement level (for output SR) +0.3 x VDDQ V1
VOLdiff(AC) AC differential output low measurement level (for output SR) -0.3 x VDDQ V1
- 31 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
9.4 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for
single ended signals as shown in Table 25 and Figure 17.
[ Table 25 ] Single-ended Output Slew Rate Definition
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Figure 17. Single-ended Output Slew Rate Definition
[ Table 26 ] Single-ended Output Slew Rate
Description: SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
NOTE :
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are static (i.e. they stay at either high or low).
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the
regular maximum limit of 9 V/ns applies
Description Measured Defined by
From To
Single ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC)-VOL(AC)] / Delta TRse
Single ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / Delta TFse
Parameter Symbol DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 Units
Min Max Min Max Min Max Min Max Min Max
Single ended output slew rate SRQse 4 9 4 9 494949V/ns
VOH(AC)
VOL(AC)
delta TRsedelta TFse
VTT
- 32 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
9.5 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and
VOHdiff(AC) for differential signals as shown in Table 27 and Figure 18.
[ Table 27 ] Differential Output Slew Rate Definition
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Figure 18. Differential Output Slew Rate Definition
[ Table 28 ] Differential Output Slew Rate
Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
diff: Differential Signals
For Ron = RZQ/7 setting
Description Measured Defined by
From To
Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) [VOHdiff(AC)-VOLdiff(AC)] / Delta TRdiff
Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) [VOHdiff(AC)-VOLdiff(AC)] /Delta TFdiff
Parameter Symbol DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 Units
Min Max Min Max Min Max Min Max Min Max
Differential output slew rate SRQdiff 8 18 8 18 8 18 8 18 8 18 V/ns
VOHdiff(AC)
VOLdiff(AC)
delta TRdiffdelta TFdiff
VTT
- 33 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode
Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode.
[ Table 29 ] Single-ended AC & DC Output Levels of Connectivity Test Mode
NOTE
1. The effective test load is 50Ω terminated by VTT = 0.5 * VDDQ.
Figure 19. Output Slew Rate Definition of Connectivity Test Mode
[ Table 30 ] Single-ended Output Slew Rate of Connectivity Test Mode
9.7 Test Load for Connectivity Test Mode Timing
The reference load for ODT timings is defined in Figure 20.
Figure 20. Connectivity Test Mode Timing Reference Load
Symbol Parameter DDR4-1600/1866/2133/2400/2666 Unit Notes
VOH(DC) DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V
VOM(DC) DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V
VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V
VOB(DC) DC output below measurement level (for IV curve linearity) 0.2 x VDDQ V
VOH(AC) AC output high measurement level (for output SR) VTT + (0.1 x VDDQ) V 1
VOL(AC) AC output below measurement level (for output SR) VTT - (0.1 x VDDQ) V 1
Parameter Symbol DDR4-1600/1866/2133/2400/2666 Unit Notes
Min Max
Output signal Falling time TF_output_CT - 10 ns/V
Output signal Rising time TR_output_CT - 10 ns/V
VOH(AC)
TR_output_CT
VTT
VOL(AC)
TR_output_CT
0.5 * VDDQ
VDDQ
CT_INPUTS DUT
DQ, DM
DQSU , DQSU
DQS , DQS
Rterm = 50 ohm
Timing Reference Points
VSSQ
DQSL , DQSL
0.5*VDDQ
- 34 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
10. Speed Bin
[ Table 31 ] DDR4-1600 Speed Bins and Operations
Speed Bin DDR4-1600
Unit NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
Internal read command to first data tAA 13.7513
(13.50)5,11 18.00 ns 11
Internal read command to first data with read DBI enabled tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
ACT to internal read or write delay time tRCD 13.7513
(13.50)5,11 - ns 11
PRE command period tRP 13.7513
(13.50)5,11 - ns 11
ACT to PRE command period tRAS 35 9 x tREFI ns 11
ACT to ACT or REF command period tRC 48.75
(48.50)5,11 - ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG)
1.5
1.6 ns 1,2,3,4,10,13
(Optional)5,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3
Supported CL Settings 9,11,12 nCK 12,13
Supported CL Settings with read DBI 11,13,14 nCK 12
Supported CWL Settings 9,11 nCK
- 35 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 32 ] DDR4-1866 Speed Bins and Operations
Speed Bin DDR4-1866
Unit NOTECL-nRCD-nRP 13-13-13
Parameter Symbol min max
Internal read command to first data tAA 13.9213
(13.50)5,11 18.00 ns 11
Internal read command to first data with read DBI enabled tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
ACT to internal read or write delay time tRCD 13.9213
(13.50)5,11 - ns 11
PRE command period tRP 13.9213
(13.50)5,11 - ns 11
ACT to PRE command period tRAS 34 9 x tREFI ns 11
ACT to ACT or REF command period tRC 47.92
(47.50)5,11 - ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG)
1.5
1.6 ns 1,2,3,4,10,13
(Optional)5,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,6
(Optional)5,11
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,6
CWL = 10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3
Supported CL Settings 9,11,12,13,14 nCK 12,13
Supported CL Settings with read DBI 11,13,14,15,16 nCK 12
Supported CWL Settings 9,10,11,12 nCK
- 36 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 33 ] DDR4-2133 Speed Bins and Operations
Speed Bin DDR4-2133
Unit NOTECL-nRCD-nRP 15-15-15
Parameter Symbol min max
Internal read command to first data tAA 14.0613
(13.75)5,11 18.00 ns 11
Internal read command to first data with read DBI
enabled tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
ACT to internal read or write delay time tRCD 14.06
(13.75)5,11 - ns 11
PRE command period tRP 14.06
(13.75)5,11 - ns 11
ACT to PRE command period tRAS 33 9 x tREFI ns 11
ACT to ACT or REF command period tRC 47.06
(46.75)5,11 - ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG)
1.5
1.6 ns 1,2,3,4,10,1
3
(Optional)5,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,10
CWL = 9,11 CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,7
(Optional)5,11
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,7
CWL = 10,12 CL = 13 CL = 15 tCK(AVG)
1.071 <1.25
ns 1,2,3,4,7
(Optional)5,11
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,7
CWL = 11,14
CL = 14 CL = 17 tCK(AVG) Reserved ns 1,2,3,4
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3
Supported CL Settings 9,11.12,13,14,15,16 nCK 12,13
Supported CL Settings with read DBI 11,13,14,15,16,18,19 nCK
Supported CWL Settings 9,10,11,12,14 nCK
- 37 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 34 ] DDR4-2400 Speed Bins and Operations
Speed Bin DDR4-2400
Unit NOTECL-nRCD-nRP 17-17-17
Parameter Symbol min max
Internal read command to first data tAA 14.16
(13.75)5,11 18.00 ns 11
Internal read command to first data with read DBI
enabled tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
ACT to internal read or write delay time tRCD 14.16
(13.75)5,11 - ns 11
PRE command period tRP 14.16
(13.75)5,11 - ns 11
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC 46.16
(45.75)5,11 - ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,9
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,4,9
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,8
(Optional)5,11
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,8
CWL = 10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CL = 13 CL = 15 tCK(AVG)
1.071 <1.25 ns 1,2,3,4,8
(Optional)5,11
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,8
CWL = 11,14
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CL = 15 CL = 18 tCK(AVG)
0.937 <1.071 ns 1,2,3,4,8
(Optional)5,11
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,8
CWL = 12,16
CL = 15 CL = 18 tCK(AVG) Reserved ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4
CL = 17 CL = 20 tCK(AVG) 0.833 <0.937
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
Supported CL Settings 10,11,12,13,14,15,16,17,18 nCK 12,13
Supported CL Settings with read DBI 12,13,14,15,16,18,19,20,21 nCK
Supported CWL Settings 9,10,11,12,14,16 nCK
- 38 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 35 ] DDR4-2666 Speed Bins and Operations
Speed Bin DDR4-2666
Unit NOTECL-nRCD-nRP 19-19-19
Parameter Symbol min max
Internal read command to first data tAA 14.2514
(13.75)5,12 18.00 ns 11
Internal read command to first data with read DBI
enabled tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
ACT to internal read or write delay time tRCD 14.25
(13.75)5,12 - ns 11
PRE command period tRP 14.2514
(13.75)5,12 - ns 11
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC 46.25
(45.75)5,12 - ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,9
(Optional)5,12
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
CWL = 10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CL = 13 CL = 15 tCK(AVG)
1.071 <1.25
ns 1,2,3,4,9
(Optional)5,12
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,9
CWL = 11,14
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CL = 15 CL = 18 tCK(AVG)
0.937 <1.071
ns 1,2,3,4,9
(Optional)5,12
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,9
CWL = 12,16
CL = 15 CL = 18 tCK(AVG) Reserved ns 4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4S9
CL = 17 CL = 20 tCK(AVG)
0.833 <0.937
ns
1,2,3,4S9
(Optional)5,12 1,2,3,4S9
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
CWL = 14.18
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3S4
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3S4
CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 ns 1,2,3S4
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3
Supported CL Settings 10,11,12,13,14,15,16,17,18,19,20 nCK 12
Supported CL Settings with read DBI 12,13,14,15,17,18,19,20,21,22,23 nCK
Supported CWL Settings 9,10,11,12,14,16,18 nCK
- 39 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
10.1 Speed Bin Table Note
Absolute Specification
- VDDQ = VDD = 1.20V +/- 0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133S2400Gand 2666 Speed Bin Tables are valid only when Geardown Mode is disabled.
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from
CL setting as well as requirements from CWL setting.
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-
anteed. CL in clock cycle is calculated from tAA following rounding algorithm defined in Section "Rounding Algorithms"
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or
0.937 ns or 0.833 ns). This result is tCK(avg).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD
information if and how this setting is supported.
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
9. Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
10. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
11. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
12. CL number in parentheses, it means that these numbers are optional.
13. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).
14. Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for
all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.
- 40 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
11. IDD and IDDQ Specification Parameters and Test Condi-
tions
11.1 IDD, IPP and IDDQ Measurement Conditions
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure 21 shows the setup and test load for IDD,
IPP and IDDQ measurements.
l IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA,
IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD
balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.
l IPP currents have the same definition as IDD except that the current on the VPP supply is measured.
l IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied
together. Any IDD current is not included in IDDQ currents.
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO
power to actual IO power as outlined in Figure 22. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are
using one merged-power layer in Module PCB.
For IDD, IPP and IDDQ measurements, the following definitions apply:
l “0” and “LOW” is defined as VIN <= VILAC(max).
l “1” and “HIGH” is defined as VIN >= VIHAC(min).
l “MID-LEVEL” is defined as inputs are VREF = VDD / 2.
l Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 36.
l Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 37.
l Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 38 through Table 46.
l IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
RTT_NOM = RZQ/6 (40 Ohm in MR1);
RTT_WR = RZQ/2 (120 Ohm in MR2);
RTT_PARK = Disable;
Qoff = 0B (Output Buffer enabled) in MR1;
TDQS_t disabled in MR1;
CRC disabled in MR2;
CA parity feature disabled in MR5;
Gear down mode disabled in MR3
Read/Write DBI disabled in MR5;
DM disabled in MR5
l Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is
started.
l Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed.
l Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} apply invert of BG/BA changes when directed above.
- 41 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
NOTE:
1. DIMM level Output test load condition may be different from above
Figure 21. Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements
Figure 22. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.
RESET
CK_t/CK_c
CKE
CS
ACT,RAS,CAS,WE
A,BG,BA
C
ODT
ZQ
DQS_t/DQS_c
DQ
DM
DDR4 SDRAM
VSS VSSQ
VDD VPP VDDQ
IDD IPP IDDQ
X
Application specific
memory channel
environment
Channel
IO Powe
Simulatin
X
Channel IO Power
Number
IDDQ
TestLad
IDDQ
Simuaion
IDDQ
Measurement
Correlation
- 42 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 36 ] Timings Used for IDD, IPP and IDDQ Measurement-Loop Patterns
Symbol DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 Unit
11-11-11 13-13-13 15-15-15 17-17-17 19-19-19
tCK 1.25 1.071 0.937 0.833 TBD ns
CL 11 13 15 17 TBD nCK
CWL 11 12 14 16 TBD nCK
nRCD 11 13 15 17 TBD nCK
nRC 39 45 51 56 TBD nCK
nRAS 28 32 36 39 TBD nCK
nRP 11 13 15 17 TBD nCK
nFAW
x4 16 16 16 16 TBD nCK
x8 20 22 23 26 TBD nCK
x16 28 28 32 36 TBD nCK
nRRDS
x4 4 4 4 4 TBD nCK
x8 4 4 4 4 TBD nCK
x16 5 5 6 7 TBD nCK
nRRDL
x4 5 5 6 6 TBD nCK
x8 5 5 6 6 TBD nCK
x16 6 6 7 8 TBD nCK
tCCD_S 4 4 4 4 TBD nCK
tCCD_L 5 5 6 6 TBD nCK
tWTR_S 2 3 3 3 TBD nCK
tWTR_L 6 7 8 9 TBD nCK
nRFC 2Gb 128 150 171 193 TBD nCK
nRFC 4Gb 208 243 278 313 TBD nCK
nRFC 8Gb 280 327 374 421 TBD nCK
TBD nCK
- 43 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 37 ] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
IDD0
Operating One Bank Active-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between ACT and PRE;
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 38 on page 46; Data IO: VDDQ;
DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 38 on page 46); Output Buffer and
RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 38 on page 46
IDD0A Operating One Bank Active-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD0
IPP0 Operating One Bank Active-Precharge IPP Current
Same condition with IDD0
IDD1
Operating One Bank Active-Read-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between ACT, RD
and PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 39 on
page 47; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 39 on page 47); Output Buf-
fer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 39 on page 47
IDD1A Operating One Bank Active-Read-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD1
IPP1 Operating One Bank Active-Read-Precharge IPP Current
Same condition with IDD1
IDD2N
Precharge Standby Current (AL=0)
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 40 on page 48; Data IO: VDDQ; DM_n: stable at 1; Bank Activity:
all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 40 on
page 48
IDD2NA Precharge Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD2N
IPP2N Precharge Standby IPP Current
Same condition with IDD2N
IDD2NT
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 41 on page 49; Data IO: VSSQ; DM_n: stable at 1; Bank Activity:
all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: toggling according to Table 41 on page 49; Pattern
Details: see Table 41 on page 49
IDDQ2NT
(Optional)
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
IDD2NL Precharge Standby Current with CAL enabled
Same definition like for IDD2N, CAL enabled3
IDD2NG Precharge Standby Current with Gear Down mode enabled
Same definition like for IDD2N, Gear Down mode enabled3,5
IDD2ND Precharge Standby Current with DLL disabled
Same definition like for IDD2N, DLL disabled3
IDD2N_par Precharge Standby Current with CA parity enabled
Same definition like for IDD2N, CA parity enabled3
IDD2P
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1;
Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all
banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0
IPP2P Precharge Power-Down IPP Current
Same condition with IDD2P
IDD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT:
Enabled in Mode Registers2; ODT Signal: stable at 0
IDD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 40 on page 48; Data IO: VDDQ; DM_n: stable at 1;Bank Activity:
all banks open; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 40 on page 48
- 44 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
Symbol Description
IDD3NA Active Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD3N
IPP3N Active Standby IPP Current
Same condition with IDD3N
IDD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and
RTT: Enabled in Mode Registers2; ODT Signal: stable at 0
IPP3P Active Power-Down IPP Current
Same condition with IDD3P
IDD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 82; AL: 0; CS_n: High between RD; Command, Address,
Bank Group Address, Bank Address Inputs: partially toggling according to Table 42 on page 50; Data IO: seamless read data burst
with different data between one burst and the next one according to Table 42 on page 50; DM_n: stable at 1; Bank Activity: all banks
open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 42 on page 50); Output Buffer and RTT: Enabled in Mode
Registers2; ODT Signal: stable at 0; Pattern Details: see Table 42 on page 50
IDD4RA Operating Burst Read Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4R
IDD4RB Operating Burst Read Current with Read DBI
Read DBI enabled3, Other conditions: see IDD4R
IPP4R Operating Burst Read IPP Current
Same condition with IDD4R
IDDQ4R
(Optional)
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
IDDQ4RB
(Optional)
Operating Burst Read IDDQ Current with Read DBI
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current
IDD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between WR; Command, Address,
Bank Group Address, Bank Address Inputs: partially toggling according to Table 43 on page 51; Data IO: seamless write data burst
with different data between one burst and the next one according to Table 43 on page 51; DM_n: stable at 1; Bank Activity: all banks
open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 43 on page 51); Output Buffer and RTT: Enabled in Mode
Registers2; ODT Signal: stable at HIGH; Pattern Details: see Table 43 on page 51
IDD4WA Operating Burst Write Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4W
IDD4WB Operating Burst Write Current with Write DBI
Write DBI enabled3, Other conditions: see IDD4W
IDD4WC Operating Burst Write Current with Write CRC
Write CRC enabled3, Other conditions: see IDD4W
IDD4W_par Operating Burst Write Current with CA Parity
CA Parity enabled3, Other conditions: see IDD4W
IPP4W Operating Burst Write IPP Current
Same condition with IDD4W
IDD5B
Burst Refresh Current (1X REF)
CKE: High; External clock: On; tCK, CL, nRFC: see Table 36 on page 42; BL: 81; AL: 0; CS_n: High between REF; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 45 on page 53; Data IO: VDDQ; DM_n:
stable at 1; Bank Activity: REF command every nRFC (see Table 45 on page 53); Output Buffer and RTT: Enabled in Mode
Registers2; ODT Signal: stable at 0; Pattern Details: see Table 45 on page 53
IPP5B Burst Refresh Write IPP Current (1X REF)
Same condition with IDD5B
IDD5F2 Burst Refresh Current (2X REF)
tRFC=tRFC_x2, Other conditions: see IDD5B
IPP5F2 Burst Refresh Write IPP Current (2X REF)
Same condition with IDD5F2
IDD5F4 Burst Refresh Current (4X REF)
tRFC=tRFC_x4, Other conditions: see IDD5B
IPP5F4 Burst Refresh Write IPP Current (4X REF)
Same condition with IDD5F4
- 45 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
NOTE :
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].
2. Output Buffer Enable
- set MR1 [A12 = 0] : Qoff = Output buffer enabled
- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7
RTT Nom enable
- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6
RTT_WR enable
- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2
RTT_PARK disable
- set MR5 [A8:6 = 000]
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s
010] : 1866MT/s, 2133MT/s
011] : 2400MT/s ,2666MT/s
Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate
DLL disabled : set MR1 [A0 = 0]
CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s
010] : 2400MT/s ,2666MT/s
Read DBI enabled : set MR5 [A12 = 1]
Write DBI enabled : set :MR5 [A11 = 1]
4. Low Power Auto Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal
01] : Reduced Temperature range
10] : Extended Temperature range
11] : Auto Self Refresh
5. IDD2NG should be measured after sync pulse (NOP) input.
Symbol Description
IDD6N
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 36 on page 42; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable
at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL
IPP6N Self Refresh IPP Current: Normal Temperature Range
Same condition with IDD6N
IDD6E
Self-Refresh Current: Extended Temperature Range)
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see
Table 36 on page 42; BL: 81; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at
1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-
LEVEL
IPP6E Self Refresh IPP Current: Extended Temperature Range
Same condition with IDD6E
IDD6R
Self-Refresh Current: Reduced Temperature Range
TCASE: 0 - 45 °C; Low Power Array Self Refresh (LP ASR) : Reduced4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 36 on page 42; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at
1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-
LEVEL
IPP6R Self Refresh IPP Current: Reduced Temperature Range
Same condition with IDD6R
IDD6A
Auto Self-Refresh Current
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto4;CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 36 on page 42; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at
1; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL
IPP6A Auto Self-Refresh IPP Current
Same condition with IDD6A
IDD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 36 on page 42; BL: 81; AL: CL-1; CS_n: High
between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 46 on
page 54; Data IO: read data bursts with different data between one burst and the next one according to Table 46 on page 54; DM_n: stable
at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 46 on page 54; Output
Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 46 on page 54
IPP7 Operating Bank Interleave Read IPP Current
Same condition with IDD7
IDD8 Maximum Power Down Current
TBD
IPP8 Maximum Power Down IPP Current
Same condition with IDD8
- 46 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 38 ] IDD0, IDD0A and IPP0 Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
CK_t /CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/ A15
WE_n/ A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0ACT 000000000000000 -
1,2 D, D 100000000000000 -
3,4 D_#, D_# 1 1 1 1 1 0 0 3230007F0 -
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 0 1 0 1 0 0 000000000 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1 1*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead
2 2*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3 3*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 4*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5 5*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6 6*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7 7*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8 8*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4 and
x8 only
9 9*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10 10*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11 11*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12 12*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13 13*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14 14*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15 15*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
- 47 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 39 ] IDD1, IDD1A and IPP1 Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0ACT 000000000000000 -
1, 2 D, D 100000000000000 -
3, 4 D#, D# 1111100
3b30007F0 -
... repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary
nRCD -AL RD 011010000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 010100000000000 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1
1*nRC + 0 ACT 0001100110000 0 0 -
1*nRC + 1, 2 D, D 100000000000000 -
1*nRC + 3, 4 D#, D# 11111003b30007F0 -
... repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary
1*nRC + nRCD - AL RD 011010011000000
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
1*nRC + nRAS PRE 0101000000000 0 0 -
... repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary
2 2*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3 3*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 4*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5 5*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6 6*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
8 7*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
9 9*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4 and x8 only
10 10*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead
11 11*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 2 instead
12 12*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead
13 13*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 1 instead
14 14*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead
15 15*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 3 instead
16 16*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
- 48 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 40 ] IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0 D, D 1000000000000000
1 D, D 1000000000000000
2 D#, D# 1111100
3230007F00
3 D#, D# 1111100
3230007F00
1 4-7 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead
2 8-11 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
9 36-39 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
- 49 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 41 ] IDD2NT and IDDQ2NT Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0 D, D 1000 00000000000-
1 D, D 1000 00000000000-
2 D#, D# 1111 1 00
3230007F0-
3 D#, D# 1111 1 00
3230007F0-
1 4-7 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 1 instead
2 8-11 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4
and x8
only
9 36-39 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 0 instead
- 50 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 42 ] IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Read Command.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0RD 011010000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
1 D 100000000000000-
2,3 D#, D# 1 1 1 1 1 0 0 3230007F0-
1
4RD 0110100110007F0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
5 D 100000000000000-
6,7 D#, D# 1 1 1 1 1 0 0 3230007F0-
2 8-11 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4 and x8 only
9 36-39 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
- 51 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 43 ] IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Write Command.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0WR 011001000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
1 D 100001000000000-
2,3 D#, D# 1111110
3230007F0-
1
4WR 0110010110007F0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
5 D 100001000000000-
6,7 D#, D# 1111110
3230007F0-
2 8-11 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4 and x8 only
9 36-39 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
- 52 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 44 ] IDD4WC Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Write Command.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0WR 011001000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
D8=CRC
1,2 D, D 100001000000000-
3,4 D#, D# 1111110
3230007F0-
5WR 0110010110007F0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
D8=CRC
6,7 D, D 100001000000000-
8,9 D#, D# 1111110
3230007F0-
2 10-14 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3 15-19 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 20-24 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5 25-29 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6 30-34 repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7 35-39 repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8 40-44 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4 and x8 only
9 45-49 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10 50-54 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11 55-59 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12 60-64 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13 65-69 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14 70-74 repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15 75-79 repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
- 53 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 45 ] IDD5B Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. DQ signals are VDDQ.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
00 REF 100000000000000-
1
1 D 100000000000000-
2 D 100000000000000-
3 D#, D# 1111100
3230007F0-
4 D#, D# 1111100
3230007F0-
4-7 repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 1 instead
8-11 repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 2 instead
12-15 repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 3 instead
16-19 repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead
20-23 repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 2 instead
24-27 repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead
28-31 repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead
32-35 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4 and x8 only
36-39 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead
40-43 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead
44-47 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 3 instead
48-51 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead
52-55 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead
56-59 repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 3 instead
60-63 repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 0 instead
2 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary
- 54 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 46 ] IDD7 Measurement-Loop Pattern1
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data4
toggling
Static High
0
0ACT 000000000000000-
1RDA 011010 00001000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
2 D 100000000000000-
3 D# 1111100
3230007F0-
... repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary
1
nRRD ACT 000000011000000-
nRRD + 1 RDA 011010 11001000
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
... repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary
2 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 4*nRRD repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary
5nFAW repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
6 nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
7 nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
8 nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
9 nFAW + 4*nRRD repeat Sub-Loop 4
10 2*nFAW repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
For x4 and x8
only
11 2*nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
12 2*nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
13 2*nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
14 2*nFAW + 4*nRRD repeat Sub-Loop 4
15 3*nFAW repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
16 3*nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
17 3*nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
18 3*nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
19 3*nFAW + 4*nRRD repeat Sub-Loop 4
20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary
- 55 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
12.8Gb DDR4 SDRAM B-die IDD Specification Table
IDD and IPP values are for typical operating range of voltage and temperature unless otherwise noted.
[ Table 47 ] IDD and IDDQ Specification
Symbol
2Gx4 (K4A8G045WB) 1Gx8 (K4A8G085WB)
Unit NOTE
DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2133 DDR4-2400 DDR4-2666
15-15-15 17-17-17 19-19-19 15-15-15 17-17-17 19-19-19
VDD 1.2V VDD 1.2V VDD 1.2V VDD 1.2V VDD 1.2V VDD 1.2V
IDD Max. IDD Max. IDD Max. IDD Max. IDD Max. IDD Max.
IDD0 30 32 35 31 31 32 mA
IDD0A 31 35 38 32 34 35 mA
IDD1 41 43 49 44 45 45 mA
IDD1A 43 46 50 47 48 51 mA
IDD2N 21 21 21 22 23 23 mA
IDD2NA 24 24 25 25 26 26 mA
IDD2NT 24 24 25 25 26 26 mA
IDD2NL 15 15 16 15 17 17 mA
IDD2NG 21 21 22 22 23 23 mA
IDD2ND 19 19 20 20 21 21 mA
IDD2N_par 22 22 23 23 24 24 mA
IDD2P 15 15 15 16 16 16 mA
IDD2Q 19 19 20 20 21 21 mA
IDD3N 35 35 36 36 36 36 mA
IDD3NA 38 38 38 38 38 38 mA
IDD3P 20 20 20 21 22 22 mA
IDD4R 83 93 102 101 107 124 mA
IDD4RA 86 97 107 105 111 130 mA
IDD4RB 84 94 104 102 109 125 mA
IDD4W 77 88 96 84 89 101 mA
IDD4WA 81 92 100 88 94 106 mA
IDD4WB 77 88 96 84 90 102 mA
IDD4WC 74 76 88 74 83 94 mA
IDD4W_par 86 98 106 92 99 112 mA
IDD5B 197 201 216 199 199 216 mA
IDD5F2 138 141 152 138 139 150 mA
IDD5F4 115 118 128 116 117 126 mA
IDD6N 22 22 22 23 23 24 mA
IDD6E 33 33 33 34 34 36 mA
IDD6R 15 15 15 16 16 16 mA
IDD6A 21 21 21 22 22 22 mA
IDD7 170 191 212 142 143 155 mA
IDD8 10 10 10 11 11 11 mA
- 56 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 48 ] IPP Specification
[ Table 49 ] IDD6 Specification
NOTE :
1. Some IDD currents are higher for x16 organization due to larger page-size architecture.
2. Max. values for IDD currents considering worst case conditions of process, temperature and voltage.
3. Applicable for MR2 settings A6=0 and A7=0.
4. Include a max value for IDD6.
5. Applicable for MR2 settings A6=0 and A7=1. IDD6E is only specified for devices which support the Extended Temperature Range feature.
Symbol
2Gx4 (K4A8G0485WB) 1Gx8 (K4A8G085WB)
Unit NOTE
DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2133 DDR4-2400 DDR4-2666
15-15-15 17-17-17 19-19-19 15-15-15 17-17-17 19-19-19
VPP 2.5V VPP 2.5V VPP 2.5V VPP 2.5V VPP 2.5V VPP 2.5V
IPP Max. IPP Max. IPP Max. IPP Max. IPP Max. IPP Max.
IPP0 444444mA
IPP1 444444mA
IPP2N 333333mA
IPP2P 333333mA
IPP3N 333333mA
IPP3P 333333mA
IPP4R 333333mA
IPP4W 333333mA
IPP5B 18 18 18 18 18 18 mA
IPP5F2 15 15 15 15 15 15 mA
IPP5F4 14 14 14 14 14 14 mA
IPP6N 444444mA
IPP6E 555556mA
IPP7 88.59899mA
IPP8 333333mA
Symbol Temperature Range
Value Value
Unit NOTE
2Gx4 (K4A8G045WB) 1Gx8 (K4A8G085WB)
DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2133 DDR4-2400 DDR4-2666
15-15-15 17-17-17 19-19-19 15-15-15 17-17-17 19-19-19
1.2V 1.2V
IDD6N 0 - 85 oC 222222232324mA3,4
IDD6E 0 - 95 oC 333333343436mA4,5
- 57 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
13. Input/Output Capacitance
[ Table 50 ] Silicon Pad I/O Capacitance
NOTE:
1. This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is validated by de-embedding the package L & C
parasitic. The capacitance is measured with VDD, VDDQ, VSS, VSSQ applied with all other signal pins floating. Measurement procedure tbd.
2. DQ, DM_n, DQS_T, DQS_C, TDQS_T, TDQS_C. Although the DM, TDQS_T and TDQS_C pins have different functions, the loading matches DQ and DQS
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value CK_T-CK_C
5. Absolute value of CIO(DQS_T)-CIO(DQS_C)
6. CI applies to ODT, CS_n, CKE, A0-A15, BA0-BA1, BG0-BG1, RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR.
7. CDI CTRL applies to ODT, CS_n and CKE
8. CDI_CTRL = CI(CTRL)-0.5*(CI(CLK_T)+CI(CLK_C))
9. CDI_ADD_ CMD applies to, A0-A15, BA0-BA1, BG0-BG1,RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR.
10. CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CLK_T)+CI(CLK_C))
11. CDIO = CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_C))
12. Maximum external load capacitance on ZQ pin: tbd pF.
13.TEN pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. In this case CTEN might not be valid and system shall verify TEN signal with Vendor
specific information.
Symbol Parameter DDR4-1600/1866/2133 DDR4-2400/2666 Unit NOTE
min max min max
CIO Input/output capacitance 0.55 1.4 0.55 1.15 pF 1,2,3
CDIO Input/output capacitance delta -0.1 0.1 -0.1 0.1 pF 1,2,3,11
CDDQS Input/output capacitance delta DQS_t and DQS_c - 0.05 - 0.05 pF 1,2,3,5
CCK Input capacitance, CK_t and CK_c 0.2 0.8 0.2 0.7 pF 1,3
CDCK Input capacitance delta CK_t and CK_c - 0.05 - 0.05 pF 1,3,4
CI Input capacitance(CTRL, ADD, CMD pins only) 0.2 0.8 0.2 0.7 pF 1,3,6
CDI_ CTRL Input capacitance delta(All CTRL pins only) -0.1 0.1 -0.1 0.1 pF 1,3,7,8
CDI_ ADD_CMD Input capacitance delta(All ADD/CMD pins only) -0.1 0.1 -0.1 0.1 pF 1,2,9,10
CALERT Input/output capacitance of ALERT 0.5 1.5 0.5 1.5 pF 1,3
CZQ Input/output capacitance of ZQ - 2.3 - 2.3 pF 1,3,12
CTEN Input capacitance of TEN 0.2 2.3 0.2 2.3 pF 1,3,13
- 58 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 51 ] DRAM Package Electrical Specifications (x4/x8)
NOTE :
1. This parameter is not subject to production test. It is verified by design and characterization. The package parasitic( L & C) are validated using package only samples. The
capacitance is measured with VDD, VDDQ, VSS, VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS and VSSQ shorted and
all other signal pins shorted at the die side(not pin). Measurement procedure tbd
2. Package only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where:
3. Package only delay(Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where:
4. Z & Td IO applies to DQ, DM, TDQS_T and TDQS_C
5. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
6. Absolute value of ZCK_t-ZCK_c for impedance(Z) or absolute value of TdCK_t-TdCK_c for delay(Td).
7. Absolute value of ZIO(DQS_t)-ZIO(DQS_c) for impedance(Z) or absolute value of TdIO(DQS_t)-TdIO(DQS_c) for delay(Td)
8. ZI & Td ADD CMD applies to A0-A13,A17, ACT_n, BA0-BA1, BG0-BG1, RAS_n/16, CAS_n/A15, WE_n/A14 and PAR.
9. ZI & Td CTRL applies to ODT, CS_n and CKE
10. This table applies to monolithic X4 and X8 devices.
11. Package implementations shall meet spec if the Zpkg and Pkg Delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values
shown.
12. It is assumed that Lpkg can be approximated as Lpkg = Zo*Td.
13. It is assumed that Cpkg can be approximated as Cpkg = Td/Zo.
Symbol Parameter DDR4-1600/1866/2133/2400 DDR4-2666 Unit NOTE
min max min max
ZIO Input/output Zpkg 45 85 45 85 W 1,2,4,5,10,11
TdIO Input/output Pkg Delay 14 42 14 42 ps 1,3,4,5,11
Lio Input/Output Lpkg - 3.3 - 3.3 nH 11,12
Cio Input/Output Cpkg - 0.78 - 0.78 pF 11,13
ZIO DQS DQS_t, DQS_c Zpkg 45 85 45 85 W 1,2,5,10,11
TdIO DQS DQS_t, DQS_c Pkg Delay 14 42 14 42 ps 1,3,5,10,11
Lio DQS DQS Lpkg - 3.3 - 3.3 nH 11,12
Cio DQS DQS Cpkg - 0.78 - 0.78 pF 11,13
DZDIO DQS Delta Zpkg DQS_t, DQS_c - 10 - 10 W 1,2,5,7,10
DTdDIO DQS Delta Delay DQS_t, DQS_c - 5 - 5 ps 1,3,5,7,10
ZI CTRL Input- CTRL pins Zpkg 50 90 50 90 W 1,2,5,9,10,11
TdI_ CTRL Input- CTRL pins Pkg Delay 14 42 14 42 ps 1,3,5,9,10,11
Li CTRL Input CTRL Lpkg - 3.4 - 3.4 nH 11,12
Ci CTRL Input CTRL Cpkg - 0.7 - 0.7 pF 11,13
ZIADD CMD Input- CMD ADD pins Zpkg 50 90 50 90 W 1,2,5,8,10,11
TdIADD_ CMD Input- CMD ADD pins Pkg Delay 14 45 14 45 ps 1,3,5,8,10,11
Li ADD CMD Input CMD ADD Lpkg - 3.6 - 3.6 nH 11,12
Ci ADD CMD Input CMD ADD Cpkg - 0.74 - 0.74 pF 11,13
ZCK CLK_t & CLK_c Zpkg 50 90 50 90 W 1,2,5,10,11
TdCK CLK_t & CLK_c Pkg Delay 14 42 14 42 ps 1,3,5,10,11
Li CLK Input CLK Lpkg - 3.4 - 3.4 nH 11,12
Ci CLK Input CLK Cpkg - 0.7 - 0.7 pF 11,13
DZDCK Delta Zpkg CLK_t & CLK_c - 10 - 10 W 1,2,5,6,10
DTdCK Delta Delay CLK_t & CLK_c - 5 - 5 ps 1,3,5,6,10
ZOZQ ZQ Zpkg - 100 - 100 W 1,2,5,10,11
TdO ZQ ZQ Delay 20 90 20 90 ps 1,3,5,10,11
ZO ALERT ALERT Zpkg 40 100 40 100 W 1,2,5,10,11
TdO ALERT ALERT Delay 20 55 20 55 ps 1,3,5,10,11
Zpkg(total per pin) = GGGGLpkg/Cpkg
Tdpkg(total per pin) = GGLpkgCpkg
- 59 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
14. Electrical Characteristics & AC Timing
14.1 Reference Load for AC Timing and Output Slew Rate
Figure 23 represents the effective reference load of 50 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate
measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester.
System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to
their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
Figure 23. Reference Load for AC Timing and Output Slew Rate
14.2 tREFI
Average periodic Refresh interval (tREFI) of DDR4 SDRAM is defined as shown in the table.
[ Table 52 ] tREFI by Device Density
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR4 SDRAM devices support the following options or requirements referred to in
this material.
2. Supported only for Industrial Temperature
Parameter Symbol 2Gb 4Gb 8Gb 16Gb Units NOTE
All Bank Refresh to active/refresh cmd time tRFC 160 260 350 550 ns
Average periodic refresh interval tREFI
0CTCASE 85C7.8 7.8 7.8 7.8 s
-40CTCASE 85C7.8 7.8 7.8 7.8 s 2
85CTCASE 95C3.9 3.9 3.9 3.9 s 1
VDDQ
CK_t, CK_c
Timing Reference Point
DUT
DQ
DQS_t
DQS_c
Timing Reference Point
VTT = VDDQ
50 Ohm
- 60 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
14.3 Clock Specification
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR4
SDRAM device.
14.3.1 Definition for tCK(abs)
tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject t o pro-
duction test.
14.3.2 Definition for tCK(avg)
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to
rising edge.
14.3.3 Definition for tCH(avg) and tCL(avg)
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses.
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.
14.3.4 Definition for tERR(nper)
tERR is defined as the cumulative error across n consecutive cycles of n x tCK(avg). tERR is not subject to production test.
tCK avg tCK absj
j1=
N



N=N200=
tCH avg tCHj
j1=
N



N tCK avg=N200=
tCL avg tCLj
j1=
N



NtCKavg=N200=
- 61 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
14.4 Timing Parameters by Speed Grade
[ Table 53 ] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK
(DLL_OFF) 8 20 8 20 8 20 8 20 8 20 ns -
Average Clock Period tCK(avg) 1.25 <1.5 1.071 <1.25 0.937 <1.071 0.833 <0.937 0.750 <0.833 ns 35,36
Average high pulse width tCH(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg)
Average low pulse width tCL(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg)
Absolute Clock Period tCK(abs) tCK(avg)min + tJIT(per)min_tot
tCK(avg)m ax + tJIT(per)max_tot tCK(avg)
Absolute clock HIGH pulse width tCH(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) 23
Absolute clock LOW pulse width tCL(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) 24
Clock Period Jitter- total JIT(per)_tot -63 63 -54 54 -47 47 -42 42 -38 38 ps 23
Clock Period Jitter- deterministic JIT(per)_dj -31 31 -27 27 -23 23 -21 21 -19 19 ps 26
Clock Period Jitter during DLL locking period tJIT(per, lck) -50 50 -43 43 -38 38 -33 33 -30 30 ps
Cycle to Cycle Period Jitter tJIT(cc) - 125 - 107 - 94 - 83 - 75 ps
Cycle to Cycle Period Jitter during DLL lock-
ing period tJIT(cc, lck) - 100 - 86 - 75 - 67 - 60 ps
Duty Cycle Jitter tJIT(duty) TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD ps
Cumulative error across 2 cycles tERR(2per) -92 92 -79 79 -69 69 -61 61 -55 55 ps
Cumulative error across 3 cycles tERR(3per) -109 109 -94 94 -82 82 -73 73 -66 66 ps
Cumulative error across 4 cycles tERR(4per) -121 121 -104 104 -91 91 -81 81 -73 73 ps
Cumulative error across 5 cycles tERR(5per) -131 131 -112 112 -98 98 -87 87 -78 78 ps
Cumulative error across 6 cycles tERR(6per) -139 139 -119 119 -104 104 -92 92 -83 83 ps
Cumulative error across 7 cycles tERR(7per) -145 145 -124 124 -109 109 -97 97 -87 87 ps
Cumulative error across 8 cycles tERR(8per) -151 151 -129 129 -113 113 -101 101 -91 91 ps
Cumulative error across 9 cycles tERR(9per) -156 156 -134 134 -117 117 -104 104 -94 94 ps
Cumulative error across 10 cycles tERR(10per) -160 160 -137 137 -120 120 -107 107 -96 96 ps
Cumulative error across 11 cycles tERR(11per) -164 164 -141 141 -123 123 -110 110 -99 99 ps
Cumulative error across 12 cycles tERR(12per) -168 168 -144 144 -126 126 -112 112 -101 101 ps
Cumulative error across 13 cycles tERR(13per) -172 172 -147 147 -129 129 -114 114 -103 103 ps
Cumulative error across 14 cycles tERR(14per) -175 175 -150 150 -131 131 -116 116 -104 104 ps
Cumulative error across 15 cycles tERR(15per) -178 178 -152 152 -133 133 -118 118 -106 106 ps
Cumulative error across 16 cycles tERR(16per) -180 189 -155 155 -135 135 -120 120 -108 108 ps
Cumulative error across 17 cycles tERR(17per) -183 183 -157 157 -137 137 -122 122 -110 110 ps
Cumulative error across 18 cycles tERR(18per) -185 185 -159 159 -139 139 -124 124 -112 112 ps
Cumulative error across n = 13, 14 . . . 49, 50
cycles tERR(nper)
tERR(nper)min = ((1 + 0.68ln(n)) * tJIT(per)_total min)
tERR(nper)max = ((1 + 0.68ln(n)) * tJIT(per)_total max) ps
Command and Address setup time to
CK_t,CK_c referenced to Vih(ac) / Vil(ac) lev-
els
tIS(base) 115 - 100 - 80 - 62 - TBD - ps
Command and Address setup time to
CK_t,CK_c referenced to Vref levels tIS(Vref) 215 - 200 - 180 - 162 - TBD - ps
Command and Address hold time to
CK_t,CK_c referenced to Vih(dc) / Vil(dc) lev-
els
tIH(base) 140 - 125 - 105 - 87 - TBD - ps
Command and Address hold time to
CK_t,CK_c referenced to Vref levels tIH(Vref) 215 - 200 - 180 - 162 - TBD - ps
Control and Address Input pulse width for
each input tIPW 600 - 525 - 460 - 410 - 385 - ps
Command and Address Timing
CAS_n to CAS_n command delay for same
bank group tCCD_L
max(5
nCK,
6.250 ns)
-
max(5
nCK,
5.355 ns)
-
max(5
nCK,
5.625 ns)
-
max(5
nCK,
5 ns)
-
max(5
nCK,
5 ns)
- nCK 34
CAS_n to CAS_n command delay for differ-
ent bank group tCCD_S 4 - 4 - 4 - 4 - 4 - nCK 34
ACTIVATE to ACTIVATE Command delay to
different bank group for 2KB page size tRRD_S(2K) Max(4nC
K,6ns) -Max(4nC
K,5.3ns) -Max(4nC
K,5.3ns) -Max(4nC
K,5.3ns) -Max(4nC
K,5.3ns) - nCK 34
ACTIVATE to ACTIVATE Command delay to
different bank group for 2KB page size tRRD_S(1K) Max(4nC
K,5ns)
Max(4nC
K,4.2ns)
Max(4nC
K,3.7ns)
Max(4nC
K,3.3ns) -Max(4nC
K,3.3ns) - nCK 34
ACTIVATE to ACTIVATE Command delay to
different bank group for 1/2KB page size tRRD_S(1/2K) Max(4nC
K,5ns)
Max(4nC
K,4.2ns)
Max(4nC
K,3.7ns)
Max(4nC
K,3.3ns) -Max(4nC
K,3.3ns) - nCK 34
- 62 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
ACTIVATE to ACTIVATE Command delay to
same bank group for 2KB page size tRRD_L(2K) Max(4nC
K,7.5ns)
Max(4nC
K,6.4ns)
Max(4nC
K,6.4ns)
Max(4nC
K,6.4ns) -Max(4nC
K,6.4ns) - nCK 34
ACTIVATE to ACTIVATE Command delay to
same bank group for 1KB page size tRRD_L(1K) Max(4nC
K,6ns)
Max(4nC
K,5.3ns)
Max(4nC
K,5.3ns)
Max(4nC
K,4.9ns) -Max(4nC
K,4.9ns) - nCK 34
ACTIVATE to ACTIVATE Command delay to
same bank group for 1/2KB page size tRRD_L(1/2K) Max(4nC
K,6ns)
Max(4nC
K,5.3ns)
Max(4nC
K,5.3ns)
Max(4nC
K,4.9ns) -Max(4nC
K,4.9ns) - nCK 34
Four activate window for 2KB page size tFAW_2K Max(28nC
K,35ns)
Max(28nC
K,30ns)
Max(28nC
K,30ns)
Max(28nC
K,30ns) -Max(28n
CK,30ns) -ns34
Four activate window for 1KB page size tFAW_1K Max(20nC
K,25ns)
Max(20nC
K,23ns)
Max(20nC
K,21ns)
Max(20nC
K,21ns) -Max(20n
CK,21ns) -ns34
Four activate window for 1/2KB page size tFAW_1/2K Max(16nC
K,20ns)
Max(16nC
K,17ns)
Max(16nC
K,15ns)
Max(16nC
K,13ns) -Max(16n
CK,13ns) -ns34
Delay from start of internal write transaction
to internal read command for different bank
group
tWTR_S max(2nC
K,2.5ns) -max(2nC
K,2.5ns) -max(2nC
K,2.5ns) -
max
(2nCK,
2.5ns)
-
max
(2nCK,
2.5ns)
-ns
1,2,e,3
4
Delay from start of internal write transaction
to internal read command for same bank
group
tWTR_L max(4nC
K,7.5ns) -max(4nC
K,7.5ns) -max(4nC
K,7.5ns) -
max
(4nCK,7.5
ns)
-
max
(4nCK,7.
5ns)
- ns 1,34
Internal READ Command to PRECHARGE
Command delay tRTP max(4nC
K,7.5ns) -max(4nC
K,7.5ns) -max(4nC
K,7.5ns) -
max
(4nCK,7.5
ns)
-
max
(4nCK,7.
5ns)
-ns34
WRITE recovery time tWR 15 - 15 - 15 - 15 - 15 - ns 1
Write recovery time when CRC and DM are
enabled
tWR_CRC
_DM
tWR+max
(4nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-
tWR+ma
x
(5nCK,3.
75ns)
- ns 1, 28
delay from start of internal write transaction
to internal read command for different bank
group with both CRC and DM enabled
tWTR_S_C
RC_DM
tWTR_S+
max
(4nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-
tWTR_S
+max
(5nCK,3.
75ns)
-ns
2, 29,
34
delay from start of internal write transaction
to internal read command for same bank
group with both CRC and DM enabled
tWTR_L_C
RC_DM
tWTR_L+
max
(4nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.
75ns)
-ns
3,30,
34
DLL locking time tDLLK 597 - 597 - 768 - 768 - 854 - nCK
Mode Register Set command cycle time tMRD 8 - 8 - 8 - 8 - 8 - nCK
Mode Register Set command update delay tMOD max(24nC
K,15ns) -max(24nC
K,15ns) -max(24nC
K,15ns) -max(24nC
K,15ns) -max(24n
CK,15ns) - nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - 1 - 1 - nCK 33
Multi Purpose Register Write Recovery Time tWR_MPR
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL +
PL
- nCK
Auto precharge write recovery + precharge
time tDAL(min) Programmed WR + roundup ( tRP / tCK(avg)) nCK
DQ0 or DQL0 driven to 0 set-up time to first
DQS rising edge tPDA_S 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 45,47
DQ0 or DQL0 driven to 0 hold time from last
DQS fall-ing edge tPDA_H 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 46,47
CS_n to Command Address Latency
CS_n to Command Address Latency tCAL
max(3
nCK,
3.748 ns)
-
max(3
nCK,
3.748 ns)
-
max(3
nCK,
3.748 ns)
- 5 - 5 - nCK
Mode Register Set command cycle time in
CAL mode tMRD_tCAL tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL
tMOD+
tCAL -tMOD+
tCAL - nCK
Mode Register Set update delay in CAL
mode tMOD_tCAL tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL
tMOD+
tCAL -tMOD+
tCAL - nCK
DRAM Data Timing
DQS_t,DQS_c to DQ skew, per group, per
access tDQSQ - 0.16 - 0.16 - 0.16 - 0.16 - 0.18 tCK(avg)/
2
13,18,3
9,49
DQ output hold time per group, per access
from DQS_t,DQS_c tQH 0.76 - 0.76 - 0.76 - 0.74 - 0.74 - tCK(avg)/
2
13,17,1
8,39,49
Data Valid Window per device per UI: (tQH -
tDQSQ) of each UI on a given DRAM tDVWd 0.63 - 0.63 - 0.64 - 0.64 - TBD - UI 17,18,3
9,49
Data Valid Window , per pin per UI : (tQH -
tDQSQ) each UI on a pin of a given DRAM tDVWp 0.66 - 0.66 - 0.69 - 0.72 - 0.72 - UI 17,18,3
9,49
DQ low impedance time from CK_t, CK_c tLZ(DQ) -450 225 -390 195 -390 180 -330 175 -310 170 ps 39
DQ high impedance time from CK_t, CK_c tHZ(DQ) - 225 - 195 - 180 - 175 - 170 ps 39
Data Strobe Timing
DQS_t, DQS_c differential READ Pre-amble
(1 clock preamble) tRPRE 0.9 NOTE44 0.9 NOTE44 0.9 NOTE44 0.9 NOTE
44 0.9 NOTE
44 tCK 40
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 63 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
DQS_t, DQS_c differential READ Pre-amble
(2 clock preamble) tRPRE2 NA NA NA NA NA NA 1.8 NOTE
44 1.8 NOTE
44 tCK 41
DQS_t, DQS_c differential READ Postamble tRPST 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE
45 0.33 NOTE
45 0.33 NOTE
45 tCK
DQS_t,DQS_c differential output high time tQSH 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - tCK 21
DQS_t,DQS_c differential output low time tQSL 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - tCK 20
DQS_t, DQS_c differential WRITE Pre-amble
(1 clock preamble) tWPRE 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - tCK 42
DQS_t, DQS_c differential WRITE Pre-amble
(2 clock preamble) tWPRE2 NA NA NA 1.8 - 1.8 - tCK 43
DQS_t, DQS_c differential WRITE Postam-
ble tWPST 0.33 - 0.33 - 0.33 - 0.33 - 0.33 - tCK
DQS_t and DQS_c low-impedance time
(Referenced from RL-1) tLZ(DQS) -450 225 -390 195 -360 180 -330 175 -310 170 ps
DQS_t and DQS_c high-impedance time
(Referenced from RL+BL/2) tHZ(DQS) - 225 - 195 - 180 - 175 - 170 ps
DQS_t, DQS_c differential input low pulse
width tDQSL 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK
DQS_t, DQS_c differential input high pulse
width tDQSH 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK
DQS_t, DQS_c rising edge to CK_t, CK_c
rising edge (1 clock preamble) tDQSS -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 tCK 42
DQS_t, DQS_c rising edge to CK_t, CK_c ris-
ing edge (2 clock preamble) tDQSS2 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD tCK 43
DQS_t, DQS_c falling edge setup time to
CK_t, CK_c rising edge tDSS 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK
DQS_t, DQS_c falling edge hold time from
CK_t, CK_c rising edge tDSH 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK
DQS_t, DQS_c rising edge output timing
locatino from rising CK_t, CK_c with DLL On
mode
tDQSCK
(DLL On) -225 225 -195 195 -180 180 -175 175 -170 170 ps 37,38,3
9
DQS_t, DQS_c rising edge output variance
window per DRAM
tDQSCKI
(DLL On) 370 330 310 290 270 ps 37,38,3
9
MPSM Timing
Command path disable delay upon MPSM
entry tMPED
tMOD(min
) +
tCP-
DED(min)
-
tMOD(min
) +
tCP-
DED(min)
-
tMOD(min
) +
tCP-
DED(min)
-
tMOD(min
) +
tCP-
DED(min)
- TBD -
Valid clock requirement after MPSM entry tCKMPE
tMOD(min
) +
tCP-
DED(min)
-
tMOD(min
) + tCP-
DED(min)
-
tMOD(min
) +
tCP-
DED(min)
-
tMOD(min
) +
tCP-
DED(min)
- TBD -
Valid clock requirement before MPSM exit tCKMPX tCKSRX(
min) -tCKSRX(
min) -tCKSRX(
min) -tCKSRX(
min) - TBD -
Exit MPSM to commands not requiring a
locked DLL tXMP tXS(min) - tXS(min) - tXS(min) - tXS(min) - TBD -
Exit MPSM to commands requiring a locked
DLL tXMPDLL
tXMP(min
) +
tXS-
DLL(min)
-
tXMP(min
) +
tXS-
DLL(min)
-
tXMP(min
) +
tXS-
DLL(min)
-
tXMP(min
) +
tXS-
DLL(min)
- TBD -
CS setup time to CKE tMPX_S tIS(min) +
tIHL(min) -tIS(min) +
tIHL(min) -tIS(min) +
tIHL(min) -tIS(min) +
tIHL(min) - TBD -
Calibration Timing
Power-up and RESET calibration time tZQinit 1024 - 1024 - 1024 - 1024 - 1024 - nCK
Normal operation Full calibration time tZQoper 512 - 512 - 512 - 512 - 512 - nCK
Normal operation Short calibration time tZQCS 128 - 128 - 128 - 128 - 128 - nCK
Reset/Self Refresh Timing
Exit Reset from CKE HIGH to a valid com-
mand tXPR
max
(5nCK,tR
FC(min)+
10ns)
-
max
(5nCK,tR
FC(min)+
10ns)
-
max
(5nCK,tR
FC(min)+
10ns)
-
max
(5nCK,tR
FC(min)+
10ns)
-
max
(5nCK,tR
FC(min)+
10ns)
- nCK
Exit Self Refresh to commands not requiring
a locked DLL tXS tRFC(min)
+10ns -tRFC(min)
+10ns -tRFC(min)
+10ns -tRFC(min)
+10ns -tRFC(min
)+10ns - nCK
SRX to commands not requiring a locked
DLL in Self Refresh ABORT
tXS_ABORT(
min)
tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns - nCK
Exit Self Refresh to ZQCL,ZQCS and MRS
(CL,CWL,WR,RTP and Gear Down)
tXS_FAST
(min)
tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns -tRFC4(mi
n)+10ns - nCK
Exit Self Refresh to commands requiring a
locked DLL tXSDLL tDLLK(mi
n) -tDLLK(mi
n) -tDLLK(mi
n) -tDLLK(mi
n) -tDLLK(mi
n) - nCK
Minimum CKE low width for Self refresh entry
to exit timing tCKESR tCKE(min)
+1nCK -tCKE(min)
+1nCK -tCKE(min)
+1nCK -tCKE(min)
+1nCK -tCKE(min
)+1nCK - nCK
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 64 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
Minimum CKE low width for Self refresh entry
to exit timing with CA Parity enabled tCKESR_ PAR
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-
tCKE(min
)+
1nCK+PL
- nCK
Valid Clock Requirement after Self Refresh
Entry (SRE) or Power-Down Entry (PDE) tCKSRE max(5nC
K,10ns) -max(5nC
K,10ns) -max(5nC
K,10ns) -
max
(5nCK,10
ns)
-
max
(5nCK,10
ns)
- nCK
Valid Clock Requirement after Self Refresh
Entry (SRE) or Power-Down when CA Parity
is enabled
tCKSRE_PAR
max
(5nCK,10
ns)+PL
-
max
(5nCK,10
ns)+PL
-
max
(5nCK,10
ns)+PL
-
max
(5nCK,10
ns)+PL
-
max
(5nCK,10
ns)+PL
- nCK
Valid Clock Requirement before Self Refresh
Exit (SRX) or Power-Down Exit (PDX) or
Reset Exit
tCKSRX max(5nC
K,10ns) -max(5nC
K,10ns) -max(5nC
K,10ns) -
max
(5nCK,10
ns)
-
max
(5nCK,10
ns)
- nCK
Power Down Timing
Exit Power Down with DLL on to any valid
command;Exit Precharge Power Down with
DLL frozen to commands not requiring a
locked DLL
tXP
max
(4nCK,6n
s)
-
max
(4nCK,6n
s)
-
max
(4nCK,6n
s)
-
max
(4nCK,6n
s)
-
max
(4nCK,6n
s)
- nCK
CKE minimum pulse width tCKE
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
- nCK 31,32
Command pass disable delay tCPDED 4 - 4 - 4 - 4 - 4 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min
)9*tREFI nCK 6
Timing of ACT command to Power Down
entry tACTPDEN 1 - 1 - 2 - 2 - 2 - nCK 7
Timing of PRE or PREA command to Power
Down entry tPRPDEN 1 - 1 - 2 - 2 - 2 - nCK 7
Timing of RD/RDA command to Power Down
entry tRDPDEN RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - nCK
Timing of WR command to Power Down
entry (BL8OTF, BL8MRS, BC4OTF) tWRPDEN
WL+4+(t
WR/
tCK(avg))
-
WL+4+(t
WR/
tCK(avg))
-
WL+4+(t
WR/
tCK(avg))
-
WL+4+(t
WR/
tCK(avg))
-
WL+4+(t
WR/
tCK(avg))
- nCK 4
Timing of WRA command to Power Down
entry (BL8OTF, BL8MRS, BC4OTF) tWRAPDEN WL+4+W
R+1 -WL+4+W
R+1 -WL+4+W
R+1 -WL+4+W
R+1 -WL+4+W
R+1 -nCK 5
Timing of WR command to Power Down
entry (BC4MRS)
tWRP-
BC4DEN
WL+2+(t
WR/
tCK(avg))
-
WL+2+(t
WR/
tCK(avg))
-
WL+2+(t
WR/
tCK(avg))
-
WL+2+(t
WR/
tCK(avg))
-
WL+2+(t
WR/
tCK(avg))
- nCK 4
Timing of WRA command to Power Down
entry (BC4MRS)
tWRAP-
BC4DEN
WL+2+W
R+1 -WL+2+W
R+1 -WL+2+W
R+1 -WL+2+W
R+1 -WL+2+W
R+1 -nCK 5
Timing of REF command to Power Down
entry tREFPDEN 1 - 1 - 2 - 2 -2-nCK 7
Timing of MRS command to Power Down
entry tMRSPDEN tMOD(min
)-tMOD(min
)-tMOD(min
)-tMOD(min
)-tMOD(mi
n) -nCK
PDA Timing
Mode Register Set command cycle time in
PDA mode tMRD_PDA max(16nC
K,10ns) -max(16nC
K,10ns) -max(16nC
K,10ns) -max(16nC
K,10ns) -max(16n
CK,10ns) - nCK
Mode Register Set command update delay in
PDA mode tMOD_PDA tMOD tMOD tMOD tMOD tMOD nCK
ODT Timing
Asynchronous RTT turn-on delay (Power-
Down with DLL frozen) tAONAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns
Asynchronous RTT turn-off delay (Power-
Down with DLL frozen) tAOFAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg)
Write Leveling Timing
First DQS_t/DQS_n rising edge after write
leveling mode is programmed tWLMRD 40 - 40 - 40 - 40 -40-nCK 12
DQS_t/DQS_n delay after write leveling
mode is programmed tWLDQSEN 25 - 25 - 25 - 25 -25-nCK 12
Write leveling setup time from rising CK_t,
CK_c crossing to rising DQS_t/DQS_n cross-
ing
tWLS 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - tCK(avg)
Write leveling hold time from rising DQS_t/
DQS_n crossing to rising CK_t, CK_ crossing tWLH 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - tCK(avg)
Write leveling output delay tWLO 0 9.5 0 9.5 0 9.5 0 9.5 0 9.5 ns
Write leveling output error tWLOE 0 2 0 2 0 2 0 202ns
CA Parity Timing
Commands not guaranteed to be executed
during this time
tPAR_UN-
KNOWN - PL - PL - PL - PL - PL nCK
Delay from errant command to ALERT_n
assertion
tPAR_ALERT
_ON - PL+6ns - PL+6ns - PL+6ns - PL+6ns - PL+6ns nCK
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 65 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
Pulse width of ALERT_n signal when
asserted
tPAR_ALERT
_PW 48 96 56 112 64 128 72 144 80 160 nCK
Time from when Alert is asserted till control-
ler must start providing DES commands in
Persistent CA parity mode
tPAR_ALERT
_RSP - 43 - 50 - 57 - 64 71 nCK
Parity Latency PL 4 4 4 5 5 nCK
CRC Error Reporting
CRC error to ALERT_n latency tCRC_ALERT 3 13 3 13 3 13 3 13 3 13 ns
CRC ALERT_n pulse width CRC_ALERT_
PW 6 10 6 10 6 10 6 10 6 10 nCK
Geardown timing
Exit RESET from CKE HIGH to a valid MRS
geardown (T2/Reset) tXPR_GEAR - - - - - - - - TBD
CKE High Assert to Gear Down Enable
time(T2/CKE) tXS_GEAR - - - - - - - - TBD
MRS command to Sync pulse time(T3) tSYNC_GEA
R - - - - - - - - TBD - 27
Sync pulse to First valid command(T4) tCMD_GEAR - - - - - - - - TBD 27
Geardown setup time tGEAR_setup - - - - - - - -2- nCK
Geardown hold time tGEAR_hold - - - - - - - -2- nCK
tREFI
tRFC1 (min)
2Gb 160 - 160 - 160 - 160 - 160 -ns34
4Gb 260 - 260 - 260 - 260 - 260 -ns34
8Gb 350 - 350 - 350 - 350 - 350 -ns34
16Gb 550 - 550 - 550 - 550 - 550 -ns34
tRFC2 (min)
2Gb 110 - 110 - 110 - 110 - 110 -ns34
4Gb 160 - 160 - 160 - 160 - 160 -ns34
8Gb 260 - 260 - 260 - 260 - 260 -ns34
16Gb 350 - 350 - 350 - 350 - 350 -ns34
tRFC4 (min)
2Gb 90 - 90 - 90 - 90 - 90 -ns34
4Gb 110 - 110 - 110 - 110 - 110 -ns34
8Gb 160 - 160 - 160 - 160 - 160 - ns 34
16Gb 260 - 260 - 260 - 260 - 260 - ns 34
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 66 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
NOTE :
1. Start of internal write transaction is defined as follows:
For BL8 (Fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL.
For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.
2. A separate timing parameter will cover the delay from write to read when CRC and DM are simultaneously enabled
3. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
4. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer.
5. WR in clock cycles as programmed in MR0.
6. tREFI depends on TOPER.
7. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be
applied until finishing those operations.
8. For these parameters, the DDR4 SDRAM device supports tnPARAM[nCK]=RU{tPARAM[ns]/tCK(avg)[ns]}, which is in clock cycles assuming all input clock jitter
specifications are satisfied
9. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
10. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
11. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
12. The max values are system dependent.
13. DQ to DQS total timing per group where the total includes the sum of deterministic and random timing terms for a specified BER. BER spec and measurement method are
tbd.
14. The deterministic component of the total timing. Measurement method tbd.
15. DQ to DQ static offset relative to strobe per group. Measurement method tbd.
16. This parameter will be characterized and guaranteed by design.
17U When the device is operated with the input clock jitter, this parameter needs to be derated by the actual tjit(per)_total of the input clock. (output deratings are relative to the
SDRAM input clock). Example tbd.
18. DRAM DBI mode is off.
19. DRAM DBI mode is enabled. Applicable to x8 and x16 DRAM only.
20. tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
21. tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
22. There is no maximum cycle time limit besides the need to satisfy the refresh interval tREFI
23. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge
24. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge
25. Total jitter includes the sum of deterministic and random jitter terms for a specified BER. BER target and measurement method are tbd.
26. The deterministic jitter component out of the total jitter. This parameter is characterized and gauranteed by design.
27. This parameter has to be even number of clocks
28. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
29. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
30. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
31. After CKE is registered LOW, CKE signal level shall be maintained below VILDC for tCKE specification (Low pulse width).
32. After CKE is registered HIGH, CKE signal level shall be maintained above VIHDC for tCKE specification (HIGH pulse width).
33. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
34. Parameters apply from tCK(avg)min to tCK(avg) max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
35. This parameter must keep consistency with Speed-Bin Tables.
36. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
UI=tCK(avg).min/2
37. applied when DRAM is in DLL ON mode.
38. Assume no jitter on input clock signals to the DRAM
39. Value is only valid for RZQ/7 RONNOM = 34 ohms
40. 1tCK toggle mode with setting MR4:A11 to 0
41. 2tCK toggle mode with setting MR4:A11 to 1, which is valid for DDR4-2400/2666/3200 speed grade.
42. 1tCK mode with setting MR4:A12 to 0
43. 2tCK mode with setting MR4:A12 to 1, which is valid for DDR4-2400/2666/3200 speed grade.
44. The maximum read preamble is bounded by tLZ(DQS)min on the left side and tDQSCK(max) on the right side.
45. DQ falling signal middle-point of transferring from High to Low to first rising edge of DQS diff-signal cross-point
46. last falling edge of DQS diff-signal cross-point to DQ rising signal middle-point of transferring from Low to High
47. VrefDQ value must be set to either its midpoint or Vcent_DQ(midpoint) in order to capture DQ0 or DQL0 low level for entering PDA mode.
48. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side.
49. Reference level of DQ output signal is specified with a midpoint as a widest part of Output signal eye which should be approximately 0.7 * VDDQ as a center level of the
static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to VTT = VDDQ .
50. For MR7 commands, the minimum delay to a subsequent non-MRS command is 5nCK. .
- 67 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
14.5 Rounding Algorithms
Software algorithms for calculation of timing parameters are subject to rounding errors from many sources. For example, a system may use a memory
clock with a nominal frequency of 933.33... MHz, or a clock period of 1.0714... ns. Similarly, a system with a memory clock frequency of 1066.66... MHz
yields mathematically a clock period of 0.9375... ns. In most cases, it is impossible to express all digits after the decimal point exactly, and rounding must
be done because the DDR4 SDRAM specification establishes a minimum granularity for timing parameters of 1 ps.
Rules for rounding must be defined to allow optimization of device performance without violating device parameters. These algorithms rely on results that
are within correction factors on device testing and specification to avoid losing performance due to rounding errors.
These rules are:
•Clock periods such as tCKAVGmin are defined to 1 ps of accuracy; for example, 0.9375... ns is defined as 937 ps and 1.0714... ns is defined as
1071 ps.
•Using real math, parameters like tAAmin, tRCDmin, etc. which are programmed in systems in numbers of clocks (nCK) but expressed in units of
time (in ns) are divided by the clock period (in ns) yielding a unitless ratio, a correction factor of 2.5% is subtracted, then the result is set to the next
higher integer number of clocks:
nCK = ceiling [ (parameter_in_ns / application_tCK_in_ns) - 0.025 ]
•Alternatively, programmers may prefer to use integer math instead of real math by expressing timing in ps, scaling the desired parameter value by
1000, dividing by the application clock period, adding an inverse correction factor of 97.4%, dividing the result by 1000, then truncating down to the
next lower integer value:
nCK = truncate [ {(parameter_in_ps x 1000) / (application_tCK_in_ps) + 974} / 1000 ]
•Either algorithm yields identical results
- 68 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
14.6 The DQ Input Receiver Compliance Mask for Voltage and Timing
The DQ input receiver compliance mask for voltage and timing is shown in the figure below. The receiver mask (Rx Mask) defines area the input signal
must not encroach in order for the DRAM input receiver to be expected to be able to successfully capture a valid input signal with BER of 1e-16; any input
signal encroaching within the Rx Mask is subject to being invalid data. The Rx Mask is the receiver property for each DQ input pin and it is not the valid
data-eye.
Figure 24. DQ Receiver(Rx) compliance mask
Figure 25. Vcent_DQ Variation to Vcent_DQ(midpoint)
The Vref_DQ voltage is an internal reference voltage level that shall be set to the properly trained setting, which is generally Vcent_DQ(midpoint), in order
to have valid Rx Mask values.
Vcent_DQ is defined as the midpoint between the largest Vref_DQ voltage level and the smallest Vref_DQ voltage level across all DQ pins for a given
DDR4 DRAM component Each DQ pin Vref level is defined by the center, i.e. widest opening, of the cumulative data input eye as depicted in
Figure 25.This clarifies that any DDR4 DRAM component level variation must be accounted for within the DDR4 DRAM Rx mask.The component level
Vref will be set by the system to account for Ron and ODT settings.
DQx DQy DQz
Vcent_DQx Vcent_DQy Vcent_DQz
Vref variation
(Component)
(Smallest Vref_DQ Level) (Largest Vref_DQ Level)
Vcent_DQ(midpoint)
- 69 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
Figure 26. DQS to DQ and DQ to DQ Timings at DRAM Balls
DQS_t
DQS_c
DQS_t
DQS_c
Rx Mask
0.5xTdiVW 0.5xTdiVW
TdiVW
DQS, DQs Data-in at DRAM Ball
Rx Mask
DQS, DQs Data-in at DRAM Ball
Rx Mask - Alternative View
DQx-z
DRAMa
VdiVW
Rx Mask
0.5xTdiVW 0.5xTdiVW
TdiVW
DQx-z
DRAMa
VdiVW
Rx Mask
tDQS2DQ
tDQ2DQ
DQy
DRAMb
VdiVW
Rx Mask
DQz
DRAMb
VdiVW
Rx Mask
tDQS2DQ
tDQ2DQ
DQz
DRAMc
VdiVW
Rx Mask
DQy
DRAMc
VdiVW
Rx Mask
tDQS2DQ + 0.5 x TdiVW
tDQ2DQ
DQy
DRAMb
VdiVW
DQz
DRAMb
VdiVW
tDQS2DQ + 0.5 x TdiVW
tDQ2DQ
DQz
DRAMc
VdiVW
DQy
DRAMc
VdiVW
TdiVW
tDQ2DQ
Rx Mask
TdiVW
Rx Mask
TdiVW
Rx Mask
TdiVW
tDQ2DQ
NOTE : DQx represents an optimally centered mask. NOTE : DRAMa represents a DRAM without any DQS/DQ skews.
DQy represents earliest valid mask. DRAMb represents a DRAM with early skews (negative tDQS2DQ).
DQz represents latest valid mask.
NOTE : Figures show skew allowed between DRAM to DRAM and DQ to DQ for a DRAM. Signals assume data centered aligned at DRAM Latch.
TdiPW is not shown; composite data-eyes shown would violate TdiPW.
VCENT DQ(midpoint) is not shown but is assummed to be midpoint of VdiVW..
. DRAMc represents a DRAM with delayed skews (positive tDQS2DQ).
- 70 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
All of the timing terms in Figure 26 are measured at the VdIVW levels centered around Vcent_DQ(midpoint) and are referenced to the DQS_t/DQS_c
center aligned to the DQ per pin.
The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising edge are shown in Figure 27 below: A low to high
transition tr1 is measured from 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint)
while tr2 is measured from the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)
above Vcent_DQ(midpoint).
Rising edge slew rate equations:
srr1 = VdIVW(max) / tr1
srr2 = (VIHL_AC(min) – VdIVW(max)) / (2*tr2)
Figure 27. Slew Rate Conditions For Rising Transition
The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling edge are shown in Figure 28 B below: A high to
low transition tf1 is measured from 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint)
while tf2 is measured from the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)
below Vcent_DQ(pin mid).
Falling edge slew rate equations:
srf1 = VdIVW(max) / tf1
srf2 = (VIHL_AC(min) – VdIVW(max)) / (2*tf2)
Figure 28. Slew Rate Conditions For Falling Transition
VHL_AC(min)
0.5*VHL_AC(min) 0.5*VHL_AC(min)
tr1
tr2
0.5*VdiVW(max)
0.5*VdiVW(max)
Vcent_DQ(midpoint)
VdiVW(max)
Rx Mask
VHL_AC(min)
0.5*VHL_AC(min) 0.5*VHL_AC(min)
tr1
tr2
0.5*VdiVW(max)
0.5*VdiVW(max)
Vcent_DQ(midpoint)
VdiVW(max)
Rx Mask
- 71 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 54 ] DRAM DQs In Receive Mode; * UI=tck(avg)min/2
NOTE:
1. Data Rx mask voltage and timing total input valid window where VdIVW is centered around Vcent_DQ(midpoint) after VrefDQ training is completed. The data Rx mask is
applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER = e-16 when the RxMask is not violated.
The BER will be characterized and extrapolated if necessary using a dual dirac method from a higher BER(tbd).
2. Defined over the DQ internal Vref range 1.
3. See Overshoot and Undershoot Specification.
4. DQ input pulse signal swing into the receiver must meet or exceed VIHL AC(min). . VIHL_AC(min) is to be achieved on an UI basis when a rising and falling edge occur in the
same UI, i.e. a valid TdiPW.
5. DQ minimum input pulse width defined at the Vcent_DQ(midpoint).
6. DQS to DQ offset is skew between DQS and DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls over process, voltage, and temperature.
7. DQ to DQ offset is skew between DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls for a given component over process, voltage, and temperature.
8. Input slew rate over VdIVW Mask centered at Vcent_DQ(midpoint). Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7 V/ns of each other.
9. Input slew rate between VdIVW Mask edge and VIHL_AC(min) points.
10. All Rx Mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated when satisfying TdiVW(min), VdiVW(max), and minimum
slew rate limits, then either TdiVW(min) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated.
Symbol Parameter 1600/1866/2133 2400 2666 Unit NOTE
min max min max min max
VdIVW Rx Mask voltage - pk-pk - 136 - 130 - 120 mV 1,2,10
TdIVW Rx timing window - 0.2 - 0.2 - 0.22 UI* 1,2,10
VIHL_AC DQ AC input swing pk-pk 186 - 160 - 150 - mV 3,4,10
TdIPW DQ input pulse width 0.58 0.58 0.58 - UI* 5,10
tDQS2DQ Rx Mask DQS to DQ offset -0.17 0.17 -0.17 0.17 -0.19 0.19 UI* 6, 10
tDQ2DQ Rx Mask DQ to DQ offset - tbd - tbd tbd UI* 7
srr1, srf1
Input Slew Rate over VdIVW if tCK >= 0.935ns 1.0 9 1.0 9 1.0 tbd V/ns 8,10
Input Slew Rate over
VdIVW if 0.935ns > tCK >= 0.625ns - - 1.25 9 1 tbd V/ns 8,10
srr2 Rising Input Slew Rate
over 1/2 VIHL_AC 0.2*srr1 9 0.2*srr1 9 0.2*srr1 tbd V/ns 9,10
srf2 Falling Input Slew Rate
over 1/2 VIHL_AC 0.2*srf1 9 0.2*srf1 9 0.2*srr1 tbd V/ns 9,10
- 72 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
14.7 DDR4 Function Matrix
DDR4 SDRAM has several features supported by ORG and also by Speed. The following Table is the summary of the features.
[ Table 55 ] Function Matrix (By ORG. V:Supported, Blank:Not supported)
Functions x4 x8 x16 NOTE
Write Leveling VVV
Temperature controlled Refresh VVV
Low Power Auto Self Refresh VVV
Fine Granularity Refresh VVV
Multi Purpose Register VVV
Data Mask VV
Data Bus Inversion VV
TDQS V
ZQ calibration VVV
DQ Vref Training VVV
Per DRAM Addressability VVV
Mode Register Readout VVV
CAL VVV
WRITE CRC VVV
CA Parity VVV
Control Gear Down Mode VVV
Programmable Preamble VVV
Maximum Power Down Mode VV
Boundary Scan Mode V
Additive Latency VV
3DS VV
- 73 -
datasheet DDR4 SDRAMK4A8G085WB
K4A8G045WB
Rev. 2.1
[ Table 56 ] Function Matrix (By Speed. V:Supported, Blank:Not supported)
Functions
DLL Off mode DLL On mode
NOTE
equal or slower
than
250Mbps
1600/1866/2133
Mbps 2400Mbps 2666Mbps
Write Leveling VV V V
Temperature controlled Refresh VV V V
Low Power Auto Self Refresh VV V V
Fine Granularity Refresh VV V V
Multi Purpose Register VV V V
Data Mask VV V V
Data Bus Inversion VV V V
TDQS VVV
ZQ calibration VV V V
DQ Vref Training VV V V
Per DRAM Addressability VVV
Mode Register Readout VV V V
CAL VVV
WRITE CRC VVV
CA Parity VVV
Control Gear Down Mode V
Programmable Preamble ( = 2tCK) VV
Maximum Power Down Mode VVV
Boundary Scan Mode VV V V
3DS VV V V