PD-9,908 Intemational Rectifier IRL520S HEXFET Power MOSFET Surface Mount Available in Tape & Reel _ Dynamic dv/dt Rating Vpss = 100V @ Repetitive Avalanche Rated Logic-Level Gate Drive 6 Rps(on) = 0.270 Rosjion) Specified at Vas=4V & 5V 175C Operating Temperature Ip =9.2A Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The SMD-220 is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The SMD-220 is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. SMD-220 Absolute Maximum Ratings Parameter Max. Units Ib @ Te = 25C Continuous Drain Current, Vas @ 5.0 V 9.2 lp @ Te = 100C | Continuous Drain Current, Vas @ 5.0 V 6.5 A lbw Pulsed Drain Current 36 Pp @ Tc = 25C _| Power Dissipation 60 Ww Pp @ Ta=25C__| Power Dissipation (PCB Mount)** 3.7 Linear Derating Factor 0.40 Wine Linear Derating Factor (PCB Mount)** 0.025 Ves Gate-to-Source Voltage +10 Vv Eas Single Pulse Avalanche Energy @ 170 mJ lar Avalanche Current 9.2 A Ear Repetitive Avalanche Energy 6.0 mJ dv/at Peak Diode Recovery dv/dt @ 5.5 Vins Ty, Tste | Junction and Storage Temperature Range -65 to +175 G | Soldering Temperature, for 10 seconds 300 (1.6mm from case) Thermal Resistance Parameter Min. Typ. Max. Units Raic Junction-to-Case _ = 2.5 Resa Junction-to-Ambient (PCB mount)** _ 40 CAN Rea Junction-to-Ambient = = 62 ** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. 1325IRL5205 Electrical Characteristics @ Tj = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions Visrypss Drain-to-Source Breakdown Voltage 100 _ _ Vv Vas=0V, Ip= 250A AV aryoss/ATy| Breakdown Voltage Temp. Coefficient | 0.12 | | VPC | Reference to 25C, Ip= 1mA Roston) Static Drain-to-Source On-Resistance _| 027 Q Vas=5.0V, In=5.5A @ io | 0.38 Ves=4.0V, Ip=4.6A Vesithy Gate Threshold Voltage 1.0 2.0 V__ | Vos=Vas, Ip= 250uA iQis = s: | Forward Transconductance 3.2 | = S__|Vos=50V, Ip=5.5A Ipss Drain-to-Source Leakage Current = 28 HA Vos=100V, Vas-0V 250 Vps=80V, Ves=0V, Ty=150C loss Gate-to-Source Forward Leakage _ _ 100 nA Vas=10V _ Gate-to-Source Reverse Leakage _ | -100 Vaes=-10V (Qo ____([TotalGateCharge ss tissiaYCSdY|sC *i|sCt? Ip=9.2A Qos Gate-to-Source Charge << LSC dC |) OC | Ves OV [Qua Gate-to-Drain ("Miller") Charge _ _ 71 Ves=5.0V See Fig. 6 and 13 @ tan) | Turn-On DelayTime | | 8B Vop=50V ite Rise Time = 64 = ng _ | 'o=9.2A [tao | Turn-Off Delay Time a] Re=9.02 tt Fall Time _ 27 = Rp=5.2Q See Figure 10 Lo internal Drain Inductance _ 45 _ ern oe j nH | from package {i= | Ls Internal Source Inductance | 75 _ and center of die contact 8 [ss [Input Capacitance | = | 490 | Ves=0V Coss Output Capacitance sd | 150 | | pF | Vose25v | Crss Reverse Transfer Capacitance | _ 30 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics | Parameter Min. foe Max. | Units Test Conditions Is Continuous Source Current _ _ 92 MOSFET symbo! D (Body Diode) A showing the \om Pulsed Source Current _ _ 36 integral reverse g (Body Diode} | p-n junction diode. 5 Vsp Diode Forward Voltage _ _ 2.5 Vs | Ty=25C, Is=9.2A, Vas=0V @ tr Reverse Recovery Time _ 130 | 190 ns | Ty=25C, Ir=9.2A Qn Reverse Recovery Charge | 083 | 1.0 HC |di/dt=100A/us @ ton Forward Turn-On Time intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp) Notes: Repetitive rating; pulse width limited by Isps9.2A, di/dt<110A/us, Vop<V(BR)Dss, max. junction temperature (See Figure 11) Tys175C Vop=25V, starting Ty=25C, L=3.0mH Pulse width < 300 us; duty cycle <2%. Re=25Q, las=9.2A (See Figure 12) 1326| IRL520S ) @ oe a. Q E =< = < 2 2 3 5 o ip g a a 6 s 2. 25Vs 20us PULSE WIDTH e0us PULSE WIDTH so-! Te = 250 Te = 175C 1074 to! to! 10! Vps, Drain-to-Source Voltage (volts) Vos, Drain-to-Source Voltage (valts) Fig 1. Typical Output Characteristics, Fig 2. Typical Output Characteristics, Tc=25C To=175C Ip, Drain Current (Amps) (Normalized) Rpsion): Drain-to-Source On Resistance Vos = SOV 20us PULSE WIDTH 00 Ves = SV 2.0 2. 3.0 3. 4.0 4. 0 -60 -40 -20 0 20 40 60 BO 100 120 140 160 180 Ves, Gate-to-Source Voltage (volts) Ty, Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature 1327IRL520S 800 = Cgs + Cgq, Cys SHORTED Coq Cag + 400 Capacitance (pF) Vas, Gate-to-Source Voltage (volts) Crs SEE FIGURE 13 0 0 10 101 4 16 20 Vps; Drain-to-Source Voltage (volts) Qg, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 103 ~ GPERATION IN THIS AREA LIMITED Q 5 BY Ros (ON) x RD 2 = E c << 10? 5 = Oo 5 5 = s a O : S| o w a pas 10 a 3 Gos fe L 8 = 2 IT j=1750C Veg = OV 0.4 , 1.2 1, 0 Te TS ag eS age eS tg Vsp, Source-to-Drain Voltage (volts) Vps;, Drain-to-Source Voltage (volts) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 1328Ip, Drain Current (Amps) 10 o a B ~ 25 50 75 100 125 450 175 To, Case Temperature (C) Fig 9. Maximum Drain Current Vs. Case Temperature Oo eo D N @ 1 n Cc 3 Q n o cc o & 52.4 = SINGLE PULSE re (THERMAL RESPONSE) 108 1074 103 toe IRL520S + ~Vop Pulse Width < tus Duty Factor < 0.1% | | | i i | fr | A, ple i Le. ta(ony tr tajoffy tt 10% Ves Fig 10b. Switching Time Waveforms t I Tt Pom perl e NOTES: 4. DUTY FACTOR, D=t1/t2 2. PEAK Ty=Pom X Zthjc * Te O.4 4 10 t;, Rectangular Pulse Duration (seconds) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-CaseIRL520S Vary tp to obtain Vps > required las 500 ip TOP 3.8A B.5A > BOTTOM 9.24 E400 > > 2 ui 300 . ; we g Fig 12a. Unclamped Inductive Test Circuit 2 A. 290 2 ao & a Gh 100 < Ww Vps 0 Do = 25V 25 50 75 100 125 150 175 Starting Ty, Junction Temperature(C) lag ee Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator Va ig = | Charge - Current Sempting acsistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit See page 1505 Appendix B: Package Outline Mechanical Drawing See page 1507 Appendix C: Part Marking Information - See page 1515 International Appendix D: Tape & Reel Information See page 1519 Rectifier 1330