1
File Number 4021.1
1-888-INTERSIL or 321-724-7143 |Copyright © Intersil Corporation 2000
RURP8100CC
8A, 1000V Ultrafast Dual Diode
The RURP8100CC is an ultrafast dual diode with soft
recovery characteristics (trr < 85ns). It has low forward
voltage drop and is of silicon nitride passivated
ion-implanted epitaxial planar construction.
This device is intended for use as a freewheeling/ clamping
diode and rectifier in a variety of switching power supplies
and other power switching applications. Its low stored charge
and ultrafast soft recovery minimize ringing and electrical
noise in many power switching circuits, reducing power loss
in the switching transistors.
Formerly developmental type TA09617.
Symbol
Features
Ultrafast with Soft Recovery. . . . . . . . . . . . . . . . . . .<85ns
Operating Temperature. . . . . . . . . . . . . . . . . . . . . . .175oC
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .1000V
Avalanche Energy Rated
Planar Construction
Applications
Switching Power Supplies
Power Switching Circuits
General Purpose
Packaging JEDEC TO-220AB
Ordering Information
PART NUMBER PACKAGE BRAND
RURP8100CC TO-220AB RUR8100C
NOTE: When ordering, use the entire part number.
A1
K
A2
CATHODE
ANODE 2
ANODE 1
CATHODE
(FLANGE)
Absolute Maximum Ratings (Per Leg) TC = 25oC, Unless Otherwise Specified
RURP8100CC UNITS
Peak Repetitive Reverse Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VRRM 1000 V
Working Peak Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VRWM 1000 V
DC Blocking Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VR1000 V
Average Rectified Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IF(AV)
TC = 155oC8A
Repetitive Peak Surge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IFRM
Square Wave, 20kHz 16 A
Nonrepetitive Peak Surge Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IFSM
Halfwave, 1 Phase, 60Hz 100 A
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD75 W
Avalanche Energy (See Figures 10 and 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAVL 20 mJ
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TSTG, TJ-65 to 175 oC
Data Sheet January 2000
2
Electrical Specifications (Per Leg) TC = 25oC, Unless Otherwise Specified
SYMBOL TEST CONDITION MIN TYP MAX UNITS
VFIF = 8A - - 1.8 V
IF = 8A, TC = 150oC - - 1.6 V
IRVR = 1000V - - 100 µA
VR = 1000V, TC = 150oC - - 500 µA
trr IF = 1A, dIF/dt = 200A/µs--85ns
IF = 8A, dIF/dt = 200A/µs - - 100 ns
taIF = 8A, dIF/dt = 200A/µs - 50 - ns
tbIF = 8A, dIF/dt = 200A/µs - 30 - ns
QRR IF = 8A, dIF/dt = 200A/µs - 500 - nC
CJVR = 10V, IF = 0A - 30 - pF
RθJC - - 2.0 oC/W
DEFINITIONS
VF = Instantaneous forward voltage (pw = 300µs, D = 2%).
IR = Instantaneous reverse current.
trr = Reverse recovery time (Figure 9), summation of ta+t
b.
ta = Time to reach peak reverse current (See Figure 9).
tb = Time from peak IRM to projected zero crossing of IRM based on a straight line from peak IRM through 25% of IRM (See Figure 9).
QRR = Reverse recovery charge.
CJ = Junction Capacitance.
RθJC = Thermal resistance junction to case.
pw = pulse width.
D = duty cycle.
Typical Performance Curves
FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE
2 2.5
VF, FORWARD VOLTAGE (V)
IF, FORWARD CURRENT (A)
1
40
0.5
10
0 0.5 1 1.5
25oC
100oC
175oC
3
VR, REVERSE VOLTAGE (V)
0200 400 600 800
200
0.01
0.1
1
10
1000
0.001
25oC
100oC
175oC
IR, REVERSE CURRENT (µA)
RURP8100CC
3
FIGURE 3. trr,t
aAND tbCURVES vs FORWARD CURRENT FIGURE 4. trr,t
aAND tbCURVES vs FORWARD CURRENT
FIGURE 5. trr,t
aAND tbCURVES vs FORWARD CURRENT FIGURE 6. CURRENT DERATING CURVE
FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE
Typical Performance Curves (Continued)
IF, FORWARD CURRENT (A)
0.5
0
80
20
81
40
60
t, RECOVERY TIMES (ns)
4
tb
100
trr
ta
TC = 25oC, dIF/dt = 200A/µs
ta
trr
tb
25
50
75
t, RECOVERY TIMES (ns)
IF, FORWARD CURRENT (A)
0
100
125
0.5 8
14
TC = 100oC, dIF/dt = 200A/µs
125
75
t, RECOVERY TIMES (ns)
IF, FORWARD CURRENT (A)
0
ta
50
150
trr
tb
25
100
0.5 814
TC = 175oC, dIF/dt = 200A/µs
2
0
140 150 160 175165
4
6
8
TC, CASE TEMPERATURE (oC)
IF(AV), AVERAGE FORWARD CURRENT (A)
155
DC
SQ. WAVE
170145
VR, REVERSE VOLTAGE (V)
40
20
0
80
0 50 100 150 200
CJ, JUNCTION CAPACITANCE (pF)
100
60
RURP8100CC
4
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Test Circuits and Waveforms
FIGURE 8. trr TEST CIRCUIT FIGURE 9. trr WAVEFORMS AND DEFINITIONS
FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT FIGURE 11. AVALANCHE CURRENT AND VOLTAGE
WAVEFORMS
RG
L
VDD
IGBT
CURRENT
SENSE
DUT
VGE t1
t2
VGE AMPLITUDE AND
t1 AND t2CONTROL IF
RG CONTROL dIF/dt
+
-
dt
dIF
IFtrr
tatb
0
IRM
0.25 IRM
DUT
CURRENT
SENSE +
LR
VDD
R < 0.1
EAVL = 1/2LI2 [VR(AVL)/(VR(AVL) - VDD)]
Q1= IGBT (BVCES > DUT VR(AVL))
-
VDD
Q1
I = 1A
L = 40mH
IV
t0t1t2
IL
VAVL
t
IL
RURP8100CC