Jan. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RLA120
FLAT-BASE TYPE
INSULATED PACKAGE
PM150RLA120 FEATURE
a) Adopting new 5th generation IGBT (CSTBT) chip, which
performance is improved by 1µm fine rule process.
For example, typical Vce(sat)=1.9V @Tj=125°C
b) I adopt the over-temperature conservation by Tj detection of
CSTBT chip, and error output is possible from all each con-
servation upper and lower arm of IPM.
c) Current rating of brake part increased.
50% for the current rating of inverter part.
•3φ 150A, 1200V Current-sense IGBT type inverter
75A, 1200V Current-sense regenerative brake IGBT
Monolithic gate drive & protection logic
Detection, protection & status indication circuits for, short-
circuit, over-temperature & under-voltage (P-Fo available
from upper arm devices)
Acoustic noise-less 30kW class inverter application
UL Recognized Yellow Card No.E80276(N)
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES Dimensions in mm
10.5
6-M5 Nuts
110±0.5
78±0.5
+1
-0.5
135
6.05 6.05
26 26 40.5 11.7
18
11
71.5
66.5
6-2 3-2
10
19 13
LABEL
9 5 1
10 103.25
2-φ2.5
4-φ5.5
Mounting Holes
3.25
3-2 3-2
10.5
10.510.5
16.5
33.6
34.7
24.1
20 20 21.5
P
WVU
NB
10.5 13
6
10.5
30.15 11
6
13
13(Screwing Depth)
18.7
110
6.056.05
4
1. VUPC
2. UFO
3. UP
4. VUP1
5. VVPC
6. VFO
7. VP
8. VVP1
9. VWPC
10. WFO
11. WP
12. VWP1
13. VNC
14. VN1
15. Br
16. UN
17. VN
18. WN
19. Fo
Terminal code
19- 0.5
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RLA120
FLAT-BASE TYPE
INSULATED PACKAGE
Jan. 2005
VCES
±IC
±ICP
PC
Tj
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C (Note-1)
V
A
A
W
°C
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol Parameter Condition Ratings Unit
1200
150
300
801
20 ~ +150
INTERNAL FUNCTIONS BLOCK DIAGRAM
VCES
IC
ICP
PC
VR(DC)
IF
Tj
BRAKE PART
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
FWDi Rated DC Reverse Voltage
FWDi Forward Current
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C (Note-1)
TC = 25°C
TC = 25°C
V
A
A
W
V
A
°C
Symbol Parameter Condition Ratings Unit
1200
75
150
457
1200
75
20 ~ +150
VFO
IFO
CONTROL PART
V
mA
20
20
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Symbol Parameter Condition Ratings Unit
Applied between : VUP1-VUPC
VVP1-VVPC, VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC
WP-VWPC, UN VN WN Br-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
20
20
VD
VCIN
V
V
V
N
U
N
W
P
V
WP1
WF
O
V
WPC
V
P
V
VP1
VF
O
V
VPC
U
P
V
UP1
UF
O
V
UPC
Br
BNWVUP
Fo
1.5k
1.5k 1.5k 1.5k
V
NC
V
N1
W
N
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RLA120
FLAT-BASE TYPE
INSULATED PACKAGE
Jan. 2005
Parameter
Symbol
Supply Voltage Protected by
SC
Supply Voltage (Surge)
Module Case Operating
Temperature
Storage Temperature
Isolation Voltage
Condition
VCC(surge)
TC
Tstg
Viso
Ratings
VCC(PROT) 800
1000
20 ~ +100
40 ~ +125
2500
Unit
V
°C
°C
Vrms
V
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = +125°C Start
Applied between : P-N, Surge value
(Note-1)
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
(Note-1) Tc (base plate) measurement point is below.
TOTAL SYSTEM
2.3
2.4
3.5
2.5
0.8
1.0
3.0
1.2
1
10
Min. Typ. Max.
Collector-Emitter
Saturation Voltage
Collector-Emitter
Cutoff Current
IC = 150A, VD = 15V, VCIN = 15V (Fig. 2)
Tj = 25°C
Tj = 125°C
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Parameter
Symbol Condition
VCE(sat)
ICES
VEC
ton
trr
tc(on)
toff
tc(off)
Limits
0.5
1.8
1.9
2.5
1.0
0.5
0.4
2.0
0.7
Tj = 25°C
Tj = 125°C
FWDi Forward Voltage
Switching Time
VD = 15V, VCIN = 0V15V
VCC = 600V, IC = 150A
Tj = 125°C
Inductive Load (Fig. 3, 4)
V
CE
= V
CES
, V
CIN
= 15V
(Fig. 5)
VD = 15V, IC = 150A
VCIN = 0V (Fig. 1) V
mA
V
µs
Unit
PN
UVW
B
Top view
Tc
Bottom view
Y
X
(Note-2) Tc (under the chip) measurement point is below.
arm
axis
X
Y
Unit : mm
UP
IGBT
23.0
56.3
VP WP UN WN
FWDi
23.0
43.1
IGBT
57.5
56.3
FWDi
56.5
43.1
IGBT
87.5
56.3
FWDi
86.5
43.1
IGBT
37.0
29.1
FWDi
38.0
42.4
IGBT
100.5
29.1
FWDi
101.5
42.4
VN
IGBT
70.5
29.1
FWDi
71.5
42.4
Br
IGBT
11.0
26.8
FWDi
8.0
61.0
0.12*
0.20*
0.21*
0.31*
0.16
0.26
0.27
0.40
0.023
°C/W
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Rth(c-f)
Inverter IGBT (per 1 element) (Note-2)
Inverter FWDi (per 1 element) (Note-2)
Brake IGBT (Note-2)
Brake FWDi (Note-2)
Inverter IGBT (per 1 element) (Note-1)
Inverter FWDi (per 1 element) (Note-1)
Brake IGBT (Note-1)
Brake FWDi (Note-1)
Case to fin, (per 1 module)
Thermal grease applied (Note-2)
Symbol Condition Unit
Min.
Junction to case Thermal
Resistances
THERMAL RESISTANCES
Contact Thermal Resistance
Parameter Limits
Typ. Max.
* If you use this value, Rth(f-a) should be measured just under the chips.
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RLA120
FLAT-BASE TYPE
INSULATED PACKAGE
Jan. 2005
3.5
3.5
Main terminal screw : M5
Mounting part screw : M5
Symbol Parameter
Mounting torque
Mounting torque
Weight
Condition Unit
N m
N m
g
Limits
Min. Typ. Max.
2.5
2.5
3.0
3.0
800
MECHANICAL RATINGS AND CHARACTERISTICS
VCE(sat)
ICES
VFM
V
mA
Min. Typ. Max.
V
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
Collector-Emitter
Cutoff Current
IF = 75A (Fig. 2)
Tj = 25°C
Tj = 125°C
Unit
Parameter
Symbol Condition Limits
2.3
2.4
3.5
1
10
1.8
1.9
2.5
Tj = 25°C
Tj = 125°C
BRAKE PART
VD = 15V, IC = 75A
VCIN = 0V (Fig. 1)
V
CE
= V
CES
, V
CIN
= 15V
(Fig. 5)
VD = 15V, VCIN = 15V
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN VN WN Br-VNC
ID
°C
V
mA
ms
34
12
1.8
2.3
12.5
0.01
15
mA
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Over Temperature Protection
Supply Circuit Under-Voltage
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
Vth(ON)
Vth(OFF)
SC
toff(SC)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
tFO
Trip level
Reset level
Trip level
Reset level
CONTROL PART
1.2
1.7
300
150
135
11.5
1.0
Parameter
Symbol Condition Max.
Min. Typ. Unit
Limits
24
6
1.5
2.0
0.2
145
125
12.0
12.5
10
1.8
(Note-3) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
VD = 15V
Detect Tj of IGBT chip
20 Tj 125°C
VD = 15V, VFO = 15V (Note-3)
VD = 15V (Note-3)
V
µs
VN1-VNC
V*P1-V*PC
Inverter part
Brake part A
20 Tj 125°C, VD = 15V (Fig. 3,6)
VD = 15V (Fig. 3,6)
RECOMMENDED CONDITIONS FOR USE
Recommended value Unit
Condition
Symbol Parameter
V
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC (Note-4)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN VN WN Br-VNC
Using Application Circuit of Fig. 8
For IPMs each input signals (Fig. 7)
Supply Voltage
Control Supply Voltage
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
800
15 ±1.5
0.8
9.0
20
2.5
VCC
VCIN(ON)
VCIN(OFF)
fPWM
tdead
VDV
kHz
µs
V
(Note-4) With ripple satisfying the following conditions: dv/dt swing ±5V/µs, Variation 2V peak to peak
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RLA120
FLAT-BASE TYPE
INSULATED PACKAGE
Jan. 2005
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corre-
sponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing SC tests, the turn-off surge voltage spike at the corresponding protection operation should not be al-
lowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
10%
90%
trr
Irr
trtd(on)
tc(on) tc(off)
td(off)
VCIN
Ic
VCE
10%
10% 10%
90%
tf
(ton= td(on) + tr) (toff= td(off) + tf)
Fo
Fo
P
N
N
CS
CS
U,V,W
Vcc
Vcc
Ic
Ic
VD (all)
VD (all)
P
U,V,W
VCIN
VCIN
VCIN
(15V)
VCIN
(15V)
Fo
Fo
Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform
a) Lower Arm Switching
Signal input
(Upper Arm)
Signal input
(Lower Arm)
Signal input
(Upper Arm)
Signal input
(Lower Arm)
b) Upper Arm Switching
P, (U,V,W,B)
U,V,W, (N) U,V,W,B, (N)
VD (all)
IN
Fo
IN
Fo
VD (all)
VCIN
(0V)
Ic
V V
P, (U,V,W)
VCIN
(15V)
Ic
Fig. 1 VCE(sat) Test Fig. 2 VEC, (VFM) Test
VCIN
Fig. 7 Dead time measurement point example
Fig. 5 ICES Test
Fig. 6 SC test waveform
SC
Short Circuit Current
toff(SC)
VD (all) U,V,W, (N)
P, (U,V,W,B) A
Pulse VCE
VCIN
(15V) Ic
Fo
IN
Fo
0V 1.5V 1.5V
1.5V
2V
2V
2V
0V
t
t
tdeadtdeadtdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
IPM input signal VCIN
(Upper Arm)
IPM input signal VCIN
(Lower Arm)
Constant Current
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RLA120
FLAT-BASE TYPE
INSULATED PACKAGE
Jan. 2005
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPMs input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
OUT
Si
OT
OT
OT
OT
OT
OT
OT
GNDGND
In
Vcc
U
V
W
B
N
P
M
IF
+
: Interface which is the same as the U-phase
OUT
Si
GNDGND
In
Vcc
OUT
Si
GNDGND
In
Vcc
OUT
Si
GNDGND
In
Fo
Fo
Fo
Fo
Vcc
OUT
Si
GNDGND
In
Fo
Vcc
OUT
Si
GND
GND
In
Fo
Vcc
VWP1
WP
VWPC
UN
VN
VN1
WN
VNC
1.5k
1.5k
1.5k
1.5k
Fo
VVP1
VP
VVPC
0.1µ
4.7k
1k
0.1µ
0.1µ
20k
20k
20k
10µ
10µ
10µ
20k 10µ
0.1µ
VFo
WFo
UFo
VUP1
UP
VUPC
Br
IF
IF
IF
5V
IF
OUT
Si
GND
GND
In
Fo
Vcc
V
D
VD
VD
VD
Fig. 8 Application Example Circuit